
HAL Id: hal-01793384
https://hal.science/hal-01793384

Submitted on 16 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rheology of dense suspensions of non colloidal particles
Elisabeth Guazzelli

To cite this version:
Elisabeth Guazzelli. Rheology of dense suspensions of non colloidal particles. EPJ Web of Conferences,
2017, 140, �10.1051/epjconf/201714001001�. �hal-01793384�

https://hal.science/hal-01793384
https://hal.archives-ouvertes.fr
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Élisabeth Guazzelli1,�
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Abstract. Dense suspensions are materials with broad applications both in industrial processes (e.g. waste

disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenom-

ena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the

mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both

by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an

intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and

granular rheology under a common framework by transferring the frictional approach of dry granular media to

wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differ-

ences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which

is far from being completely resolved, there are also entirely novel avenues of study concerning more complex

mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian

fluids that we will also address.

1 Introduction

Dense suspensions are materials with broad applications

both in industrial processes (e.g. waste disposal, concrete,

drilling muds, metalworking chip transport, and food pro-

cessing) and in natural phenomena (e.g. flows of slurries,

debris, and lava). Despite its long research history and its

practical relevance, the mechanics of dense suspensions

remain poorly understood.

In order to understand their flowing behavior, it is

desirable to know their response to imposed forces and

motions at their boundary. The fundamental problem is

then to determine the rheological properties of these media

(considered as equivalent homogeneous materials) from a

knowledge of the mechanics of the particles and the in-

terstitial fluid. In other words, the key problem is to un-

derstand the relationship between the macroscopic or bulk

properties of the medium and its microscopic structure at

these large concentrations.

The major difficulty of dense particulate flows is that

the grains interact both by hydrodynamic interactions

through the liquid and by mechanical contact. Dense or

highly concentrated particulate flows indeed belong to an

intermediate regime between pure suspensions and granu-

lar flows. The complex nature of these particle interactions

greatly contribute to the lack of understanding of these sys-

tems.

The present contribution aims at providing a review

of recent work on the rheology of dense suspensions of

non colloidal particles. These studies were done in col-

laboration with F. Boyer, J. E. Butler, E. Couturier, S.

�e-mail: Elisabeth.Guazzelli@univ-amu.fr

Dagois-Bohy, L. M. Davidson, S. Hormozi, O. Pouliquen,

P. R. Nott, S. Shaikh, B. Snook, S. Strednak, F. Tapia.

2 Suspension viscosity

Adding suspended particles to a fluid increases its viscos-

ity. This is known for a Newtonian fluid since the seminal

work of Einstein demonstrating that the viscosity of the

mixture is increased above that of the suspending fluid [1].

The suspension viscosity increases with increasing par-

ticle concentration and diverges at the jamming transi-

tion where the particle concentration reaches a maximum

value, see e.g. [2–5].

To be more precise, for a suspension of neutrally-

buoyant solid spheres under steady shearing conditions,

the linearity of the Stokes equations leads to a viscous scal-

ing of the shear stress, τ = ηs(φ) η f γ̇, where γ̇ =
√

2 E : E

is the shear rate (where E is the rate of strain) and η f is the

viscosity of the suspending Newtonian fluid. For monodis-

perse suspensions of non-Brownian rigid spheres, the di-

mensionless effective shear viscosity, ηs, only depends on

the particle volume fraction, φ, and increases with increas-

ing φ, diverging at maximum packing fraction, φm.

3 Non-Newtonian behavior: Normal

stresses

This quasi-Newtonian behavior of the shear stress does not

fully describe the rheology of suspensions, as it does not

account for the possible existence of normal stress differ-

ences. These normal stress differences also scale viscously
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in Stokes flows and, since the normal stresses do not de-

pend on the sign of the shear rate, are proportional to the

modulus of the shear stress, |τ|. These normal stress dif-

ferences can be written as N1 = α1|τ| and N2 = α2|τ|,
where N1 and N2 are the first and second normal stress dif-

ferences. The ratios of normal-stress differences to shear

stress, α1 and α2, are called the normal stress difference

coefficients. They are sole functions of φ and do not di-

verge at φm since the normal stress differences and the

shear stress present the same divergence when approach-

ing jamming at φm [6]. .

Normal stresses are difficult to measure using stan-

dard rheological tools. They were chosen to be inferred

from measurements of the deflection of the free-surface in

a Weissenberg, or rotating-rod, geometry and in a tilted-

trough [7, 8]. The first method is well-known in polymers

as the Weissenberg or rod-climbing effect, see figure 1 (a).

For suspensions of spheres, the climbing is down instead

of up the rod and measurement of the free-surface profile

provides a combination of the normal stress differences.

The second tilted-trough method provides the second nor-

mal stress difference in isolation, see figure 1 (b). Com-

bining both methods yields a complete measurement of

the two differences which are both linear in the modulus of

the shear rate. These approaches have some significant ad-

vantages over using a standard rheometer as confinement

effect can be reduced and sensitivity improved [7–9].

For suspensions of spheres, the second normal stress

difference, N2, is observed to be negative and to increase

with increasing particle volume fraction (growing espe-

cially quickly for φ � 0.20), see e.g. [5]. The proper-

ties of the first normal stress difference are more elusive.

The magnitude of N1 is unquestionably much smaller than

that of N2, but assessing the sign is difficult. Using these

non conventional rheological tools (rotating-rod and tilted-

trough), the value is found too close to zero to determine

whether it is negative, positive or null within experimen-

tal accuracy. Some experiments using more conventional

rheometry find that N1 is quite small and negative [10–13],

while others report positive values [14]. Some recent stud-

ies point to the effect of polydispersity [15] and of confine-

ment [16] which may explain these discrepancies.

Whereas the whole suspension, i.e. the mixture of the

particles and the fluid, is incompressible, the particle phase

is not. There exists a pressure coming from the dispersed

particulate phase that could develop. It has been termed

particle pressure (or more generally particle normal-stress)

and is analogous to the osmotic pressure exerted by both

colloidal particles and dissolved molecules, see e.g. [17,

18]. This particle normal stress, P, also scales viscously

and is linear in the modulus of the shear rate since it must

be independent of the sign of the shear rate as previously

noted for the normal stresses of the whole suspension. It

can be written as P = ηn(φ) η f γ̇, where γ̇ is conveniently

defined in an invariant form as γ̇ =
√

2 E : E, where E

is the rate of strain. The dimensionless effective normal

viscosity, ηn, is again a sole function of φ and presents

the same divergence as ηs(φ) when approaching jamming

at φm [6].
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Figure 1. Sketches adapted from figure 2 of [9] of the (a)

rotating-rod and (b) tilted-trough flows. Laser sheets, projected

at low angles onto the surfaces of the flowing suspensions, en-

able quantification of the surface deformations and subsequently

to the determination of the normal stress differences.

Quantitative measurements of the particle-phase

stresses are not easily performed and only few experi-

ments are reported in the literature [19–21]. The imposed-

pressure approach of [20] will be discussed in section 5.

The particle pressure is also of crucial importance in the

understanding of shear-induced migration which is dis-

cussed in the following section 4.

4 Irreversible dynamics: Shear-induced

migration

Shear-induced migration is a manifestation of irreversible

dynamics in shearing flows of non-Brownian suspension.

This irreversibility may be unexpected as, at low Reynolds

numbers, the velocity and pressure fields are supposed to

be governed by the linear and reversible Stokes equations.

It is due to the combined effects of hydrodynamics interac-

tions between the particles and non-hydrodynamic forces

such as close contact interactions (short-ranged repulsive

forces or small roughnesses).

Shear-induced migration drives particles from regions

of high to low shear rate. This phenomenon was first

clearly identified in a Couette rheometer [22] and moti-
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Figure 2. Images of a suspension, consisting of neutrally buoy-

ant spheres, at a bulk volume fraction of 20% subjected to large

oscillating displacements at low Reynolds number in a pipe,

adapted from movie 1 of [24]. Particle volume fraction and ve-

locity can be measured during the oscillations by matching the

refractive index of the fluid to that of the particles and using flu-

orescence to distinguish the particle and fluid phases for imaging

with a thin laser sheet. The left image corresponds to the initially

mixed suspension and the right image to the suspension after 32

oscillations where fully-developed migration toward the center-

line is observed.

vated a large body of research due to its implication on the

characterization of suspension rheology, see e.g. [3–5]. In

pressure-driven Poiseuille flow, the particles migrate to-

ward the centerline, see figure 2. Again, since the first

observation of such inhomogeneities in suspension pipe

flows [23], several experimental studies have been per-

formed to measure migration in pressure-driven flow in a

pipe or a channel, see e.g. [24] and references therein.

Since the first observation of shear-induced migration,

two types of migration models have been proposed. Early

efforts used a diffusion model, in which the particle mi-

gration flux was expressed in terms of the gradients of the

particle concentration and shear rate. This diffusion model

is successful in predicting migration in wide-gap Couette

and pressure-driven Poiseuille flows, but fails to predict

the absence of migration in curvilinear torsional flows, see

e.g. [6] and references therein. A more recent and rather

successful model, termed the suspension balance model,

relates the migration flux to the rheology of the suspen-

sion [25]. This modeling uses a two-phase approach of

the suspension and finds that the particle migration flux is

driven by the divergence of the normal stress of the parti-

cle phase [6, 25–27]. This model requires correlations for

the particle phase stress which cannot be easily obtained

experimentally. When using realistic correlations, the sus-

pension balance model qualitatively supports the experi-

mental observations but presents however some quantita-

tive discrepancies [24].

Figure 3. (a) Principle of the pressure-imposed rheometry: the

porous plate exerts a pressure (P) on the grains while the suspen-

sion is sheared (γ̇) and the shear stress (τ) is measured. (b) Sketch

of the pressure-imposed shear cell, adapted from figure 2 of [29].

The shear cell consists of (i) a bottom annular cylinder (of radii

R1 = 43.95 mm and R2 = 90.28 mm) that contains the suspension

and rotates and (ii) a top cover plate that can be moved vertically

and which is porous to enable fluid flow through it. From the

measurements of the position of the top plate h, the rotation rate

of the bottom annulus, and the normal force and torque exerted

on the top plate, it is possible to extract φ, γ̇, P, and τ.

Another avenue to study inhomogeneities in suspen-

sion flows is to perform discrete particle simulations. Ear-

lier simulations of the pressure-driven flow in a two-

dimensional channel of a suspension were conducted us-

ing Stokesian Dynamics [25]. Numerical capabilities are

expanding rapidly and new methods such as the force cou-

pling method [28] are providing effective information on

the migration process in agreement with experiments [24].

5 A frictional approach: Unifying

suspension and granular rheology

As explained in sections 2 and 3, for a suspension con-

sisting of neutrally-buoyant spheres in a Newtonian fluid

of viscosity, η f , the scaling of the stresses is viscous, and

consequently, when the suspension is sheared under a con-

stant shear rate, γ̇, at concentration, φ, the shear stress is

τ = ηs(φ) η f γ̇ and the particle pressure is P = ηn(φ) η f γ̇.

The rheology thus reduces to the knowledge of the two

functions ηs(φ) and ηn(φ) which are known to diverge in a

similar way at maximum volume fraction, φm.

There is an equivalent approach to this classical view

in terms of effective viscosities which is coming from the

rheology of dry granular materials and hinges on a fric-

tional view of the problem, see e.g. [30]. When an assem-
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bly of particles is subjected to steady shear under a con-

fining particle pressure, P, there is only one dimensionless

control parameter, a dimensionless shear rate which can

be interpreted as the ratio of the time scale for particles

to rearrange due to the pressure, P, to the time scale of

the flow, γ̇−1, see figure 3 (a). The friction, μ = τ/P, and

the volume fraction, φ, are sole function of this dimen-

sionless number. In the case of immersed granular media

for which viscous forces are dominant, the dimensionless

number is J = η f γ̇/P and is viscous in contrast to dry gran-

ular flows where it is inertial. Using an original pressure-

imposed shear cell such as sketched in figure 3 (b), μ(J)

and φ(J) has been found once again to collapse onto uni-

versal curves [20].

Describing the flow in terms of an effective friction co-

efficient thus works for both granular flows and suspen-

sions, and therefore unifies suspension and granular rhe-

ology. This alternative way of looking at suspensions en-

abled to circumvent the divergence observed in volume-

imposed rheometry and provided examination of the rhe-

ology extremely close to the jamming transition. In par-

ticular, this approach yields accurate measurements of the

particle pressure, a quantity not often easily captured as

mentioned earlier at the end of section 3.

6 Toward more complex particulate

systems

The pressure-imposed rheometry presented in section 5

complemented by the free-surface-profilometry measure-

ments giving access to normal stresses differences pre-

sented in section 3 provide a full description of the stress

tensor of dense particulate system. These unconventional

rheological tools offer a brand new perspective of analysis

which can be applied to more complex particulate systems

and offer new avenues of research.

Studies have been undertaken to analyze the influence

of the shape of the particles (e.g. large-aspect-ratio parti-

cles such as fibers) on the rheological behaviors. In partic-

ular, measurements of normal stress differences have been

reported for suspensions of rigid, non-Brownian fibers at

high concentrations [9]. The second normal stress differ-

ence is found to be negative and its magnitude increases

with increasing concentration and decreasing aspect ra-

tio. The first normal stress difference is positive and its

magnitude is approximately twice that of the second nor-

mal stress difference. Numerical simulations which ac-

count for both hydrodynamic and contact contributions re-

veal that the contact interactions are largely responsible for

the observed normal stress differences [9]. The rheolog-

ical behaviors observed for suspensions of fibers, which

are qualitatively different from those for suspensions of

spheres, have implications for flows of fibers in more gen-

eral situations (e.g. in pressure-driven flows).

Systematic investigations have been also performed to

examine how the macroscopic rheology close to the jam-

ming transition is influenced by the nature of the sus-

pending fluid. In particular, the rheology of non col-

loidal suspensions composed of a yield-stress fluid and of

neutrally-buoyant solid spheres has been explored in the

dense regime [29]. The rheological measurements are in

agreement with a model based on scaling arguments and

homogenization methods [31, 32]. A striking result is that

all the data including a Newtonian test case show a per-

fect collapse of the friction, τ/P = μ(φ). This shows that

the constitutive laws close to jamming has a form similar

to that for a Newtonian suspending fluid and thus demon-

strates unambiguously that the dynamics of the particles

close to jamming are mainly controlled by geometrical

constraints and are independent of the suspending fluid.

This scaling approach has been further tested by inferring

the lever function relating the local shear rate seen by the

particles to the macroscopic shear rate imposed by the rhe-

ological flow and by showing that an excellent collapse is

again obtained with a sole dependence in φ. The prop-

erties of the viscoplastic suspensions can be satisfactorily

modeled as that of a Herschel-Bulkley fluid with an expo-

nent equal to that of the suspending fluid. The dimension-

less effective yield-stress and viscosity (to be more precise,

consistency) are found to be sole functions of φ that can be

deduced from the knowledge of the lever function and the

dimensionless effective viscosity, ηs(φ), of a test suspen-

sion having a Newtonian suspending fluid. This study of-

fers new perspective in the study of even more complex

particulate systems as the knowledge of the rheological

constitutive laws in the Newtonian case and the calcula-

tion of the lever function relating the local to the macro-

scopic shear rate seem to be the sole ingredients needed to

infer the rheological properties of these suspensions in the

dense regime. This may be extended to shear-thinning or

shear-thickening suspending fluids along the same lines.
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