Alexis Bottero 
email: bottero@lma.cnrs-mrs.fr
  
Paul Cristini 
  
Dimitri Komatitsch 
  
Quentin Brissaud 
  
Broadband transmission losses and time dispersion maps from full-wave time-domain numerical simulations in ocean acoustics

teaching and research institutions in France or abroad, or from public or private research centers.  

Broadband transmission losses and time dispersion maps from time-domain numerical simulations in ocean acoustics

Introduction

In underwater acoustics, several numerical methods are available in the literature for the solution of acoustic wave propagation problems in complex marine environments. Most of them solve the Helmholtz equation, thus providing a frequency-domain solution. This is the traditional way that wave propagation problems in the ocean are handled, and results from these simulations are presented as transmission loss (TL) curves or transmission loss maps.

The reason for this choice is the high variability of the ocean, which generates strong signal fluctuations and makes the analysis of time signals difficult. When time-domain solutions are sought, they are often obtained after Fourier transform of the results of several frequencydomain simulations but, in some situations, it may be more convenient to generate the results directly in the time domain. Recently, a time-domain spectral-element method [START_REF] Komatitsch | Introduction to the spectral-element method for 3-D seismic wave propagation[END_REF] has been shown to efficiently solve full-wave propagation problems in ocean acoustics [START_REF] Bottero | An axisymmetric timedomain spectral-element method for full-wave simulations: Application to ocean acoustics[END_REF][START_REF] Cristini | Some illustrative examples of the use of a spectralelement method in ocean acoustics[END_REF]. Beyond its capability of handling complex geometries and rheologies accurately, as any finite-element technique, the time-domain spectral-element method runs efficiently on very large computers, thus providing a drastic reduction of the duration of numerical simulations, which is one of its attractive properties. Nevertheless, this property is partly lost if, instead of the time-domain wave equation, it is the Helmholtz equation that is solved in the framework of a spectralelement method. Consequently, the choice of solving the time-domain wave equation is mandatory to take advantage of the possibility of running such numerical simulations on large supercomputers. The reason for this situation is the behavior of linear system solvers used for the inversion of the mass matrix when solving in the frequency domain. They typically exhibit decreasing performance when increasing the number of cores and have difficulties scaling when more than a thousand processor cores or so are used. This is a significant limitation because such a number of cores is not that high in terms of current standards, and even less so in the future. Consequently, when solving wave propagation problems requiring a high number of processor cores, the question of the generation of frequency-domain results from time-domain numerical simulations arises, since the underwater acoustics community is used to analyzing results in the frequency domain. A simple way of addressing this question consists in storing all time signals for all receiver positions and then performing a Fourier transform to convert them to the frequency domain. However, this solution is realistic from a technical point of view only if the number of receivers is small to moderate because of the amount of storage (in memory or to disk) that this operation requires when the number of recording points and/or the number of time steps computed are large to very large. In practice, this limits the generation of frequency-domain results from time-domain simulations to the creation of a small number of transmission loss curves, which implies that producing 2D transmission loss maps will require an amount of storage too large to be handled. The objective of this letter is thus to present an efficient way of creating transmission loss maps from time-domain full-wave numerical simulations that avoids the storage of individual time signals. Since the source time signal can be arbitrary chosen, the transmission loss maps can be evaluated for quasi-monochromatic signals as well as for signals with a wider bandwidth, leading to the possibility of analyzing the influence of bandwidth on the distribution of acoustic energy inside the domain. In addition, time dispersion maps can also be calculated on the fly during the simulation, providing an insight into the structure of the received time signals. All these quantities are obtained at a negligible additional numerical cost.

The letter is organized as follows: Sec. 2 is devoted to the definition of the different physical quantities that we want to study, and to how one can compute them efficiently in a time-domain numerical simulation. Then, in Sec.3, we provide and discuss some examples of the evaluation of these quantities within the framework of a time-domain spectral-element method. Wave propagation over a fluid and then over an elastic upslope wedge is considered for several source bandwidths. We finally draw some conclusions in Sec.4.

Generalization of the calculation of transmission losses and evaluation of signal time spreading

In this section, we define the different physical quantities that we want to study and show how they can be calculated on-the-fly in a time-domain full-wave numerical simulation. These quantities will allow for the evaluation of the transmission losses and of the time structure of signals at all the discrete points of the spatial domain under study. Let us note u x (x, t) and u z (x, t) the horizontal and vertical displacement field, respectively, and P (x, t) the pressure field at time t and position x = (x, z). u(x, t) = ux (x, t) 2 + uz (x, t) 2 is the norm of the particle velocity field. The instantaneous energy per unit volume field in the fluid is given by ( (Jensen et al., 2011) pp.11-12):

E(x, t) = 1 2 ρ u2 (x, t) + 1 2 P 2 (x, t) ρ(x)c 2 (x) , (1) 
where ρ = 1000 kg.m -3 is the density of water and c(x) is the distribution of sound velocity.

Likewise, in a linear isotropic solid medium the instantaneous energy field reads [START_REF] Achenbach | Wave Propagation in Elastic Solids[END_REF]:

E(x, t) = 1 2 ρ(x) u2 (x, t) + 1 2 i,j ij (x, t)σ ij (x, t). (2) 
where (x, t) and σ(x, t) are the second-order strain and stress tensor fields, respectively. Let T f refer to the duration that is considered, then the integrated energy field reads:

E(x) = T f 0 E(x, t) dt. ( 3 
)
This physical parameter represents the amount of energy received at a given position inside the model at time T f . It is similar to the radiated seismic energy introduced by [START_REF] Boatwright | Teleseismic estimates of the energy radiated by shallow earthquakes[END_REF] and evaluated from body waves measurements, or to the T-Phase Energy Flux (TPEF) proposed by [START_REF] Okal | T waves from the 1998 Papua New Guinea earthquake and its aftershocks: Timing the tsunamigenic slump[END_REF] to characterize the energy generated by an earthquake source in the form of a T-wave. Then, knowing the energy E 0 of the emitting source, it is possible to evaluate the transmission losses for time T f as:

T L(x) = -10 log E(x) E 0 (4)
Energy is determined by an integral in time, but with the value that we get we have no knowledge on how this energy is distributed within the time interval that we are considering.

For a given energy value, time spreading can be very different depending on the propagation path followed by the signal. It is therefore very useful to get such a piece of information. In order to calculate it, we first define the maximum energy field by:

M (x) = max t<T f E(x, t).
(5)

This field gives the maximum of the instantaneous energy for each point and provides a way of defining an "effective" time dispersion for a signal as:

T (x) = 2 E(x) M (x) . ( 6 
)
This quantity is homogeneous to a duration. It represents the duration of the triangle-shaped signal that has the same energy and maximum amplitude as those that we have calculated. It is therefore a measure of the time spreading of the signal. Time-domain full-wave numerical simulations provide access to these physical parameters at each time step δt and thus allow for the computation of transmission losses and time dispersion maps on-the-fly during the run at a negligible additional computational cost. In practice, at iteration i + 1 and position

x, one can evaluate:

E i+1 (x) = E i (x) + E(x, t i+1 )δt (7) M i+1 (x) = max [M i (x), E(x, t i+1 )] (8) T i+1 (x) = 2 E i+1 (x) M i+1 (x) (9) 
Time domain full-wave numerical methods can thus also provide an at-a-glance view of how the acoustic energy emitted by a source is distributed inside a complex heterogeneous model.

In the following sections, we will show examples of the maps that can be obtained based on the calculation of these physical quantities.

Application to wave propagation in a 2D upslope wedge

In order to validate our approach and to present new results, we choose to investigate the classical two-dimensional (2D) wedge benchmark problem, whose characteristics can be found in Section 6.9.2 of [START_REF] Jensen | Computational Ocean Acoustics[END_REF]. This configuration illustrates several wave propagation phenomena such as mode conversion and mode cutoff due to a varying water column depth.

In the context of an attenuating fluid bottom, transmission loss maps for a monochromatic source have already been published and can thus be used for comparison. In addition, with our approach, the transmission loss concept can be extended to broadband source signals and to elastic media. This is an interesting feature that enables us to determine the energy spreading in the whole computational domain. As a consequence these new maps may help to understand the physical mechanisms that lead to the distribution of acoustic energy inside a given configuration. For the sake of illustration, let us first generate a transmission loss map from a full-wave time-domain numerical simulation for exactly the same configuration as in [START_REF] Jensen | Computational Ocean Acoustics[END_REF]. These previous results were obtained with a split-step implementation of the Thomson-Chapman parabolic equation using a Greene wide-angle source to initialize the solution. It is worth noting that the results that will be generated using our approach will be obtained based on a time-domain full-wave numerical simulation that makes no approximation. As a consequence, comparing our results with those obtained with a parabolic equation will also lead to a comparison of the two numerical methods. Then, in a second step, we will consider the influence of the bandwidth of the emitted signal for both a fluid and an elastic bottom. For this purpose, we define a source time function signal by:

s(t) =            A 2 (1 -cos (∆πt) sin (2πf 0 t)) if 0 < t < 2 ∆ 0 else ( 10 
)
where A is the maximum amplitude of the source, f 0 is the dominant frequency of the source signal, and ∆ is its bandwidth. This type of time sequence will allow us to control the bandwidth of the emitted signal by changing the value of parameter ∆. Quasi-monochromatic signals that will provide results close to frequency-domain calculations as well as narrowband or broadband signals can be generated. We will thus be able to study the influence of the bandwidth on the spreading of acoustic energy inside the computational domain. In addition to a fluid viscoacoustic bottom, we will also consider a solid viscoelastic bottom by adding a shear velocity of c s = 600 m.s -1 and a shear attenuation coefficient α S = 0.5 dB.λ -1 S to the sediment characteristics. In the spectral-element method, viscoacoustic or viscoelastic effects are represented based upon three generalized Zener standard linear solids placed in parallel, with different relaxation times for each, to mimic a constant Q quality factor over the frequency band under study in the simulation [START_REF] Komatitsch | Introduction to the spectral-element method for 3-D seismic wave propagation[END_REF]. In order to avoid spurious reflections from the sides of the computational domain, for all configurations the domain is extended up to a range of 20 km and down to a depth of 1 km and equipped with perfectly matched absorbing layers (PMLs, [START_REF] Xie | A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms[END_REF]).

The first results are shown in Fig. 1, which provides the comparison between a monochromatic TL map (Fig. 1(a)) taken from [START_REF] Jensen | Computational Ocean Acoustics[END_REF] and a quasi- The quasi-monochromatic signal was generated using a bandwidth ∆ = 0.5 Hz. We performed several simulations with signals having smaller bandwidth but did not notice any changes in the TL map. We thus consider this value of the bandwidth as a good approximation of a monochromatic signal for this configuration. Note that this is a fluid answer to the question raised by the author of [START_REF] Buckingham | EUR-OP)[END_REF] on the accuracy of TL maps obtained using the parabolic equation for an upslope fluid wedge. Based on the results

that we obtain, it can be considered that the accuracy is very good.

Since our numerical method works in the time domain, we can also consider signals with different bandwidths in order to evaluate how this parameter may influence the spreading of energy inside the computational domain. A smoothing of the interference structure is observed in the water column mainly from the beginning of the wedge to its end. The reason for this situation lies in the fact that for each frequency there is a different modal structure, with different grazing angles and therefore different cutoff depths varying continuously with frequency. This smoothing is also observed in the sediment. The complex structure that was observed below the source also disappears. (c) TL map, in dB, for an elastic bottom using a quasi-monochromatic source (f 0 = 25 Hz, ∆ = 0.5 Hz).

(d) TL map, in dB, for an elastic bottom using a broadband source (f 0 = 25 Hz, ∆ = 8.0 Hz).

the presence of shear waves is strong and dominant. The associated narrow beams are almost vertical because of the low velocity of shear waves in this configuration. Below the sloping interface, it can be seen that the beams exhibit an interference structure due to the leaking, in this case, of both the shear waves and the propagating modes. This structure is also seen in the near field but, in this case, it is generated by the leaking of evanescent modes. Similar results were presented in [START_REF] Abawi | Propagation in an elastic wedge using the virtual source technique[END_REF] (top figure of their Figure 1). It can also be noted that the leaking of the first mode is strongly affected by the presence of shear waves, as it does not penetrate deep into the sediment. There is much less energy in the water column at the end of the wedge than in the fluid-only configuration. A large amount of energy is captured by the shear waves of the bottom. The structure of the sound field in the sediment suggests that if another interface is considered, i.e. if we consider an elastic layer over a semi-infinite half-space, the presence of shear waves is critical and may generate complex effects because of the potential interaction between these beams and this interface.

As in the pure fluid case, increasing the bandwidth (Figure 2 (d)) leads to a smoothing of the energy levels mainly in the area of the slope.

As mentioned in the previous section, another type of information can be extracted from time-domain simulations. This piece of information is related to the spreading of energy with time at a receiver location. Indeed, for a given energy level, the time structure of the received signal can be very different and provide additional information on the propagation process that led to this received signal. This is particularly useful e.g. for T-waves analysis because the time structure of a received signal is different depending on the source mechanism that led to the generation of this signal. In order to illustrate the kind of information that is provided by this type of map, we performed a full-wave time domain numerical simulation for a fluid bottom and a broadband signal (f 0 = 25 Hz, ∆ = 25.0 Hz). 

Conclusions

We have presented an efficient procedure to compute transmission losses and time dispersion maps from time-domain full-wave numerical simulations. This procedure allowed us to extend the notion of transmission losses to non-monochromatic signals and to elastic media. Some results using this procedure were obtained for a 2D wedge configuration in ocean acoustics. In the case of a simulation in the frequency domain and for a fluid bottom, these results were compared with results previously obtained using a parabolic equation, showing that both methods give similar results and that the main structures of the sound field are correctly captured by the parabolic equation. Discrepancies between the two approaches were found in regions where the parabolic approximation is known to fail. As a result, our approach can provide reference solutions for more complex configurations because the numerical simulations that are performed are realized without any such approximation and are able to handle complex geometries accurately. In future work we expect to present results

  Fig. 1. (Color online) (a) Original TL map, in dB, from reference (Jensen et al., 2011) page 514. (b) TL

  only configuration. The two TL maps are very similar. Mode cutoff of the three modes, which exist in the flat part of the model, are recovered almost identically in both cases. The main differences are observed for short ranges. This is not surprising since the parabolic equation, which is used to generate the results of Fig1(a), has angular limitations. Moreover, a source with a limited aperture was used, contrary to our simulation, which implements a point source. Therefore the discrepancies between the two TL maps are attributed to the known inaccuracy of PE codes for steep angles. Nevertheless, interference structures in the water column are very close, except at the end of the wedge where again the grazing angles are steepened because of the varying depth and thus cannot be handled correctly through numerical modeling based on the parabolic equation. This comparison may be seen as a first

  Figure 2 (b) represents the TL map for a signal with a bandwidth ∆ = 8.0 Hz.
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  Fig. 3. (Color online) Figure illustrating the use of time dispersion maps. The geometry is the same as

Figure 3

 3 Figure 3 (a) represents the TL map, and Figure 3 (b) represents the time dispersion
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