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Abstract

Instead of the pair-by-pair approach conventionally used when defining the average stress
tensor of a granular sample or of a piece of masonry, a grain-by-grain construction is pro-
posed. Its theoretical foundation lies in the assignement, to any bounded mechanical system,
of the tensor moment of its internal efforts, shortly called the internal moment of the system.
In classical continuous media, the Cauchy stress is nothing but the volume-density of internal
moment (or its negative, depending on the sign conventions made). This approach is not
limited to systems in equilibrium; furthermore, it applies to collections involving other me-
chanical objects than massive grains. The pertinence of the concept is demonstrated first by
numerical simulations. Secondly some mathematical procedures of smoothing and homogeni-
sation are introduced to connect the microscopic analysis with the macroscopic continuum
model. Quantitatively, in usual situations, what is obtained as stress tensor differs very little
from the value resulting from traditional definitions.

1 Introduction

1.1 Motivation

In many situations of Civil Engineering or Geomechanics soil materials, though perceptibly
granular, are treated in the framework of classical Continuum Mechanics, with the Cauchy stress
field as central concept. The crucial problem in this macroscopic treatment, whose consistency
remains out of question, is that of determining the constitutive laws which should connect this
macroscopic stress field with some descriptors of the material evolution.

One popular tool in the investigation of granular behaviour at the microscopic level is nu-
merical simulation in which the laws of mechanics are applied to individual grains and to their
interactions. Simulations may be convincingly validated through comparison with some experi-
ments which provide a view of grain motions [9][23] or by checking the quantitative agreement
between the measurements of some experimentally accessible quantitities and the correspond-
ing numerical evaluations. Under such a validation, one of the benefits of computation is the
assessment of microscopic quantities, e.g. the grain-to-grain contact forces, very uneasy to mea-
sure in real world experiments. Connecting these quantities with the elements involved in the
macroscopic treatment is a non trivial task. This paper is meant to provide some tools on this
purpose.

Let D denote a probe domain in the space of a simulation, containing an exact number of
grains. Some authors (e.g.[11][3]) have observed that, from the strict standpoint of vocabulary,
invoking the average stress tensor of D does not rest on any specific definition: this merely is the
volume average over D of the tensor function σ, the Cauchy stress, defined in the material each
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grain is made of and equal to zero in the interstitial space (or evaluated in some fluid possibly
filling this space; see Parag. 3.2 below). This average, i.e.

∫
D σdv/vol(D), has naturally to be

calculated by totalizing the respective contributions of each individual grain to the integral. At
this stage one receives as a piece of luck that the contribution of a grain, say B, may be evaluated
without any continuum mechanics analysis. In fact, in the case of equilibrium, some standard
formula (equ.(14) in the sequel) connects

∫
B σdv with the tensor moment of the external forces

that B experiences. These forces may come from neighbouring grains or from boundaries or
also be distant forces as the gravitational ones. In numerical simulation, computing the average
stress over D is thus straightforward. It is shown in Sec. 4 how this type of approach extends
to non-equilibrium situations.

In spite of the above elementary properties, the majority of the authors dealing with the
subject follow a different route. Accompanied with diverse comments, the common trend is to
select in each grain a reference point, say r and r′ for two grains B and B’. If f is a contact force
exerted by B’ on B, the tensor (r′−r)⊗f is counted in a total involving all contact points present
in the probe domain. In Parag. 3.4 below, where the uncertainty arising from the arbitrariness
in the choice of reference points is assessed, this is called the pair-by-pair approach. It seems that
these authors have been induced to adopt such a standpoint by historical references. In fact, in
the original work of Cauchy, the concept of stress arised from the study of a model of crystalline
matter consisting of a lattice of material points exerting forces upon each other, clearly leading
to pair-by-pair calculations.

It was observed [4] that the differences produced by changing reference points are of the same
order of magnitude as the terms alleged to reveal a possible lack of symmetry of the tensor, a
controversial question. See also a discussion of such uncertainties in [6].

In contrast, the theoretical consistency of the grain-by-grain approach proposed in this paper,
allowing for its extension to more general assemblies than common granulates and to some
dynamic regimes, is emphasized in this paper. As an advantage, let us mention the possibility
of an analysing the spatial diversity of grain stress conditions (see e.g.[44]). On Fig.** in the
sequel, the stress integral of each grain in a two-dimensional simulation is represented by a cross
figuring its principal directions and eigenvalues. This is a way among others of making visible
the popular force chains.

Putting it bluntly, the author views the use of reference points as a counterproductive detour.
But, in all the static or quasi-static circumstances tested so far, the difference between the
alleged stress tensors respectively obtained by the conventional methods and by that presented
here are found very small. So the present paper does not tend to invalidate the numerical results
published elsewhere.

1.2 The theoretical background

One may object to the construction sketched above the reference made to the Cauchy stress
field in each grain, while this field actually disappears from the final expressions. Anyway,
such a reference cannot apply to collections involving some objects too singular for possessing
a Cauchy stress field. In particular, it has no relevance to the assemblies of ideal points subject
to interaction potentials, modelling crystalline matter, as considered from the time of Cauchy
to that of Love [29].

In the sequel, a deeper insight and a wider scope are gained by following the route opened in
[36]. To prevent misconceptions, one refrains from using the word “stress”; the central concept
will be the internal moment, i.e. the tensor moment of the internal efforts of a (bounded)
material system, whose existence is secured when the principles of Classical Mechanics are
formulated in terms of virtual power (see Section 2 below).

In the case of a portion of standard continuous medium, such as B above, the internal
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moment is found equal to −
∫
B σdv. In other words, the tensor field −σ constitutes the density

of internal moment relative to the volume (i.e. Lebesgue) measure dv.
This is the place for observing that, when a partial differential equation involving the stress

field of a continuum is understood “in the sense of Distributions”, the mathematical object which
properly constitutes a Schwartz Distribution is not the function x 7→ σ(x) but the tensor-valued
measure σ dv, more precisely its negative, that we propose to call the internal moment measure .
The minus sign there introduced reflects the common habit in Mechanical Engineering and
general Continuum Mechanics of counting a stress as positive when it is directed as a traction.
It should be removed if the reverse convention, usual in Civil Engineering and Geomechanics,
were made.

It is a principle of Classical Mechanics that the internal efforts of a mechanical system have
zero total virtual power whenever the chosen virtual velocity field is that of a rigid motion.
Equivalently, the internal moment tensor of any system is independent of the choice of an
origin and symmetric. This still holds true if the system experiences as external efforts some
distributions of magnetic torques or the point torques introduced in rigid body dynamics for
modelling the resistance to rolling (see Parag. 2.4 below).

In addition to proper grains, the internal moment tensor is also defined for such objects as
fragments of shells, membranes, threads, etc.. This makes the present construction applicable,
for instance, to the mix of sand and flexible threads called Texsol [24][26].

The internal moment of a collection of mechanical objects which interact only through contact
equals the sum of their respective internal moments. In fact, for a pair of contacting objects B
and B’, the contact efforts exerted by B upon B’ and those exerted by B’ upon B are localized
at the same points of space and opposite, by virtue of the action-reaction principle. The total
of their moment tensors is thus zero.

In contrast, if the grains of a collection exert distant actions upon each other, the additivity
of internal moments doesn’t hold true anymore. For instance, authors studying unsaturated
soils commonly model the capillary bridges that interstitial water may build between two grains
B and B’ by a pair of forces that a point b of B and a point b′ of B’ exert upon each other.
Such an interaction bridge possesses an internal moment, to be added to the internal moments
of other members of the collection (see Parag.2.6 below) to obtain the internal moment of the
whole. In Cauchy’s case of a system of ideal points subject to distant interactions, the internal
moment of the system entirely comes from such bridges.

1.3 Dynamics

If the considered mechanical system is in equilibrium, relative to some Galilean frame, the
Principle of Virtuel Power implies that the sum of its external and internal moment tensors is
zero. In particular, this allows one to calculate the latter tensor in numerical simulations when
the external efforts are in evidence.

Such equality doesn’t hold true anymore in dynamic situations, in what case it must be
replaced by

int.mom(S) + tens.mom.(Ext.efforts of S) =
∫
S
x⊗γ(x) dµ(x), (1)

where γ is the vector field of accelerations and dµ the mass measure defined on the system.
In Sec. 4 is expanded the contribution to the above integral of a member of the system which

would consist of a rigid body. This special material behaviour makes that the acceleration field
of the body is completely determined by the external efforts it experiences. In fact, this vector
field lets itself be expressed algebraically from the following data: the acceleration vector of some
reference point of the body, in practice its mass-center, the spin vector ω and its time-derivative
ω̇. Now, the acceleration of the mass center times the mass equals the resultant vector of
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external efforts, while Euler’s equations relate ω̇ to the moment vector of these efforts. In order
to derive manageable formulas, one uses orthonormal axes directed along principal directions of
the body inertia tensor.

A large set of problems of Granular Mechanics concern dense granular materials in slow
motion, so that, macroscopically, the evolution seems quasistatic, i.e. the accelerations observed
at the macroscopic scale are estimated to be so small that the “inertia forces” should be neg-
ligible with regard to the proper forces involved. However, things may not be so simple at the
micromechanical scale. When watching experiments on the slow deformation of a dense granular
material, one is used to hear a crackling noise which, in most experimental settings, cannot be
ascribed to grain crushing. The time-recording of boundary force measurements, as well as the
numerical simulations made by several authors confirm that, in general, evolutions are rather
agitated. They involve a succession of crises or “microseisms” which cannot be viewed as quasi-
static processes [30, 31, 40, 42]. In two-dimensional experiments with Schneebeli materials (i.e.
assemblies of cylindrical rods or prisms of equal lengths, stacked parallel and observed from the
axial direction), however slow the overall deformation of the sample is, brutal rearrangements
are visible, triggered by sudden local slips.

These brutal episodes are liable to involve, in addition to permanent contacts, some grain
collisions. If grains are modelled as rigid bodies collisions require to express interactions non
only through contact forces but also through contact percussions. Recall that if a collision affects
an element of a cluster of contacting rigid bodies, percussions should be expected at all contact
points, not only at the collision locus.

All what precedes was based on the consideration of efforts, in particular contact forces.
But, at the instant tc of a collision contact forces may be said to become infinite, making the
previous balances meaningless. A balance of percussions should be drawn instead, yielding at
the place of (1)

tens.mom(Int.percussions) + tens.mom.(Ext.percussions) =
∫
S
x⊗[v(x)] dµ(x), (2)

where [v(x)] denotes the time-jump of the velocity vector at point x, i.e. the time-limit of this
quantity on the right of tc minus its time-limit on the left.

Actually in practice, never a balance pertains to a strict instant but to a certain time-average
around this instant. The same is true in time-stepping computations.******

1.4 Pertinence

What precedes might induce one to state as a general definition that, for an arbitrary mechanical
system S occupying a domain D, the average stress is the tensor −int.mom(S)/vol(D). Actually,
in the rest of this paper, the word “stress” will be used with caution. This is to prevent
misunderstandings such as in particular the recurring ones which arise in discussions about the
possible lack of symmetry of the stress tensor.*******

2 Efforts and Virtual Power

2.1 Resultant and Moment of an Effort

According to the formalization of Classical Mechanics in terms of virtual powers (see e.g. [17]),
any effort – this is not necessarily a force in the traditional sense – experienced by a material
system is defined by the expression of the power (also called “rate of working” [20]) that this
effort would develop if the system elements were affected by a class of imagined velocity fields,
called virtual velocities or test fields.
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The rule of the game is that this class of vector fields constitutes a linear space and that the
real-valued functional “power” is linear on this space. In order to make this formalization able
to communicate with Schwartz’ theory of distributions, it is assumed that the power is defined
at least if the test field ϕ belongs to the function space C∞ of the indefinitely differentiable
vector fields. Accordingly, if E is an effort, the standard writing 〈E,ϕ〉 is used to denote the
power of E for the virtual velocity field ϕ.

All the mechanical systems considered in this paper are supposed to occupy bounded portions
of space.

In such a framework, take in particular as ϕ the constant vector field with value a everywhere.
Since the power 〈E,ϕ 〉 of E depends linearly on ϕ, i.e. linearly on a, there exist (uniquely)
some real numbers Ri such that 〈E,ϕ 〉 = Riai.

For simplicity in all this paper, one agrees to use only orthonormal Cartesian coordinate
frames. What precedes thus means that the Ri are the components of some vector R(E) such
that 〈E,ϕ 〉 equals the Euclidean scalar product R(E).a. This vector is thus independent of the
orthonormal frame chosen for computation and is called the resultant of E.

Secondly, let us take as test field the linear vector field ϕ with components

ϕi(x) = bijxj . (3)

The power 〈E,ϕ 〉 must depend linearly on the parameters bij , hence there exist (uniquely) some
real numbers Mij such that 〈E,ϕ 〉 = Mijbji. If the Cartesian frame is rotated about its origin
o, the numbers Mij and bji are altered, but the invariance of 〈E,ϕ 〉 makes that the Mij remain
the components of a well defined Euclidean tensor of second rank – denote it by M(E/o) – called
the moment of degree one of E about the origin. Equivalently, for every i and j, the component
Mij of this tensor equals the power 〈E,ϕ 〉 for the following special choice of the vector field ϕ

ϕk(x) = δjk δil xl. (4)

The change that M(E/o) undergoes when the origin o is displaced is readily expressed through
the following formula; this change vanishes if R(E) = 0.

M(E/o′) = M(E/o) + (o− o′)⊗R(E). (5)

By axiom, a collection of efforts constitutes itself an effort with the additivity of powers, hence
the additivity of resultants and moments. Such an additivity will be accepted in this paper
without entering into any of the discussions about countability which are familiar in Integration
Theory.

Remark 1.– Let us insist on our preference for the concepts of virtual velocity and virtual power
rather than virtual displacement and virtual work. The latter concepts generate an equivalent
formalism since virtual displacements essentially are “infinitesimal” or “variational” vectors,
i.e. they equal the formal products of virtual velocity vectors by some formal time-increment,
declared infinitesimal. The calculation rules used when dealing with infinitesimal displacement
vectors are the same as those holding for velocities in Kinematics, but we find them less clear
in practice.

Remark 2.– An essential aspect of the virtual power formalism, as it is applied in this paper,
is that the invoked test fields are only mathematical objects, defined in the ambiant space even
at places devoid of any particle of the investigated material system. This contrasts with the
prevalent attitude in literature, where it is usually preferred to attach a virtual velocity vector
to each particle of the investigated material system. The virtual velocity field is then a vector
function defined on the matter, not in the ambiant space, with the drawback that the set of the
material particles may possibly fail to be smooth enough for such concepts as the differentiability
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of a vector field to make sense (this is commonly the case on the boundary of of a three-
dimensional continuum or in models supported by curves or a surfaces).

In the effective motion of a continuous medium, the “real” velocity field may fail to be
continuously differentiable. For instance, the presence of jumps of the real velocity field across
some surfaces is a familiar feature which does not prevent us from using smooth test fields in the
analysis of the situation. The consideration of the power of some efforts in the effective motion
and of the corresponding work as its integral over a time-interval, quantities possibly inserted
into thermodynamical relationships, is another question.

That the test fields live only at the mathematical level is not a novelty. In traditional Rational
Mechanics, the constraint of maintaining a material point in some surface with prescribed motion
is a classical topics. It leads to the consideration of the linear space of test velocities said to be
“compatible” with the constraint, namely tangent to the surface in its actual position. Since the
surface is moving, the proper velocity of the point during an effective motion does not belong
to this linear space.

2.2 Internal efforts

An effort is declared exerted (or acted) upon a system but one may also specify a material system
from which it emanates. By axiom, both terms obey the intuitive syntax: if S′ is a subsystem of
S, any effort exerted upon (resp. emanating from) S′ is also declared to be exerted upon (resp.
to emanate from) S.

In particular, the totality of the efforts exerted upon S and emanating from S itself is called
the total internal effort of this system; notation Eint(S). Similarly, the totality of the efforts
exerted upon S and emanating from the rest of Universe is called the total external effort of S.

In the virtual power formalism, the following generalization of the action-reaction principle
is stated as an axiom of Classical Mechanics:

The total internal effort of a material system S has zero power whenever the test field ϕ equals
the velocity field of a rigid motion, i.e. a vector field of the form ϕi(x) = ai+bijxj with bji = −bij

(recall that the Cartesian coordinates in use are orthonormal).

This readily implies that the resultant of this effort is zero and that its tensor moment of
degree one equals a symmetric tensor Mint(S) of rank 2, independent of the choice of the origin.
Let us call this tensor the Internal Moment of S.

Example. Let S consist of a portion of a classical continuous medium filling a bounded domain
Ω of space, with σ as Cauchy stress field. Then classically, for every continuously differentiable
test field ϕ,

〈Eint(S),ϕ 〉 = −
∫
Ω

ϕi,jσji dΩ. (6)

This actually constitutes the very definition of the Cauchy stress in a synthetic construction of
Continuum Mechanics [17].

Here we comply with the common usage in Mechanical Engineering and in general Continuum
Mechanics of counting a stress as positive when it is directed as a traction. In Geomechanics
and Civil Engineering the reverse convention is generally applied, requiring to remove the minus
sign from the right-hand side of (6).

If one takes as ϕ the same linear vector field as in (3) one has ϕi,j = bij , thus

M int
ij (S) = −

∫
Ω

σij dω. (7)

In other words, for such a portion of classical continuous medium, the volume average of the
tensor field σ equals −Mint(S)/vol(Ω).
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2.3 Forces

In familiar situations, efforts merely are forces distributed in the bounded region of space that
the concerned system occupies. Such a force repartition F is mathematically formalized as a
measure, say dF , with values in the 3-dimensional vectors. This means that its power makes
sense not only for ϕ ∈ C∞ but that the expression of this power may be extended (at least) to
any ϕ in the space C 0 of the continuous vector fields and is expressed in the form

〈F,ϕ 〉 =
∫

ϕ(x).dF (x) =
∫

ϕk(x) dFk(x); (8)

the real measures dFk may be called the components of the vector measure dF relative to the
coordinate frame in use. One says that F is an effort of order 0.

This formalism accomodates in particular the case of a discrete collection of forces fα ex-
erted at isolated points xα. Each of these forces, said to make an atom (in other words, a
vector-weighted Dirac) of the measure dF , contributes in the integral (8) by a term of the form
ϕ(xα).fα.

By taking ϕ as in (4) one finds that the moment of degree 1 of the discrete collection F

about the origin equals the tensor with components

Mij =
∫

xi dFj

so that, in coordinate-free notation, one may write

M(F/o) =
∫

x⊗ dF (x). (9)

2.4 Efforts of order greater than zero

Let p be a positive integer. In accordance with the usual terminology of the Theory of Distri-
butions, when the effort E is a vector distribution of order p, its power 〈E,ϕ〉 makes sense not
only for ϕ ∈ C∞ but (at least) for ϕ in the space Cp of the vector fields which are continuously
differentiable up to order p.

In view of (6), the total internal effort of a classical continuous medium is of order 1.
Another example of effort of order 1 is provided by a point couple, more appropriately

called a point torque, a concept traditionally used in order to conciliate the assumption of two
strictly rigid bodies of rotond shapes rolling on each other through a single contact point, with
calculations involving some resistance to rolling (see e.g. [25]). Such an effort, say T, is depicted
by the point c at which it is localized and by some moment vector m. By definition, the power
〈T,ϕ〉 corresponding to a test field ϕ ∈ C 1 equals the Euclidean scalar product of m by the
“spin” of ϕ at point c , i.e. the vector ω = 1

2 curlϕ(c). This agrees with the standard expression
of the power of a couple exerted upon a rigid body, when ϕ equals the velocity field of this
body, namely an affine vector field with skew-symmetric matrix. Clearly 〈T,ϕ〉 vanishes if ϕ
is constant throughout space; therefore T has zero resultant vector, implying that its vector
moment, as well as its tensor moment, do not depend on the choice of an origin.

Here by using the “curl” operator, one assumes that the three-dimensional space is equipped
with a physically inessential orientation; if ε denotes the corresponding orientation tensor, the
expression of 〈T,ϕ〉 writes down

ω.m =
1
2

εijkϕk,jmi. (10)

If one takes as ϕ the same linear vector field as in (3), this expression becomes Mjkbkj , with
Mjk = 1

2 εijkmi, an antisymmetric tensor. Such is the contribution of the point torque to
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the total tensor moment of the external efforts that the concerned body experiences. Due to
the other terms involved, in case of equilibrium, this does not prevent the total from being a
symmetric tensor.

Incidentally, observe that the use of the concept of point torque is motivated by the fact
that, in the statics or the dynamics of a rigid body, the vector moment m or, equivalently,
the associated antisymmetric moment tensor, are all what is needed. Actually the information
localized at point c should convey a macroscopic summary of some distribution of contact
forces taking place in some very small contact area. Because the surface density of this force
distribution takes large and inhomogeneous values, its tensor moment about c turns out to
be nonnegligible but then it has no reason for being antisymmetric: the effort of order 1 one
localizes at point c is more generally to be viewed as a “multiforce” or “stress multipole” [20].

2.5 Contact actions

Let S1, S2 denote two materially distinct systems. Among the efforts that S1 may exert upon S2,
some are possibly qualified as contact efforts. By this, one means that these efforts are supported
by the intersection K of the boundaries of the parts of space that S1 and S2 occupy (as before,
we consider only bounded systems, so that K is compact). “Supported” here is understood in
the mathematical standard sense, that the said efforts have zero power for any test field ϕ which
vanishes throughout an open set containing K .

Suppose that S equals a collection of subsystems S1, S2,. . . which interact only through contact
actions, possibly adhesive.

The syntax of “internal” and “external”, as formulated in the foregoing, entails that the
internal efforts of S consist of the respective internal efforts of the subsystems and of the mutual
efforts that these subsystems may exert upon each other. Since the efforts exerted by S1 upon
S2 and those exerted by S2 upon S1 are contact actions (possibly involving torques of resistance
to rolling as precedingly described), they are located at the same points of space and, by the
action-reaction principle, have opposite values, i.e. opposite powers for any test field (the latter
being always continuous). Therefore, the total contribution of these mutual efforts in the internal
moment of S vanish, leaving

Mint(S) = Mint(S1) + Mint(S2) + . . . (11)

In short, by assigning to every finite collection of subsystems of S the corresponding internal
moments, one defines a finitely additive tensor-valued measure.

No assumption of equilibrium is made here.
The occurence of an integral in (7) makes additivity evident in the special case of a classical

continuous medium and shows that the negative of the Cauchy stress field is nothing else than
the density function of the internal moment measure relatively to the volume (i.e. Lebesgue)
measure. As already observed, the same equation expresses that the volume average of the
Cauchy stress field over Ω equals −Mint/vol(Ω).

Therefore, if a material system S is viewed as “wrapped” in a bounded domain Ω, it is natural
to say that the tensor −Mint(S)/vol(Ω) constitutes the average stress of S. The uncertainty in
defining such a wrapping domain has little consequence if S is, for instance, a portion of granular
material sufficiently dense and comprising sufficiently many grains. It is only at this stage that
some assumption of “large number” has to be made. Under such an assumption, it will be
numerically checked on the example of Sec.****** that the tensor calculated in that way does
possess, up to sampling uncertainty, the main property expected of the Cauchy stress, namely it
allows one to predict how the total force transmitted across an ideal cut depends on the direction
of this cut.
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The above construction, based on the Virtual Power formalism, has the advantage of possible
extension to many other models of continuous media. For instance the internal moment measure
of a string or a chain admits a density function relatively to the arc-length measure. The
visualisation of force chains in the granular sample of Sec.?? through the internal moments of
individual grains suggests that the construction of models of granular media could possibly rest
on formulations in which the internal moment measure would not be entirely represented by a
density with respect to volume, but comprises tensor measures supported by a network of lines.

2.6 Interaction bridges

The additivity property stated in (11) is valid for collections of bodies which interact by contact
only. The present theory thus seems to take us very far from the conceptions of Cauchy and his
followers [29] whose introduction of stress was based on some underlying microscopic model of
crystalline matter consisting of ideally punctual atoms which exert distance-dependent actions
on each other.

As for the current Granular Mechanics, the numerical modelling of unsaturated soils com-
monly rests on a rough way of accounting for the presence of water occupying a small fraction of
the space between grains. In three-dimensional situations, this space is usually connected so that
air remains free to circulate. Water is then assumed localized in “capillary bridges” materialising
an interaction of neighbouring grains without any contact between these rigid bodies. The net
effect of surface tension on the free boundary of such liquid bridges is commonly schematized
as an attractive force that the two concerned grains would exert upon each other. This action
does not consist of mutual contact forces anymore, therefore makes (11) invalid. A protocol to
restore additivity is to consider each bridge as an element of the system.

Under the above schematization, a capillary bridge is represented as a massless line segment
L connecting a particle b of body B with a particle b′ of body B’. Let L exert a force f on
particle b and a force f ′ on particle b′. By the action-reaction principle, the external forces
experienced by L equal the oppposite of the above and, since L is massless, they have the line
bb′ as common support with f ′ = −f . The internal moment of L thus equals

Mint(L) = b⊗ f + b′ ⊗ f ′ = (b− b′)⊗ f (12)

a degenerate symmetric tensor, because f and b− b′ have the same direction.
If the internal moment of an unsaturated granular sample is evaluated, terms of this form

have to be added to the internal moments of grains .
For a collection of distant punctual particles xi, i = 1, 2, . . . , n, like those considered by

Cauchy, let us denote by f ij the force exerted at a distance by xj upon xi (by action-reaction,
f ji = −f ij and the direction is that of xixj ; by convention f ii = 0). In this case, only bridges
contribute in the internal moment of the whole, namely

Mint =
∑
i,j

xi ⊗ f ij =
∑
i<j

(xi − xj)⊗ f ij .

3 Equilibrium situations

3.1 Calculating the internal moment

No hypothesis was made in the foregoing about the possible motion of the considered mechanical
systems. The present section is devoted to the special case of equilibrium relative to a Galilean
reference frame. Then the Principle of Virtual Power states that the total power of all the
efforts it experiences, namely the internal and the external ones, equals zero whatever is the test
field ϕ.
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Taking in particular ϕ as in (3), one obtains that if the system S is in equilibrium,

Mint(S) = −tens.mom.(Ext.efforts). (13)

Example. Let us consider as before a portion of a classical three-dimensional continuous
medium, occupying some bounded domain Ω with smooth boundary ∂Ω. Assume this por-
tion in equilibrium under peripheral forces, with density function T relative to the area measure
d(∂Ω) and possibly also some distant external forces distributed with density fdist relative to
the volume measure dΩ.

In view of (7), the equality of −Mint to the tensor moment of external efforts becomes∫
Ω

σ(x) dΩ =
∫

∂Ω
x⊗ T (x) d(∂Ω) +

∫
Ω

x⊗ fdist(x) dΩ. (14)

Under the assumption that σ is smooth enough, one classically establishes this equality directly,
starting from the boundary condition T = σ.n which holds on ∂Ω and from the equation of
equilibrium div σ + fdist = 0 which holds throughout Ω. Apply to both members of the latter
equation the tensor multiplication x⊗, integrate over Ω and observe that xk(σji,j + fdist

i ) =
(xkσji),j−δkjσji+xkf

dist
i . The Gauss-Ostrogradsky integral formula then yields (14). According

to [21], this result may be traced back to C. Chree [7].
Incidentally observe that the right-hand side of (14) is a priori independent of the choice

of the origin and symmetric because the assumption of equilibrium classically implies that the
resultant of the external efforts vanish, as well as their skew moment, i.e. the antisymmetric
part of their tensor moment.

If S consists of a collection of grains which interact only by contact, the additivity property
(11) allows one to calculate the internal moment of each individual grain separately before
totalizing the whole. The origin may be chosen arbitrarily for each grain. Taking it at the
grain mass center, a point usually at hand in numerical simulations, makes a trick to avoid
calculating the contribution of a possible uniform gravity field (automatically taken into account
if equilibrium is asserted).

The advantages of this grain-by-grain calculation should not make one forget another possi-
bility. In view of equilibrium, the internal moment of S equals the negative of the tensor moment
of the external forces that S undergoes. The latter comprise the contact forces that the members
of S may experience from foreign grains or from confining boundaries but not the contact forces
between members of S. If a uniform gravity field is present, calculating its contribution in the
moment of external forces requires to determine the mass center of S.

Comparing the results of both modes of calculation provides a checksum test of the numerical
quality. The difference allows one to estimate the precision at which the equilibrium conditions
of all grains in S are fullfilled.

3.2 Saturated soil

By way of an exception to the rest of this paper, assume in this paragraph that the space between
grains is filled with some incompressible homogeneous fluid with density ρ. In usual experiments
with “dry” granulates, this fluid is air, whose density may in fact be viewed as a constant in the
considered portion of space. The following is rather aimed at the case of a granular soil with
interstitial space entirely occupied by water. Everything is assumed in equilibrium, so that the
possible viscosity of the fluid plays no part. Gravity with intensity g > 0 is taken into account.
Denoting by z(x) the altitude of a point x, the equation of Hydrostatics allows one to determine
the pressure at some point x of the fluid by p = $(x), where $ denotes the function defined
everywhere by

$(x) = h− ρgz(x). (15)
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Here h is a constant in each connected component of the fluid domain. As usual in three-
dimensional situations, it is assumed that the fluid domain consists of a single connected com-
ponent.

Denoting by Ω a probe domain, let us begin with the special case where this domain is entirely
filled with fluid, without any grain. This makes a portion of classical continuous medium with
Cauchy stress tensor σij = −pδij . In view of (7), its internal moment has components

−
∫
Ω

σij dv = δij

∫
Ω

$ dv.

Since $ is an affine function of the coordinates, its integral over Ω equals vol(Ω)$(cΩ), where cΩ

denotes the geometric center of Ω, i.e. the mass-center of a material of uniform density imagined
to fill this domain.

Coming now to the case where Ω contains also a collection of possibly contacting grains
which leave only as fluid domain the complementary subset Φ, one relies on the additivity
property (11) to calculate the internal moment of the whole. For every grain, say B, one uses
(13) to express its internal moment from the external forces it undergoes. These are contact
forces emanating from other grains or from confining boundaries, as they may be computed in
a numerical simulation and in addition the pressure forces from the fluid. Assume first that B
is entirely immersed, i.e. the points at which contact forces are applied to it make a part of ∂B
with negligible area. At every point x of ∂B, denote by n(x) the outward normal unit. The
tensor moment of the pressure forces experienced by B has components

−
∫

∂B
xi$nj d(∂B) = −

∫
B

(xi$),j dB = −δij

∫
B

$ dB−
∫
B

xi$,j dB.

Now $,j = −ρgζj , with ζ denoting the upward vertical unit vector and
∫
B $ dB = vol(B)$(cB).

The above components thus equal

−vol(B)$(cB)δij + vol(B)ρgciBζj

This yields as the internal moment of the whole contents of Ω the tensor with components:

(vol(Φ)$(cΦ) +
∑
B

vol(B)$(cB))δij −
(∑

B

vol(B)ρgciB

)
ζj −

∑
B

M ext
ij (B)

The term in δij simply equals vol(Ω)$(cΩ)δij , the result when Ω contains no grain. The term
−
∑

B M ext
ij (B) would be the result of the standard calculation of the internal moment of the

grain collection, taking into account the external contact forces and the weights of grains (whose
mass distribution does not need to be homogeneous), but ignoring the fluid pressure. The
intermediate term may be viewed as an Archimedian correction, accounting for the presence
of the fluid: −vol(B)ρgciBζj are the components of the tensor moment (about the same origin
as that used in calculating the other terms) of the gravity forces experienced by a fictitious
homogeneous body with density ρ occupying the place of B.

It is for simplicity that the contact zones of the grains have been assumed of zero area.
Actually, if grain B touches grain B’, with outward normal unit n′(x) = −n(x), along a contact
zone of nonzero area, one does not change the above balance by introducing the force distribution
−$(x)n(x) on the corresponding part of ∂B and the force distribution −$(x)n′(x) on the
corresponding part of ∂B’. Similarly, if grain B touches an obstacle (i.e. an external grain or a
material boundary) along a zone C of nonzero area, one does not change balances by imagining
that C is occupied by a layer of fluid which exerts the force distribution −$(x)n(x) on the
corresponding part of ∂B an the opposite force distribution on the obstacle.
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3.3 Piece of string

The model of an infinitely thin string is a chain of particles labelled by a parameter λ ranging
in a real interval Λ, assumed compact for brevity. A placement of the string into the Euclidean
space E of a reference frame is a mapping P : Λ → E, that we suppose continuous with bounded
variation (in other words, this is a “rectifiable curve”). As for the mechanical behaviour, it is
put in this Parag. that the string is perfectly flexible in the following sense: for every λ in the
interior of Λ, the part λ > λ of the string exerts upon the part λ < λ a simple force Θ(λ)
localized at point P (λ) (but no point torque as there would exist in the case of a string able to
oppose some reluctance to flexion).

Only equilibrium conditions are investigated in what follows. In the traditional approach
to this question, P is assumed continuously differentiable, making of the placement a smooth
curve. The string is supposed submitted to distributed external forces dF = F s

′(λ) ds with
ds = ‖P ′(λ)‖ dλ. By writing that for every subinterval of Λ, the resultant and resultant moment
of the external forces that the corresponding piece of the string undergoes, one classically obtains

• The vector Θ(λ) is tangent to the curve at point λ, i.e. there exists a real number Θ(λ),
called the tension of the string, such that Θ(λ) = Θ(λ)T (λ) where T (λ) = P ′(λ)/‖P ′(λ)‖
denotes the tangent unit vector in the direction of increasing λ.

• The differential equation
d(ΘT ) + dF = 0 (16)

is verified at every point of the string.

Even if some conditions at the endpoints of the string are added, this 3-component differential
equation is not enough to determine the three components of P and the real number Θ as
functions of λ. Some phenomenological information about the mechanical properties of the string
should be provided in the form of a “constitutive law” which connects Θ with some geometric
properties of the placement. An extreme case is that of an inextensible string. Geometrically,
inextensibility means that, whatever the placement is, ‖P ′(λ)‖ equals a given function of λ. The
unknown function Θ(λ) then plays the part of the “multiplier” or “reaction” associated with
this mechanical constraint.

Since the string is assumed in equilibrium, (13) may be used to assess, for every virtual
velocity field ϕ, the power of the internal effort of a portion [λ0, λ1] of the string, namely

Pint(ϕ, [λ0, λ1]) = −Pext(ϕ, [λ0, λ1])

= −
∫
[λ0,λ1]

ϕ(P ).dF −ϕ(P (λ1)).Θ(λ1)T (λ1) + ϕ(P (λ0)).Θ(λ0)T (λ0). (17)

If one extracts from (16) the expression of dF , the integral on the right-hand side becomes∫
[λ0,λ1]

ϕ(P ).d(ΘT ) =
∫
[λ0,λ1]

d(ϕ(P ).ΘT )−
∫
[λ0,λ1]

ΘT .d(ϕ(P )).

Now, denoting by S the arc length directed according to increasing λ, one has

T .d(ϕ(P )) = Tiϕi,jTj dS = TiTj(def ϕ)ij dS

where (def ϕ)ij = (ϕi,j + ϕj,i)/2 are the components of the deformation rate tensor of a con-
tinuous medium admitting ϕ as Eulerian velocity field. Classically, TiTj(def ϕ)ij expresses the
local stretching rate of a chain of particles of this medium which would possess T as tangent
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unit vector. Denoting by E the value of this stretching rate at the generic point of the string,
one writes (17) in the form

Pint(ϕ, [λ0, λ1]) = −
∫
[λ0,λ1]

ΘE dS. (18)

If, in particular, one takes as ϕ an affine vector field, this yields the internal moment of the piece
of string

Mint[λ0, λ1] = −
∫
[λ0,λ1]

ΘT ⊗ T dS. (19)

The standard theory of perfectly flexible strings, which generates the differential equation
(16), rests on the assumption of continuous differentiability for the placement mapping P . A
more general setting, with P only assumed continuous with bounded variation, will have the
advantage of accepting, for instance, that the string present a corner point at its contact with an
obstacle edge. Bounded variation implies the existence of a measure on the interval Λ with values
in the linear space E of the vectors of E, called the Stieltjes measure or “differential measure”
of P , denoted here by dP . If E is equipped with the Euclidean norm, one associates with the
vector measure dP some nonnegative real measure on Λ called its absolute value, denoted by
‖dP ‖. The integral of ‖dP ‖ on any subinterval is by definition the length of the corresponding
arc of the curve, a definition consistent with the meaning of length in the case of a smooth curve.

The decisive move now is to introduce the images of the above measures under the continuous
mapping P : Λ → E. These images are measures defined in E instead of Λ.

For every real test function ϕ ∈ C∞, the real-valued functional

ϕ 7→
∫
Λ

ϕ(P (λ)) ‖dP (λ)‖

is readily found to possess the continuity property required for constituting a real-valued measure
on E. Let us denote by ds this measure, so that the above real value is written

∫
ϕ ds. This

symbol is found to make sense also for ϕ ∈ C0 and even for the ds-specific larger class of functions
said ds-integrable. The support of the measure ds equals the position of the string, i.e. the subset
P (Λ) of E; in fact the above expression obviously equals zero for every test function ϕ which
vanishes in an open subset containing P (Λ).

Similarly, for every ϕ ∈ C∞, the functional

ϕ 7→
∫
Λ

ϕ(P (λ)) dP (λ)

constitutes a E-valued measure on E, noted by dp; this is the image of dP under the continuous
mapping P : Λ → E. From the rules for “change of variable” in Integration Theory, it ensues
that this measure remains the same if the labelling of the elements of the string is changed
through an increasing continuous mapping λ 7→ λ′ In that sense, the vector measure dp appears
more intimely associated than dP to the mechanical situation.

Due to standard facts of Integration Theory, dp possesses a density function relative to the
nonnegative measure ds = ‖dp‖; this is a ds-integrable function whose values are elements of E
with norm equal to 1 ds-almost everywhere. Let us denote by τ this vector function defined ds-
almost everywhere in E; of course, when P is continuously differentiable, τ equals, in standard
sense, the tangent unit vector to the curve P (Λ) in the direction of increasing λ. Since τ is only
defined ds-almost everywhere, the values one attributes to it outside P (Λ) are immaterial and
it is convenient to figure them out as zero.

Coming now to Kinematics, let us imagine as before that the test vector field ϕ ∈ C∞ is
the Eulerian velocity field of a continuous medium which convects the particles of the string.
Because this continuous medium presents a very smooth deformation process, one may show
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that, in spite of P possibly beeing nondifferentiable, the time-derivative of the length of a string
arc equals the integral of e ds over this arc, with e = τiτj(def ϕ)ij . The difference from the
foregoing is that ds now is a real measure in the space E and that τ and e are functions defined
ds-almost everywhere in this space. For mathematical details about the transport of calculative
objects by such an imagined continuous medium, called a carrier, see [34][35].

Thereby we are entering a mechanical formulation in the “Eulerian” style, while the labelling
of each particle of the string by some λ in Λ, used in the foregoing, is “Lagrangian” practice.

In the framework of virtual velocities, the definition of the model in view rests on the
expression of the power of the internal efforts. As one wants it consistent with the precedings,
this expresssion introduces a ds-integrable real function ϑ (defined ds-everywhere in E) and it
is stated that the power of the internal efforts of a portion of the string equals the integral of
the real measure −θe ds over this portion.

By taking in particular for ϕ an affine vector field, one finds that the internal moment of the
portion equals the integral of the tensor measure −θ τ ⊗τ ds. One sees here the tensor quantity
θ τ ⊗ τ playing a role similar to that of σ in (7).

Suppose the piece of string in equilibrium under external forces represented by dF , an E-
valued measure in E. The total virtual power of internal and external forces should vanish for
every test field ϕ, i.e. ∫

ϕi dFi +
∫

ϑ τiτjϕi,j ds = 0. (20)

The definition of the partial derivatives of distributions makes that∫
ϑ τiτjϕi,j ds = −〈(ϑ τiτj),j , ϕi〉 = −〈div(ϑ τ ⊗ τ ),i , ϕi〉

Therefore (20) becomes
div(−ϑ τ ⊗ τ ds) + dF = 0 (21)

quite similar to the equation of the statics of a three-dimensional continuous medium. This
formal uniformity is to be exploited in *** below.

As an example of non-differentiability for P , let us assume that the curve P (Λ) exhibits a
corner at some point c = P (λc), with tangent units τ− and τ+ on the left and on the right
of c and that ϑ correspondingly admits limits ϑ− and ϑ+. We are to show that the vector
distribution div(−ϑ τ ⊗ τ ds), which actually is a vector measure by virtue of (21), possesses at
point c an atom of weight ϑ+τ+ − ϑ−τ−. Technically, this makes an example the articulation
between Eulerian and Lagrangian calculations.

The i-th component of div(−ϑ τ ⊗ τ ds) is the distribution which associates with every test
function ϕ the real number

〈(−ϑ τiτj ds)j , ϕ〉 = 〈ϑ τiτj ds, ϕ,j〉 =
∫

E
ϑ τiτjϕ,j ds.

3.4 A glance at the standard approaches to granular stress

Let S denote a sample extracted from a granulate in equilibrium. A reasonable idea is that the
average stress tensor of this sample should be defined by adapting relation (14) to the discrete
distribution of contact forces [11].

Let us call X the world outside S : a force experienced by a member B of S is declared external
to S if it emanates from some member E of X, in which case we denote by fBE its vector value.
The agent E may be a grain not belonging to S or also some external boundary and we call
cBE the position vector of the point of application of the said force. One agrees to extend this
formalism so as to include the forces arising from a gravity field constant in the concerned region
of space. Actually, the effect of gravity upon body B does not consist in general of a discrete
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collection of forces since it is distributed proportionally to mass, but so long as one is interested
only in the tensor moment of this force distribution, it may be replaced by a single force applied
to the mass center of B, whose position vector is noted cBG (symbolically G stands for gravity,
formally viewed as a member of X).

By analogy with (14), one is thus induced to put the definition

mean stress(S) :=
1

vol(S)

∑
B∈S

∑
E∈X

cBE ⊗ fBE, (22)

where vol(S) denotes the volume of the region of space covered by the granular sample, including
the intersticial space. The uncertainty in identifying this volume is minimized if grains are
numerous and closely packed.

The assumption that S is in equilibrium entails that the expression on the right-hand side
does not depend on the origin of position vectors and equals a symmetric tensor.

For simplicity here, contact actions have been assumed to consist of single forces localized at
each contact point, without considering any of the “point torques” invoked in Parag. 2.4. If such
torques were present among the external efforts undergone by S, their moment tensors should
be additionally taken into account on the right-hand side of (22). Due to equilibrium, the total
expression would still make a symmetric tensor.

The pair by pair calculation.– Inside every grain, say B, a reference point is selected, with
position vector rB. Commonly in literature this point is taken at the mass center of B, a choice
devoid of mechanical relevance since in the context of Statics, the mass distribution in the grain
plays no part. By putting lBE = cBE − rB, one gives to (22) the form

mean stress(S) :=
1

vol(S)

∑
B∈S

∑
E∈X

lBE ⊗ fBE +
1

vol(S)

∑
B∈S

∑
E∈X

rB ⊗ fBE. (23)

The last term is now transformed through a discrete analog to equality (14) in order to generate
an expression involving the contact forces that the members of S exert on each other.

Since every member B of S is a (possibly deformable) body in equilibrium, the sum of all
the forces external to itself it experiences equals zero, i.e.∑

E∈X

fBE +
∑
B′∈S

fBB′
= 0. (24)

Here fBB′
denotes the sum of the contact forces that grain B’ exerts upon grain B with the

convention that fBB′
= 0 if B and B’ have no contact (and also if B=B’). No assumption is

made about grain shapes, hence several contact points may be present for each pair.
Through tensor multiplication by rB, then summation for all B in S, equality (24) implies∑

B∈S

∑
E∈X

rB ⊗ fBE = −
∑
B∈S

∑
B′∈S

rB ⊗ fBB′
. (25)

Due to the action-reaction principle, fBB′
= −fB′B. In the right-hand side of (25), B and B’

are independent summation indices, so the same total is obtained if the names of these indices
are exchanged; finally this right-hand side equivalently reads

1
2

∑
B∈S

∑
B′∈S

(rB − rB′
)⊗ fB′B =

∑
B

∑
B′≺B

lB
′B ⊗ fB′B,

where lB
′B = rB−rB′

is the vector going from the reference point of B’ to the reference point of
B. Here a strict ordering ≺ has been introduced over the collection S (for instance the ordering

15



induced by numbering grains), so as to prevent each term from occuring twice in the summation.
Therefore (23) becomes

mean stress(S) :=
1

vol(S)

∑
B∈S

∑
E∈X

lBE ⊗ fBE +
1

vol(S)

∑
B

∑
B′≺B

lB
′B ⊗ fB′B. (26)

The last term involves only contact forces internal to the sample, in contrast with the ex-
pression in (22) which only involves forces external to this sample. This last term is frequently
used in literature as a definition of the mean stress. As a consequence of neglecting the first
term of the right-hand side above, the tensor so defined presents the defects of depending on
the choice of the reference points in grains and of exhibiting a lack of symmetry subject to this
dependance. It provides only an approximation of the expression (22); an upper bound of the
discrepancy may be calculated in terms of the Euclidean norms of tensors and vectors and of
the maximal diameter of grains, since cBE lies in the volume of grain B as well as, by choice,
the reference point rB∥∥∥∥∥∑

B∈S

∑
E∈X

lBE ⊗ fBE

∥∥∥∥∥ ≤ max.diam×
∑
B∈S

∑
E∈X

‖fBE‖. (27)

Remark.– The above transformation of (22) into an expression involving the contact forces
internal to the sample S achieves some improvement upon what is usually done in literature,
since here several contacts points are accepted in a pair of grains. This is necessary, for instance,
in the numerical simulations of polygonal grains. At the cost of more cumbersome notations,
it would even be possible to improve generality by considering that, due to deformability, the
contact between two grains actually takes place through some parts of their respective surfaces
not reduced to points. The corresponding resultant forces, expressed as integrals, would just
have to be inserted into (26).

4 One step into Dynamics

4.1 Introducing the acceleration field

Equation (13) pertains to the special case of equilibrium. If, more generally, the motion of
S relative to some inertial reference frame, under some definite mechanical actions, has been
calculated, the synthetic formulation of Classical Mechanics [17] implies that, for every test field
ϕ, the virtual power of all the efforts, internal as well as external, experienced by the system
equals that of the vector measure γ(x) dµ(x), where γ denotes the acceleration field and dµ
the mass mesure. By using as ϕ the same affine vector field as before, one obtains, for every
subsystem s of S, in coordinate-free notation,

Mint(s) = −tens.mom.(Ext.efforts of s) +
∫
s
x⊗γ(x) dµ(x). (28)

The total expression on the right-hand side, like Mint(s) itself, is sure to be independent of the
choice of the origin and to constitute a symmetric tensor.

This applies in particular to each member, possibly deformable, of a granular material. As in
the equilibrium case, the additivity of Mint which holds if only contact interactions are present
(otherwise, one has to add the internal moments of the interaction bridges) allows one to calculate
the contribution of each grain separately by using an ad hoc origin. If, in the exploitation of
(28), the origin is chosen at the center of mass of the fragment s, the contribution of the gravity
terms in the tensor moment of external efforts vanishes. Gravity has of course be taken into
account when calculating the motion.
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4.2 Rigid bodies

Let B denote a rigid body. If it moves relatively to the Galilean frame in use, the application of
(28) requires calculating the integral ∫

B
x⊗γ(x) dµ(x). (29)

If b denotes a point following B in its motion, the velocity field of this rigid body is expressed
at any instant by

v(x) = v(b) + ω × (x− b),

where ω is the spin vector of B. By time-derivation relative to the same frame, this yields the
acceleration field

γ(x) = γ(b) + ω̇ × (x− b) + ω × (v(x)− v(b))
= γ(c) + ω̇ × (x− b) + ω × (ω × (x− b))

where ω̇ denotes the time-derivative of ω relative to the reference frame. Importantly, ω̇ also
equals the time derivative of ω relative to a frame attached to the rigid body, because the change
of frame results in the corrective term ω × ω, namely zero.

The integral in (29) thus splits into three terms. First∫
B

x⊗γ(b) dµ(x) =
(∫

B
x dµ(x)

)
⊗γ(b) (30)

Introducing the mass center

. The integral in (30) vanishes if the origin from which the position vector x is evaluated
coincides, at the considered instant, with the mass-center of B, an assumption made in all the
sequel.

The use of the cross product × in what precedes rests on the choice of some (physically
unsignificant) orientation of the three-dimensional space; let us denote by ε the correspond-
ing orientation tensor. The components εijk vanish except when {i, j, k} is a permutation of
{1, 2, 3}. If the orthonormal coordinates (x1, x2, x3) are positively ordered with regard to the
chosen orientation of space, εijk takes the values +1 or −1 according to the “parity” of the said
permutation. Hence

(x⊗(ω̇ × x))hi = xh εijk ω̇j xk.

By integration this yields the second term

T ∗hi =
(∫

B
x⊗(ω̇ × x) dµ

)
hi

= εijk ω̇j Ihk (31)

where I denotes the “planar” inertia tensor
∫
B x⊗x dµ of B (to be distinguished from the “axial”

inertia tensor, classically used when expressing from ω the kinetic energy of B).
Finally, because the properties of ε entail

(ω × (ω × x))i = ωjxjωi − ωjωjxi

integration yields the third term

T ∗∗hi =
(∫

B
x⊗(ω × (ω × x)) dµ

)
hi

= ωjωiIhj − ωjωjIhi. (32)
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Introducing principal axes

In order to display usable forms for expressions (31) and (32), let us specialize the orthonomal
coordinates, with origin at the mass center of B, in such a way that the coordinate axes are
principal for the inertia tensor, i.e. the matrix [Ihk] is diagonal and put P1 = I11, P2 = I22, P3 =
I33. Such axes, assumed kinematically attached to B, are commonly used when writing code for
the dynamics of B: as functions of time, the corresponding components of ω may be taken as
elements of the velocity function t 7→ u ∈ Rd of the investigated mechanical system, with the
considerable advantage that the corresponding elements of the d× d mass matrix make a 3× 3
diagonal block, constant in time.

Let us first exhibit the components T ∗hi from (31) (as usual, the first subscript refers to lines
in the corresponding matrix).

For h = i = 1, one restricts summations to k = 1, since I is diagonal; as ε1j1 = 0, this yields
T ∗11 = 0. Similarly T ∗22 = T ∗33 = 0.

For h = 1 and i = 2, one restricts summations to k = 1 and j = 3 since otherwise ε2j1

vanishes; as ε231 = 1 this yields T ∗12 = ω̇3P1. Similar calculations apply to all non diagonal
terms, so

[T ∗hi] =

 0 ω̇3P1 −ω̇2P1

−ω̇3P2 0 ω̇1P2

ω̇2P3 −ω̇1P3 0


Let us now display the components T ∗∗hi from (32).
For h = i = 1, one has T ∗∗11 = ω2

1P1−(ω2
1 +ω2

2 +ω2
3)P1 = −(ω2

2 +ω2
3)P1 and similar expressions

for T ∗∗22 and T ∗∗33 .
If h 6= i, the term Ihi in (32) vanishes so there remains T ∗∗12 = ω1ω2P1, etc.. Summing up:

[T ∗∗hi ] =

 −(ω2
2 + ω2

3)P1 ω1ω2P1 ω1ω3P1

ω2ω1P2 −(ω2
3 + ω2

1)P2 ω2ω3P2

ω3ω1P3 ω3ω2P3 −(ω2
1 + ω2

2)P3


Invoking rigid body dynamics

In time-stepping numerics, some approximants of the derivatives ω̇i are commonly accessible
through the increments of ωi, allowing one to exploit the expression of [T ∗hi] above.

It should however be noticed that Euler’s equations, which govern the dynamics of the
rotation of the rigid body B about its center of mass c, relate these derivatives to the vector
moment m about c of the external efforts experienced by B. The moments of inertia of B about
the three principal axes in use respectively equal P2 + P3, P3 + P1, P1 + P2; assume them non
zero, so that Euler’s equations become

ω̇1 =
m1

P3 + P2
+

P3 − P2

P3 + P2
ω2ω3

and similarly for ω̇2 and ω̇3. One has to transport these expressions into [T ∗hi]; the resulting tensor
may be decomposed into the sum of its symmetric part and its antisymmetric part. The latter
is found to balance the antisymmetric part of −tens.mom.(ext.efforts) in (28). Anyway, both
members of this equality are sure to be symmetric tensors, so that one may write equivalently

M(B) = −sym.tens.mom.(ext .efforts) + sym
∫
B

x⊗γ(x) dµ(x). (33)

After reduction, the last term is found equal to the sum of two tensors with respective matrices:
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1
2



0
P1 − P2

P1 + P2
m3

P3 − P1

P3 + P1
m2

P1 − P2

P1 + P2
m3 0

P2 − P3

P2 + P3
m1

P3 − P1

P3 + P1
m2

P2 − P3

P2 + P3
m1 0


(34)

and 

−(ω2
2 + ω2

3)P1 2
P1P2

P1 + P2
ω1ω2 2

P1P3

P1 + P3
ω1ω3

2
P1P2

P1 + P2
ω1ω2 −(ω2

3 + ω2
1)P2 2

P2P3

P2 + P3
ω2ω3

2
P1P3

P1 + P3
ω1ω3 2

P2P3

P2 + P3
ω2ω3 −(ω2

1 + ω2
2)P3


(35)

Spherical inertia

The inertia tensor at the mass center c of B has the spherical symmetry if the mass distribution
of the body possesses this symmetry, but also in less symmetrical situations such as the case of a
homogeneous cube. Then, any coordinate frame with origin at c is principal and P1 = P2 = P3,
common value noted P = I0/3 where I0 is the moment of inertia of B about the point c. The
matrix in (34) vanishes, while that in (35) becomes, after putting ω2 = ω2

1 + ω2
2 + ω2

3, P (ω2
1 − ω2) Pω1ω2 Pω1ω3

Pω1ω2 P (ω2
2 − ω2) Pω2ω3

Pω1ω3 Pω2ω3 P (ω2
3 − ω2)

 = P ([ωiωj ]− ω21).

Such becomes in this case the symmetric part of
∫
B x⊗γ(x) dµ(x).

Two-dimensional models

The rigid body B is then a plate, moving in a fixed plane to which the coordinate axis cx3 is
normal. As before, the moving axes cx1 and cx2 are assumed principal for the inertia tensor of
B at its mass center c. If the plate is viewed a infinitely thin, the moment of inertia P3 vanishes
but what follows applies as well to a plate of nonzero thickness, B being then a solid of prismatic
shape in the x3 direction; in fact P3 doesn’t appear in the formulas to come.

Kinematically ω1 = ω2 = 0 at every instant, while ω3 equals ω, the angular velocity of the
two-dimensional body. Then the above results simplify into

[T ∗hi] =

 0 ω̇P1 0
−ω̇P2 0 0

0 0 0


and

[T ∗∗hi ] =

 −ω2P1 0 0
0 −ω2P2 0
0 0 0

 (36)
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In expression (34), simplification arises from that two-dimensional dynamics involves m1 =
m2 = 0, so it reduces to

[T ∗hi] =
1
2

P1 − P2

P1 + P2
m3

 0 1 0
1 0 0
0 0 0


As for expression (35), it becomes identical to (36).

Two-dimensional isotropy.– Isotropy here means that the inertia tensor of B at point c
possesses the rotational symmetry about cx3 axis. This happens if the mass distribution of B
possesses this symmetry but also if B is a homogeneous plate in the shape of a regular polygon.
Then P1 = P2 = I/2, with I denoting the moment of inertia of B about cx3 and (33) reduces to

M(B) = −sym.tens.mom.(ext.efforts)− ω2I

2

 1 0 0
0 1 0
0 0 0


5 Percussions

As recalled in the Introduction, the evolution of a granulate, hower slow it may seem at macro-
scopic observation level, usually involves microscopic crises in the course of which grains may
collide. If these grains are modelled as perfectly rigid bodies, their contact interactions at col-
lisional instants are not described as forces but as percussions. Even if only a single collision
occurs in a cluster of contacting grains, percussions should be expected at every contact point.
What precedes readily adapts to instants at which efforts are of percussional nature. Recall
in this connection that CD computation consists in solving, on each time-step, the balance of
momentum of the system, in which the forces manifest themselves through impulsions. Proper
forces are retrieved after division by the step-length.

What about stress transmission ?

*** à mettre peut-être à la suite du parag sur les point torques***
Let us consider a pack of spherical grains (or of circular ones in 2D models) contacting each

other with dry friction. Assume that the peripheral grains are submitted to contact actions,
arising from some confining boundaries or from an adjacent granular pack. Admit as usual
that these actions consist of simple forces acting at isolated contact points. Since the point
of application of each force is necessarily distinct from the center of the concerned spherical
grain, one is naturally tempted to assert, as soon as the tangential component is nonzero, that
the force “tends to make the grain rotate”. The moment of the force about the grain center
provides a natural measure of this tendency and it is sometimes declared that such a moment is
“imparted” to the granular pack. This assertion may induce one to think that some moments
(or couples) could be transmitted from peripheral grains into the rest of the pack, similarly to
the transmission of forces. Actually, the transmission of forces is a radically different effect,
governed by the fundamental principle that the two contact forces that a pair of grains exert
upon each other are opposite. On the contrary, if the moments of these two forces about the
centers of the respective spherical grains are calculated, they are found equal in case the grains
have equal radii. If the grains are of different sizes, the ratio of the moments is anyway positive.
This precludes the derivation, for a collection of grains, of balance equations which would involve
the local moments in the same way as does the balance equations drawn for forces.

********
Par contre, il semble raisonnable d’étudier la transmission de couples ponctuels si on se

trouve en exercer à la frontière. Il faudrait adapter un programme Mac à la prise en compte des
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couples ponctuels et voir si on ne ferait pas apparaitre des chaines de moments semblables aux
chaines de forces

*********
voir [4] pour l’argument (contestable) que le tenseur de contrainte trouvé et son éventuelle

dissymétrie dépend de la forme de la plage d’épreuve. La dissymétrie deviendrait ainsi impor-
tante dans les bandes de glissement.
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approaches in Civil Engineering, Lecture Notes in Applied and Computational Mechanics,
vol. 14, Springer-Verlag, 2004, pp. 1–46.

[38] G. Morel & M. Khay (1990) Propriétés mécaniques du matériau sol-fibres Texsol, Bulletin
de Liaison des Laboratoires des Ponts et Chaussées, 83–93.

[39] A. Ngadi, J. Rajchenbach, E. Clément & J. Duran (1997) Intermittences in the compression
process of a model granular medium, in Powders and grains 97, R. P. Behringer & J. T. Jenkins
(eds.), Balkema, Rotterdam, 321–324.

[40] C. Nouguier, C. Bohatier, J. J. Moreau, F. Radjai (2000) Force fluctuations in a pushed
granular material, Granular matter, 2 (4), 171–178.

[41] C. A. Truesdell & R. A. Toupin (1960) The Classical Field Theories, Handbuch der Physik,
Springer, Berlin-Göttingen-Heidelberg.

[42] F. Radjai & S. Roux (2002) Turbulentlike fluctuations in quasistatic flow of granular media,
Phys. Rev. Letters, 89, Nr 6.

[43] L. Rothenburg and A. P. S. Selvadurai (1981) A micromechanical definition of the Cauchy
stress tensor for particulate media, in A. P. S. Selvadurai (ed.) Proc. Int. Symp. on the
Mechanical Behavior of Structured Media, Ottawa, Canada.

[44] L. Staron, J. P. Vilotte & F. Radjai (2004) Multiscale analysis of the stress state in a
granular slope in transition to failure, to appear.

[45] J. Weber (1966) Recherches concernant les contraintes intergranulaires dans les milieux
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