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We constrain effective field theories by going beyond the familiar positivity bounds that follow
from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting ex-
amples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity.
The combination of our theoretical bounds with the experimental constraints on the graviton mass
implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone
to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force ex-
periments, where general relativity has been successfully tested. We also show that the Galileon
theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to
the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.

I. INTRODUCTION AND SUMMARY

The idea that physics at low energy can be described
in terms of light degrees of freedom alone is one of the
most satisfactory organising principle in physics, which
goes under the name of Effective Field Theory (EFT). A
quantum field theory (QFT) can be viewed as the tra-
jectory in the renormalization group flow from one EFT
to another, each being well described by an approximate
fixed point where the local operators are classified mainly
by their scaling dimension. The effect of ultraviolet (UV)
dynamics is systematically accounted for in the resulting
infrared (IR) EFT by integrating out the heavy degrees
of freedom, which generate an effective Lagrangian made
of infinitely many local operators. Yet, EFT’s are pre-
dictive even when the UV dynamics is unknown, because
in practice only a finite number of operators contributes,
at a given accuracy, to observable quantities. The higher
the operator dimension, the smaller the effect at low en-
ergy.

Remarkably, extra information about the UV can
always be extracted if the underlying Lorentz invariant
microscopic theory is unitary, causal and local. These
principles are stirred in the fundamental properties
of the S-matrix such as unitarity, analyticity, crossing
symmetry, and polynomial boundedness. These imply
a UV-IR connection in the form of dispersion relations
that link the (forward) amplitudes in the deep IR with
the discontinuity across the branch cuts integrated all
the way to infinite energy [1, 2]. Unitarity ensures
the positivity of such discontinuities, and in turn the
positivity of (certain) Wilson coefficients associated to
the operators in the IR effective Lagrangian. This UV-IR
connection can be used to show that Wilson coefficients
with the “wrong” sign can not be generated by a Lorentz
invariant, unitary, casual and local UV completion, as it

was emphasised e.g. in Ref. [3]. These positivity bounds
have found several applications, including the proof of
the a-theorem [4, 5], the study of chiral perturbation
theory [6], WW -scattering and theories of composite
Higgs [7–12], as well as quantum gravity [13], massive
gravity [14–16], Galileons [16–19], inflation [20, 21], the
weak gravity conjecture [22, 23] and conformal field the-
ory [24–26]. The approach has been recently extended
to particles of arbitrary spin [16], with applications to
massive gravity and the EFT of a Goldstino [27–29], and
it has led to the formulation of a general no-go theorem
on the leading energy-scaling behavior of the amplitudes
in the IR [16]. Ref.’s [19, 30, 31] extended this technique
beyond the forward limit, providing an infinite series of
positivity constraints for amplitudes of arbitrary spin.

In this paper we show that bounds stronger than stan-
dard positivity constraints can be derived by taking into
account the irreducible IR cross-sections under the dis-
persive integral, which are calculable within the EFT.
In models where the forward amplitude is suppressed or
the high-energy scattering is governed by soft dynamics
(e.g. Galileons, massive gravity, dilatons, WZW-like the-
ories [32]), as well as models with suppressed 2→ 2 (but
e.g. enhanced 2 → 3) amplitudes, our bounds are dra-
matically stronger. These bounds can be used to place
rigorous upper limits on the cutoff scale for certain EFT’s
or constrain the relevant couplings, in a way that is some-
what reminiscent of the revived S-matrix bootstrap ap-
proach in four dimensions [33]. The procedure we use
was originally suggested in [17], and later employed to
estimate order-of-magnitude bounds [16, 19]; here we ex-
tend these arguments to sharp inequalities and bring this
technique beyond amplitudes’ positivity.

We discuss explicitly two relevant applications of the
bounds: the EFT for a weakly broken Galileon [34, 35],
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FIG. 1. Exclusion region for massive gravity in the plane of
(g∗,m), where g∗ = (Λ/Λ3)3 is the hierarchy between the
physical cutoff Λ and the strong coupling scale Λ3, and m
is the graviton mass. The gray region is theoretically ex-
cluded by our lower bound Eq. (36), with accuracy either
δ = 1% (dark) or δ = 5% (light), irrespectively of the values
for (c3, d5) in the massive graviton potential. Colored lines
show the physical cutoff length: solid lines correspond to Λ
in Eq. (37), while dashed lines correspond to Λ⊕, obtained
after assuming ad-hoc a Vainshtein redressing of Λ due to
the gravitational field on the Earth’s surface, Eq. (38). Ei-
ther cutoff, and with it the domain of predictivity of massive
gravity, increases with g∗ and m, at odds with our theoretical
constraint and the experimental upper bounds on the gravi-
ton mass. The black horizontal line is a representative of the
latter, corresponding to m = 10−32 eV.

and the ghost-free massive gravity theory [36, 37], known
also as dRGT massive gravity, or Λ3-theory (Λ3 is the
strong coupling scale that remains in the Goldstone
equivalence limit for the Galileon mode). Despite the
encouraging recent results on the positivity conditions
that ghost-free massive gravity must satisfy [14], our
constraints will provide a much stronger, and yet the-
oretically robust, lower bound on the graviton mass m.
Indeed, our dispersion relations imply that the forward
elastic amplitudes, which are suppressed by m at fixed
Λ3, must nevertheless be larger than a factor times the
unsuppressed elastic or inelastic cross-sections. Resolv-
ing this tension requires a non-trivial lower bound for
the graviton mass. Under the customarily accepted as-
sumption that Λ3 is the cutoff of the theory in Minkowski
background, i.e. away from all massive sources, this lower
bound reads m & 100 keV with 1% uncertainty, which is
grossly excluded observationally. Relaxing this assump-
tions by lowering the cutoff (i.e. taking hierarchically
separated values for the actual cutoff Λ and the scale
Λ3 evaluated in Minkowski), we show that the dRGT
massive gravity theory does not survive the combination
of our bound with the experimental constraints on the
graviton mass while being able to describe physical phe-
nomena down to scales where gravity has been actually
measured. In other words, our result implies that the
graviton mass can only be below the experimental up-

per bound at the expense of a premature break down
of the theory (along with Vainshtein screening), there-
fore at the price of loosing predictivity at unacceptably
large (macroscopic) distances. This scale Λ is where
new physics states appear, which, importantly, is differ-
ent than the scale where perturbative unitarity would be
lost [38], thus making our conclusions robust under our
assumptions on the S-matrix. We anticipate these re-
sults in Fig. 1: before this work all of the plane of gravi-
ton coupling and mass was theoretically allowed, as long
as the parameters c3 and d5 of massive gravity satisfied
the standard positivity constraints identified in Ref. [14],
while now a point that falls in our excluded (gray) region
means that the parameter space (c3, d5) consistent with
our bounds has shrank to an empty set, thus it is ruled
out.

In the following, we begin by deriving the new bounds
in full generality, and then apply them to the Galileon
theory, showing that Galileon-symmetry-breaking terms
can not be arbitrarily small. This naturally leads us to
ghost-free massive gravity, where we find the most dra-
matic implications of our bounds. Other relevant appli-
cations are discussed in the outlook.

II. DISPERSION RELATIONS

Let us consider the center-of-mass 2-to-2 scattering
amplitude Mz1z2z3z4(s, t), where the polarization func-
tions are labeled zi. The Mandelstam variables1 are de-
fined by s = −(k1+k2)2, t = −(k1+k3)2, u = −(k1+k4)2

and satisfy s+ t+ u = 4m2, where m is the mass of the
scattered particles (all of the same species for ease of
presentation). Our arguments will require finite m 6= 0,
yet they hold even for some massless theories (scalars,
spin-1/2 fermions, and softly broken U(1) gauge theo-
ries), which have a smooth limit m → 0 at least for the
highest helicities, so that the bound can be derived with
an arbitrarily small but finite mass, before taking the
massless limit. We call,

Mz1z2(s) ≡Mz1z2z1z2(s, t = 0) , (1)

the forward elastic amplitude at t = 0, and integrate
Mz1z1(s)/(s−µ2)3 along a closed contour Γ in the com-
plex s-plane, enclosing all the physical IR poles si associ-
ated with the stable light degrees of freedom exchanged
in the scattering (or its crossed-symmetric process), to-
gether with the point s = µ2 lying on the real axis be-
tween s = 0 and s = 4m2,

Σz1z2IR ≡ 1

2πi

∮
Γ

ds
Mz1z2(s)

(s− µ2)3
, (2)

1 We use the mostly-plus Minkowski metric (−,+,+,+), work
with the relativistic normalization of one-particle states
〈p, z|p′z′〉 = (2π)δ3(p − p′)2E(p)δzz′ , and define the M oper-
ator from the S-matrix operator, S = 1 + (2π)4δ4(

∑
ki)iM.
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FIG. 2. Integration contours in the complex s-plane at fixed
t = 0, with poles at s1 = M2 and s2 = 4m2 −M . The point
s = µ2 is on the real axis between the branch-cuts shown in
red.

see Fig. 2. The Σz1z2IR is nothing but the sum of the IR
residues,

Σz1z2IR =
∑

Res
s=si,µ2

[
Mz1z2(s)

(s− µ2)3

]
, (3)

and it is therefore calculable within the EFT. Using
Cauchy’s integral theorem we deform the contour integral

into Γ̂ that runs just around the s-channel and u-channel
branch-cuts, and goes along the big circle eventually sent
to infinity.

The polynomial in the denominator of Eq. (2) has the
lowest order that ensures the convergence of the disper-
sive integral in the UV, a consequence of the Froissart-
Martin asymptotic bound |M(s→∞)| < const ·s log2 s,
which is always satisfied in any local massive QFT
[39, 40]. Thus lims→∞ |M(s)|/s2 → 0, we can drop
the boundary contribution and write Σz1z2IR as an inte-
gral of the discontinuity DiscMz1z2(s) ≡Mz1z2(s+ iε)−
Mz1z2(s− iε) along the branch-cuts,

Σz1z2IR =
1

2πi

(∫ ∞
4m2

ds+

∫ 0

−∞
ds

)
DiscMz1z2(s)

(s− µ2)3
. (4)

The integral along the u-channel branch-cut runs over
non-physical values of s = (−∞, 0), but can be expressed
in terms of another physical amplitude, involving anti-
particles (identified by a bar over the spin label, i.e. z̄),
and related to the former by crossing. Indeed, crossing
particle 1 and 3 in the forward elastic limit t = 0 implies,
even for spinning particles [16], that

Mz1z2(s) =M−z̄1z2(u = −s+ 4m2) (helicity basis) ,

Mz1z2(s) =Mz̄1z2(u = −s+ 4m2) (linear basis) .

We will work in the helicity basis and recall when nec-
essary that for −z̄ → z̄ we recover the results for linear

polarizations. For particles that are their own antiparti-
cles, z̄ = z.

Finally, since amplitudes are real functions of complex
variables, i.e.M(s)∗ =M(s∗), the discontinuity above is
proportional to the imaginary part, and one obtains the
dispersion relation between IR and UV:

Σz1z2IR =

∫ ∞
4m2

ds

π

(
ImMz1z2(s)

(s− µ2)3
+

ImM−z̄1z2(s)

(s− 4m2 + µ2)3

)
. (5)

III. POSITIVITY AND BEYOND

Unitarity of the S-matrix implies the optical theorem,

ImMz1z2(s) = s
√

1− 4m2/s · σz1z2tot (s) > 0 , (6)

where σz1z2tot (s) is the total cross-section σz1z2tot =∑
X σ

z1z2→X . Therefore the imaginary parts in the inte-
grand Eq. (5) are strictly positive for any theory where
particles 1 and 2 are interacting, as long as 0 < µ2 < 4m2.
One then obtains the rigorous positivity bound,

Σz1z2IR > 0 . (7)

Since Σz1z2IR is calculable in the IR in terms of the Wilson
coefficients, Eq. (7) provides a non-trivial constraint on
the EFT.

As a simple example consider the theory of a pseudo-
Goldstone boson π, from an approximate global U(1)
symmetry which is broken spontaneously in the IR. The
effective Lagrangian reads LEFT = − 1

2 (∂π)2+ λ
Λ4 [(∂π)2+

. . .]2−ε2π2
(
Λ2 + c(∂π)2 + . . .

)
, where Λ is the cutoff and

λ ∼ o(1) (or even larger should the underlying dynam-
ics be strongly coupled). The parameters that break the
approximate Goldstone shift symmetry π → π + const
are instead suppressed, naturally, by ε � 1. From an
EFT point of view, both signs of λ are consistent with
the symmetry; however ΣIR = λ/2Λ4, so that only λ > 0
is compatible with the positivity bound Eq. (7). Unitary,
local, causal and Lorentz invariant UV completions can
generate only positive values for λ in the IR [3]. Notice
that this statement does not depend on any finite value
of the soft deformation ε, which one is thus free to take
arbitrarily small.

Like in the previous example, ΣIR is often calculable
within the tree-level EFT, where the only discontinuities
in the amplitude MEFT are simple poles. In such a case
we can use again Cauchy’s theorem on the tree-level EFT
amplitude so that ΣIR is more promptly calculated as
minus the residue at infinity [14],

Σz1z2IR = −Res
s=∞

[
MEFT(s)

(s− µ2)3

]
, (8)

up to small corrections. In addition, for amplitudes
that scale as MEFT(s) ∼ s2 for large s and t = 0
(as in e.g. the Galileon or ghost-free massive gravity),
we have Σz1z2IR = 1

2 (∂2MEFT/∂s2)|m2�s. In this case,
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the left-hand side of the dispersion relation Eq. (5) is
µ2-independent and one can thus drop the dependence
on µ2 of the right-hand side too.

So far we invoked very general principles of QFT and
derived positivity constraints on EFT’s. We can in fact
extract more than positivity bounds by noticing that the
total cross-section Eq. (6) on the right-hand side of the
dispersion relation Eq. (5) contains an irreducible con-

tribution from IR physics, which is calculable within
the EFT, by construction. The other contributions,
e.g. those from the UV, are incalculable with the EFT
but are nevertheless always strictly positive, by unitar-
ity. Moreover, each final state X in the total cross-section
contributes positively too. Therefore, an exact inequality
follows from truncating the right-hand side of Eq. (5) at
some energy E2 � Λ2 below the cutoff Λ of the EFT,

Σz1z2IR >
∑
X

∫ E2

4m2

ds

π

√
1− 4

m2

s

[
sσz1z2→X(s)

(s− µ2)3
+

sσ−z̄1z2→X(s)

(s− 4m2 + µ2)3

]
IR

. (9)

Both sides are now calculable, hence the subscript IR.
The Σz1z2IR must not only be positive but strictly larger
than something which is itself positive and calculable
within the EFT. Moreover, we can retain any subset X
of final states, independently on whether they are elas-
tic or inelastic: the more channels and information are
retained in the IR the more refined the resulting bound
will be.

The information provided by our bound Eq. (9) is
particularly interesting in theories where the elastic for-
ward amplitude Mz1z2 , which appears in the left-hand
side, is parametrically suppressed compared to the non-
forward or inelastic ones (that is Mz1z2z1z2(s, t 6= 0),
Mz1z2z3z4(s, t), or more generally Mz1z2→X), that ap-
pear in the right-hand side. This tension results in con-
straints on the couplings and/or masses of the EFT, that
include and go beyond the positivity of ΣIR. For in-
stance, Galileons have a suppressed forward amplitude:
the leading term in the elastic amplitude, proportional to
stu, actually vanishes at t = 0 and Mz1z2 is thus sensi-
tive to the small Galileon-symmetry-breaking terms. On
the other hand, neither the Galileon elastic cross-section
nor the right-hand side of Eq. (9) are suppressed. Mas-
sive gravity, the dilaton, WZW-like theories, as well as
other models where 2 → 2 is suppressed while 2 → 3
is not, are other simple examples of theories that get
non-trivial constraints from our bound Eq. (9). Even
in situations without parametric suppression, our bound
carries important information: it links elastic and inelas-
tic cross-sections that might depend on different Wilson
coefficients of the EFT.

Amplitudes in an EFT means finite, yet systemati-
cally improvable, accuracy δ in the calculation. The
main source of error for small masses is the truncation
of the tower of higher-dimensional operators. Therefore,
working to leading order (LO) in powers of (E/Λ)2 and
(m/E)2 (hence also (µ/E)2), the bound Eq. (9) takes a

simpler form

Σz1z2IR,LO>
∑
X

∫ E2

ds

πs2

[
σz1z2→X(s) + σz1−z̄2→X(s)

]
IR,LO

×

[
1 + o

(m
E

)2

+ o

(
E

Λ

)2
]
, (10)

where the error from the truncation

o

(
E

Λ

)2

=

(
cUV + o(1)

g2
∗

16π2
ln
E

Λ

)(
E

Λ

)2

+ . . . (11)

is controlled by the (collective) coupling g∗ of the IR
theory, which renormalizes the higher-dimensional op-
erators that come with (unknown) Wilson coefficients
cUV ∼ o(1).2 The IR running effects, from Λ to E, are
an irreducible (yet improvable) source of error, whereas
the UV contribution is model dependent.

Choosing E at or slightly below the cutoff Λ gives just
an order of magnitude estimate for the bound [16, 19].
A rigorous bound can instead be obtained even for large
couplings g∗ ∼ 4π and cUV ∼ 1, by choosing a sufficiently
small (E/Λ)2. Percent accuracy can be achieved already
with E/Λ ≈ 1/10. Of course, nothing except more de-
manding calculations prevents us from reducing the error,
e.g. by working to all order in the mass or including next-
to-next-to. . . next-to-LO corrections, so that the trunca-
tion in the EFT expansion (or the running couplings)
affects the result only by an even smaller relative error,
loops× o(E/Λ)n.3

2 cUV � 1 would just signal the misidentification of what the ac-
tual LO hard-scattering amplitude is and would require including
the operators with large cUV within the LO amplitude.

3 In addition, the LO may possibly receive corrections from the
logarithmic running of LO couplings. In the examples where our
bounds are interesting, symmetry are often at play and the LO
operators do not actually get renormalized, except from small
explicit breaking effects.
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IV. GALILEON

Let us consider the amplitude

M(s, t) = g2
∗

[
−3

stu

Λ6
+ ε2

s2 + t2 + u2

2Λ4
+ . . .

]
, (12)

for a single scalar π whose 2 → 2 hard-scattering limit
is o(s3), whereas the forward scattering is o(s2) and sup-
pressed by ε2 � 1. The cutoff Λ corresponds to a physical
threshold for new states propagating on-shell, i.e. the lo-
cation of the first non-analyticity in the complex s-plane
which is not accounted by loops of π. We have factored
out the overall coupling constant g2

∗ to make clear the dis-
tinction between the physical cutoff Λ and other scales
not associated to physical masses, such as decay con-
stants, see Appendix A.

The amplitude Eq. (12) gives ΣIR = g2
∗ε

2/Λ4 and
σππ→ππ = 3g4

∗s
5/(320πΛ12) + . . . .4 The bound Eq. (10)

reads in this case

ε2 >
3

40

(
g2
∗

16π2

)(
E

Λ

)8

, (13)

up to the relative error Eq. (11). The lesson to be learnt
here is that o(s2) terms in the amplitude can not be too
suppressed compared to the the o(s3) terms. Choos-
ing e.g. a 30% accuracy on the bound, corresponding
to (E/Λ)

8 ≈ 10−2, one gets ε2 > 10−3(1 ± 30%) for a
fully strongly coupled theory g∗ = 4π. Setting instead
E ∼ Λ implies accepting o(1) corrections to the bound
ε2 & g2

∗/16π2.
The weakly broken Galileon Lagrangian [34, 35],

L = −1

2
(∂µπ)2

[
1 +

c3
Λ3
�π +

c4
Λ6

(
(�π)2 − (∂µ∂νπ)

2
)

+c5 (. . .)

]
+

λ

4Λ4

[
(∂π)2

]2 − m2

2
π2 , (14)

has suppressed symmetry-breaking terms λ � c23, c4
and m2 � Λ2. It reproduces the scattering amplitude
Eq. (12) with the identification

c23 − 2c4 = 4g2
∗ ,

λ

Λ4
+
c23m

2

2Λ6
=
g2
∗ε

2

Λ4
= ΣIR . (15)

In the massless limit, or more generally for c23m
2/Λ2 � λ

(a natural hierarchy given that λ preserves a shift sym-
metry while m2 does not), the bound Eq. (13) shows
not only that λ must be positive, but (parametrically) at
most one-loop factor away from (c23 − 2c4)/4,

λ >
3

640

(
c23 − 2c4

)2
16π2

(
E

Λ

)8

. (16)

4 Curiously, there is a mild violation of the naive dimensional anal-
ysis (NDA) estimate ε2NDA >

(
9g2∗/16π2

)
(E/Λ)8 [16] due to a

10% cancellation in the phase-space integral 1/2
∫ 1
−1 d cos θ|stu|2,

which returns s6(1/3 + 1/5− 1/2) = s6/30 rather than o(1)s6.

For a massive Galileon with negligible λ and c3 6= 0, one
gets a lower bound on the mass ,

m2 > Λ2

(
3

320

)
(c3 − 2c4/c3)

2

16π2

(
E

Λ

)8

, (17)

where (E/Λ)
8 ≈ 10−2 for a 30% accuracy. Therefore, the

Galileon-symmetry-breaking terms can not be arbitrarily
suppressed.

Our analysis has been performed at tree level, but the
results Eqs. (16, 17) hold when loop effects are included.
For instance, the 2 → 2 amplitude receives a contribu-
tion from a one-loop diagram with only c3 insertions that
scales as (s/Λ2)6c43/16π2, possibly with a log. The correc-
tion to ΣIR goes instead like (m/Λ)6c43m

2/16π2Λ6, with
a real log since ΣIR is evaluated for µ2 below threshold.
Therefore, this contribution is negligible and consistent
with our bound Eq. (17) as long as m � E � Λ. As
one expects for such a higher derivative theory as the
Galileon, unsuppressed loops affect higher-dimensional
operators only, and correspond to nothing but next-to-
LO corrections to both sides of the inequality. Simi-
larly, the contribution to the dispersive integral from the
symmetry-breaking (∂π)4 interaction is negligible as long
as λ/c23 � (E/Λ)2, which is consistent with our bound
Eq. (16) again as long as E � Λ.

V. MASSIVE GRAVITY

The previous bounds on Galileons are unfortunately
not directly applicable to models of modified gravity,
which contain other IR degrees of freedom affecting ΣIR

significantly, such as e.g. a massless graviton like in Horn-
deski theories [41]. In that case both sides of the in-
equality would be ill-defined at the Coulomb singularity
t = 0, because of the massless spin-2 state exchanged
in the t-channel. Alternative ideas or extra assump-
tions are needed to deal with a massless graviton, see
e.g. Ref.’s. [13, 42–44].

In a massive gravity theory the situation is instead
more favourable, as a finite graviton mass plays a double
role: it regulates the IR singularity and tips the o(s2)
term (vanishing in the forward and decoupling limit) to
either positive or negative values depending on the pa-
rameters of the theory, which get therefore constrained
by the positivity of ΣIR [14]. Notice that one can not di-
rectly interpret the results obtained above for the scalar
Galileon as the longitudinal component of the massive
graviton, since the IR dynamics is different and we are
after next-to-decoupling effects (i.e. ∼ m2) in ΣIR: for
example, in the scattering of the Galileon scalar mode,
the helicity-2 mode exchanged in the t-channel gives a
contribution to the amplitude that is as large as the con-
tribution from the exchange of the scalar mode.

The action for ghost-free massive gravity [36, 37] is
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given by (for reviews see Ref.’s [45, 46]),

S =

∫
d4x
√
−g
[
m2

Pl

2
R− m2

Plm
2

8
V (g, h)

]
, (18)

where mPl = (8πG)−1/2 is the reduced Planck mass,
gµν = ηµν + hµν is an effective metric written in term
of the Minkowski metric ηµν (with mostly + signature)
and a spin-2 graviton field hµν in the unitary gauge, R
is the Ricci scalar for gµν , and V (g, h) = V2 + V3 + V4 is
the soft graviton potential,

V2(g, h) =b1〈h2〉+ b2〈h〉2 , (19)

V3(g, h) =c1〈h3〉+ c2〈h2〉〈h〉+ c3〈h〉3 , (20)

V4(g, h) =d1〈h4〉+ d2〈h3〉〈h〉+ d3〈h2〉2 (21)

+ d4〈h2〉〈h〉2 + d5〈h〉4 ,

with 〈h〉 ≡ hµνgµν , 〈h2〉 ≡ gµνhνρgρσhσµ, etc. The coef-
ficients depend on just two parameters, c3 and d5, after
imposing the ghost-free conditions

b1 = 1 , b2 = −1 , (22)

c1 = 2c3 +
1

2
, c2 = −3c3 −

1

2
, (23)

d1 = −6d5 +
3

2
c3 +

5

16
, d2 = 8d5 −

3

2
c3 −

1

4
, (24)

d3 = 3d5 −
3

4
c3 −

1

16
, d4 = −6d5 +

3

4
c3 . (25)

Since the graviton is its own antiparticle, it is conve-
nient to work with linear polarizations, since they make
the crossed amplitudes, and in turn the bound, neater
[13, 14, 16]. For example, the LO bound with linear po-
larizations reads

Σz1z2IR,LO >
∑
X

2

π

∫ E2

ds

s2

[
σz1z2→X(s)

]
IR,LO

. (26)

Adopting the basis of polarizations reported in Ap-
pendix B, we have two tensor polarizations (T , T ′) that
do not grow with energy, two vector polarizations (V ,
V ′) that grow linearly with energy, and one scalar polar-
ization (S) that grows quadratically with the energy.

We calculate the amplitudes for different initial and
final state configurations and find that Σz1z2IR ∼ m2/Λ6

3 is
suppressed by the small graviton mass, where [47]

Λ3 ≡ (m2mPl)
1/3 . (27)

On the other hand, we find that the cross-sections are
not generically suppressed by m: hence, a small mass is
at odds with our bound Eq. (26). Resolving this ten-
sion results in non-trivial constraints on the theory [16],
beyond the positivity bounds derived in Ref. [14].

The amplitudes for SS, V (′)V (′), V (′)S elastic scatter-
ings have the following suppressed residues,

ΣSSIR =
2m2

9Λ6
3

(7− 6c3(1 + 3c3) + 48d5) > 0 ,

ΣV VIR = ΣV
′V ′

IR =
m2

16Λ6
3

(
5 + 72c3 − 240c23

)
> 0 , (28)

ΣV V
′

IR =
m2

16Λ6
3

(
23− 72c3 + 144c23 + 192d5

)
> 0 ,

ΣV SIR = ΣV
′S

IR =
m2

48Λ6
3

(
91− 312c3 + 432c23 + 384d5

)
> 0 .

In contrast, the hard-scattering limits of the amplitudes
that enter the right-hand side of Eq. (26) are unsup-
pressed. For s, t� m2 these read,

MSSSS =
st(s+ t)

6Λ6
3

(1− 4c3(1− 9c3) + 64d5) ,

MV V V V =MV ′V ′V ′V ′
=

9st(s+ t)

32Λ6
3

(1− 4c3)2 ,

MV V ′V V ′
=

3t3

32Λ6
3

(1− 4c3)2 , (29)

MV SV S =
3t

4Λ6
3

(
c3(1− 2c3)(s2 + st− t2)

− 5s2 + 5st− 9t2

72

)
,

MV ′SV ′S =
1

96Λ6
3

(
st(s+ t)(7− 24c3 + 432c23 + 768d5)

− 9t(1− 4c3)2t2
)
.

It is convenient to recall also the bound

m2

36Λ6
3

(
35 + 60c3 − 468c23 − 192d5

)
> 0 , (30)

which follows from the positivity of the residue of
maximally-mixed ST polarizations, i.e. ΣTTIR + ΣSSIR +
2ΣTSTSIR + 4ΣTTSSIR > 0, where the expressions for these
ΣIR are given in Appendix C.

At this point we choose the energy scale E in Eq. (26)
below the cutoff, E � Λ, so that the EFT calculation
of the cross-sections is trustworthy, and above the mass
E � m, so that the EFT hard-scattering amplitudes
Eq. (29) are dominating such cross-sections. We define

δ ≡
(
E

Λ

)2

, (31)

that controls the accuracy of the EFT calculation, and
obtain

Fi(c3, d5) >

(
4πmPl

m

)( g∗
4π

)4

δ6 , (32)

where we have defined

g∗ ≡
(

Λ

Λ3

)3

. (33)

The functions Fi(c3, d5) are given by
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FSS =

[
960

7− 6c3(1 + 3c3) + 48d5

(1− 4c3(1− 9c3) + 64d5)
2

]3/2

,

FV V =

[(
2560

27

)
5 + 72c3 − 240c23

(1− 4c3)4

]3/2

, (34)

FV V ′ =

[(
896

9

)
23− 72c3 + 144c23 + 192d5

(1− 4c3)4

]3/2

,

FV S =

[
80640

(
91− 312c3 + 432c23 + 384d5

)
1975− 29808c3(1− 2c3)(1− 4c3 + 8c23)

]3/2

,

FV ′S =

[
80640

(
91− 312c3 + 432c23 + 384d5

)
1891− 21504d5 + 48(c3(−649 + 6c3(649 + 24c3(−41 + 153c3))) + 10752c3(1 + 6c3)d5 + 86016d2

5)

]3/2

.

The five inequalities following from Eq. (32) are the main
result of this section: they imply lower bounds on the
graviton mass, which for a fixed g∗ can not be arbi-
trarily small compared to 4πmPl (this, incidentally, is
the largest cutoff for quantum gravity). As remarked in
Ref. [16], one can take m→ 0 only by sending g∗ → 0 as
well. These bounds represent a much improved, sharper
and more conservative version of the rough estimate pre-
sented in Ref. [16]. As we discuss below, g∗ cannot be
taken arbitrarily small either without seriously compro-
mising the predictive power of the EFT for massive grav-
ity.

Implications

The bounds Eq. (32) can be read in several ways: as
constraints on the plane of the graviton potential pa-
rameters (c3, d5) for a given graviton mass m and ratio
(Λ/Λ3)3 = g∗, as a constraint on g∗ for fixed m at a
given point in the (c3, d5) region allowed by positivity,
or equivalently as a bound on the graviton mass for fixed
coupling at that point. For these last two interpretations,
an absolute constraint on g∗ versus m can be derived.

We begin with a discussion of the bounds on the pa-
rameters c3 and d5 inside Fi. The experimental upper
limit on the graviton mass is extremely stringent, m .
10−32 − 10−30 eV, depending on the type of experiment
and theory assumptions behind it (see Ref. [48] for a crit-
ical discussion). Taking m = 10−32 eV as benchmark, we
show in Fig. 3 the constraints on c3 and d5, for given g∗;
the colored regions being allowed by our constraints. The
yellow region is determined from the standard positivity
constraints Eqs. (28, 30), while the others follow from our
new bounds in Eq. (32). Already for g∗ = 5 ·10−10 (right
panel), corresponding to the situation where Λ and Λ3

are about a factor 103 away from each other, our bounds
do not admit any solution in the (c3, d5) plane, likewise
for any larger value of g∗ at the same mass. Comparing

both panels of Fig. 3, we note that as g∗ increases the
constraints from FV V or FV V ′ alone single out essentially
a narrow band around the line c3 = 1/4, in agreement
with the causality arguments of Ref.’s [49, 50]. Simi-
larly, the constraint from FSS converges quickly to the
line 1−4c3(1−9c3)+64d5 = 0 (while FV ′S restricts such
a line to a range of c3 values). The intersection point
(red dot in Fig. 3), (c3, d5) = (1/4,−9/256), is finally
removed by FV S . In substance, the intersection region
in the right panel of Fig. 3 is empty. Instead, a small
island (colored in green and delimited by a solid black
line) survives in the left panel, which corresponds to a
smaller g∗ = 3 · 10−10.

To find the absolute maximum value of g∗ below which
our bounds allow for a solution, or, analogously, the min-
imum value of m, we write Eq. (32) as

m > 1.2 · 1012 eV
(g∗

1

)4
(
δ

1%

)6
1

Fi(c3, d5)
, (35)

and note that at each point (c3, d5), the bound is deter-
mined by the smallest Fi. Therefore, the maximum of
the (continuous) function min{Fi}(c3, d5) in the positiv-
ity region sets the most conservative bound. This cor-

responds to (ĉ3, d̂5) ≈ (0.18,−0.017) (close to the black
point in Fig. 3) for which FV S ≈ 4.6 · 106, yielding the
lower bound

m > 10−32 eV
( g∗

4.5 · 10−10

)4
(
δ

1%

)6

. (36)

We recall that the direct experimental constraint on
the graviton mass is m . 10−32 eV, implying that any
value g∗ & 4.5 · 10−10 is excluded, irrespectively of the
values of (c3, d5). This situation is summarized in Fig. 1:
for values of (g∗,m) that fall in the gray region, the
allowed island of (c3, d5) parameter space has completely
disappeared. Besides, even slightly stronger bounds can
be obtained by working with the non-elastic channels
(see Appendix C), while if we were to admit a slightly
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FIG. 3. Exclusion plots in the (c3, d5) plane for ghost-free massive gravity, for fixed accuracy δ = 1%, mass m = 10−32 eV, and
coupling g∗ = 3 (5) ·10−10 in the left (right) panel. The two plots illustrate how the region allowed by our bounds (green region
inside the solid line) shrinks to the point of disappearing as the coupling is increased above 4.5 · 10−10. The yellow region is
allowed by the standard positivity constraints, Eqs. (28, 30), whose optimized version from Ref. [14] is delimited by the dotted
black line. The other regions are the ones consistent with our new bounds, Eq. (32), the different colors corresponding to each
of the Fi in Eq. (34), as specified in the legend. On the dash-dotted red (dashed black) line, FV V (FSS) vanishes, and so it does
the corresponding bound. On the red dot (c3, d5) = (1/4,−9/256) the vector and scalar modes decouple from the tensors, but
not from each other, and on the black dot (c3, d5) = (1/6,−1/48) the scalar mode decouples from the tensor mode and itself.

larger uncertainty, e.g. δ = 5%, the upper bound on g∗
would increase by one order of magnitude.

At this point the crucial question is: What is the physi-
cal meaning of g∗, the relation between the physical cutoff
Λ and the scale Λ3? Can the UV completion be arbitrar-
ily weakly coupled g∗ . 10−10 [16]? To our knowledge,
most literature of massive gravity has so far either iden-
tified the cutoff Λ with the scale Λ3, or assumed Λ� Λ3,
so that one would expect g∗ & 1. These values are now
grossly excluded by our bounds.

What about hierarchical values for Λ and Λ3 corre-
sponding to tiny values for g∗? From a theoretical point
of view, Λ and Λ3 scale differently with ~, so that their
ratio actually changes when units are changed, in such
a way that g∗ indeed scales like a coupling constant (see
Appendix A). This is fully analogous to the difference
between a vacuum expectation value v (VEV) and the
mass of a particle ∼ coupling×v, e.g. the W -boson mass
mW ∼ gv. The crucial point then is that the cutoff Λ is
a physical scale, which differs from Λ3 that instead does
not have the right dimension to represent a cutoff. Since

Λ−1
3 ≈ 320 km

(
m/10−32 eV

)−2/3
, a very small coupling

g∗ translates into a very low cutoff (large in units of dis-
tance)

Λ '
(
4.1 · 105 km

)−1
( g∗

4.5 · 10−10

)1/3 ( m

10−32 eV

)2/3

. (37)

This is clearly problematic, a major drawback of the

theory of massive gravity once we recall that general
relativity (GR) has been precisely tested at much
smaller distances, down to the mm or even below, see
e.g. Ref.’s [48, 51, 52]. In other words, while GR, taken
as an EFT, has been experimentally shown to have a
cutoff below the mm, thus providing a good description
of gravitational phenomena from (sub)millimeter to
cosmological distances, in the light of our bounds dRGT
fails to describe the same phenomena below scales of the
order of the Earth-Moon distance.

More specifically, let us consider the experimental tests
of massive gravity in the form of bounds on fifth forces
from the precise measurements of the Earth-Moon pre-
cession δφ [46, 53, 54]. Due to the Vainshtein screening
[55, 56], which is generically dominated by the Galileon
cubic interactions in the (c3, d5) region allowed by our
bounds, the force mediated by the scalar mode compared
to the standard gravitational one is FS/FGR ∼ (r/rV )3/2,
where rV = (M/4πmPl)

1/3Λ−1
3 = (M/4πm2m2

Pl)
1/3 is

the Vainshtein radius associated with the (static and
spherically symmetric) source under consideration, in
this case the Earth, M = M⊕. Before our bound, one
would find that at lunar distances r = r⊕L ≈ 3.8·105 km,
the ratio of forces and thus also the precession δφ ∼
π(FS/FGR), even if very small for m = 10−32 eV, would
be borderline compatible with the very high accuracy
of present measurements ∼ 10−11. Now our bound
Eq. (37) shows that the EFT is not valid already for
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r ∼ 1/Λ > r⊕L. This implies that the Vainshtein screen-
ing should receive important corrections before reaching
the (inverse) cutoff 1/Λ and, moreover, it means that new
degrees of freedom should become active at that scale:
two effects that likely impair the fifth-force suppression
and hinder the agreement with the precise measurement
of the Earth-Moon precession.5

Besides, one should note that the cutoff in Eq. (37)
holds in Minkowski space and not necessarily in regions
near massive bodies, such as the Earth, where classical
non-linearities are important and Vainshtein screening
is active. In such non-trivial backgrounds, the strong
coupling scale Λ3 gets redressed as Λ3 → zΛ3, with
z � 1 deep inside the Vainshtein region [59]. However,
this Vainshtein rescaling (or redressing, not to be
confused with the Vainshtein screening) relies on the
assumption that the tower of effective operators is such
that only the building blocks of the type ∂∂π/Λ3

3 are
unsuppressed and dominate (we work here for simplicity
with the Stueckelberg mode π in the decoupling limit),
and therefore it does not generically extend to operators
suppressed by extra derivatives, (∂/Λ)n, sensitive to
the bona fide cutoff of the EFT. The cutoff for the
fluctuations keeps being Λ, which, following our bound
Eq. (37), is encountered much before the strong coupling
scale, i.e. Λ � Λ3. In this sense, and unless ad-hoc
assumptions are made, such a Vainshtein rescaling of
the cutoff could be relevant to extend the EFT validity
only for Λ � Λ3 (or g∗ � 1), but this is exactly the
region ruled out by our bounds.

The tension between the bounds Eqs. (35, 36), direct
limits on the graviton mass, and fifth-force experiments,
leads us to conclude that ghost-free massive gravity is
not a proper contender of GR for describing gravitational
phenomena, in that the EFT can not tell e.g. whether an
apple would fall to the ground from the tree, float mid-air
or else go up.6 This constitutes a major concern for the
theory of massive gravity in view of our bounds, which
warrants extending the theory in the “UV” in such a way
to describe the relevant gravitational phenomena while
remaining consistent with experimental tests (i.e. the new
gravitational dynamics remaining undetected) not only
in lunar experiments but also down to the mm. In fact,

5 Even extremely weakly coupled new degrees of freedom can give
o(1) deviations from the non-analytic dependence over the cou-
plings when a new state goes on-shell. A simple example is the
exchange of a new weakly coupled particle at threshold, which
gives maximal phase shift in the amplitude regardless of the size
of the overall coupling.

6 Our conclusion is general and does not depend on special tun-
ings of the potential parameters within the positivity region. In-
deed, for e.g. d5 = −c3/8, where Vainshtein screening is essen-
tially that of the quartic Galileon [57, 58] instead of the cubic
Galileon, the experimental upper bound on the graviton mass is
m = 10−30 eV, corresponding to a cutoff that is still very large
1/Λ & few · 104 km (of the order of the geostationary orbit of
satellites).

“UV” corresponds here to macroscopic distances, of or-
der few · 105 km. To emphasize this fact, we can spec-
ulate about non-generic situations (i.e. departing from
NDA expectations, most likely requiring fine-tuning) for
what regards the EFT expansion. One (trivial) possi-
bility is that all Wilson coefficients associated with the
operators containing extra derivatives happen to be sup-
pressed, which entails the validity (and thus calculability)
of the theory extends beyond Λ, even in flat space. In
this case we can effectively choose E in Eq. (26) larger
than Λ, and therefore our bounds get stronger as well, so
that the theory would still be ruled out. Alternatively,
we can imagine that the whole tower of operators associ-
ated with the extra derivative terms come with the right
powers of fields (and coefficients) in order for the true
cutoff Λ (as well as Λ3) to be raised, i.e. Vainshtein re-
dressed, in a (certain, appropriately chosen) non-trivial
background, but not necessarily extending the calcula-
bility in Minkowski space. In this case, rescaling Λ at
the Earth’s surface, r = r⊕ (thus assuming a spherical
background), one arrives at

Λ⊕ ∼
(
rV
r⊕

)3/4

Λ (38)

≈ (37 m)−1
( g∗

4.5 · 10−10

)1/3 ( m

10−32 eV

)1/6

,

Even with this extra epicycle, the redressed cutoff of
massive gravity is still orders of magnitudes larger
than the (sub)millimeter scale, where GR has been
successfully tested. This fact is illustrated in Fig. 1. We
also note that more aggressive bounds can be derived
by accepting large uncertainties, e.g. for δ = 10% then
Λ⊕ ≈ (120 m)−1.

In summary, our theoretical bounds either rule out
massive gravity or show that the theory is unable to
make predictions at scales where GR instead does and
in agreement with experimental observations. This last
observation calls for new ideas on extending the the-
ory in the UV. Of course, violation of the assumptions
that led to our bounds (e.g. Lorentz invariance, polyno-
mial boundedness) is also a logical possibility, although
not much different from finding explicit UV completions,
since also requires non-trivial dynamics in the UV. Fi-
nally, note that considering either smaller couplings or
masses (e.g. m ∼ H0 ∼ 10−33 eV to explain cosmic accel-
eration) only aggravates the problem, since the (inverse)
cutoff is increased.

VI. OUTLOOK

Positivity bounds are statements that arise from
first principles such unitarity, analyticity, and cross-
ing symmetry of the Lorentz invariant S-matrix. They
have proven to be very useful because they set non-
perturbative theoretical constraints even in strongly cou-
pled theories, giving information that goes well beyond
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the mere use of symmetries. In this paper we went be-
yond positivity bounds and derived rigorous inequalities
for amplitudes that are calculable in the IR via an EFT
approach. The dispersive integral in the IR is not only
positive but also calculable, with an error from truncat-
ing the EFT towers of higher-dimensional operators that
can be tamed thanks to separation of scales, which is
what makes the EFT useful in the first place.

Our results, while simple and general, can be applied
straightforwardly to several EFT’s. The implementa-
tion on interesting theories such as the weakly-broken
Galileon and the ghost-free massive gravity that we ex-
plored in this paper are extremely rewarding.

Taken at face value, our bounds rule out dRGT mas-
sive gravity in a large range of masses m and couplings
g∗ = (Λ/Λ3)3. In fact, our constraints on the EFT
are qualitatively different from previous bounds, in that
they crucially incorporate g∗, which controls the size of
the allowed island of parameter space (c3, d5) of ghost-
free massive gravity. Furthermore, when combined with
the experimental constraints on the graviton mass, our
bounds seriously limit the realm of predictivity of massive
gravity, since the physical cutoff Λ is forced well below
Λ3 = (m2mPl)

1/3 (specifically g∗ . 4.5× 10−10 with 1%
uncertainty for m = 10−32 eV), leaving an EFT that does
not stand competition with GR already below macro-
scopically large distances: of the order of the Earth-Moon
distance (without extra non-generic assumptions about
the tower of effective operators), or in the 50 to 100 meter
range (if Vainshtein redressing the cutoff). Below these
scales, the EFT is not even wrong. It would certainly
be compelling to find UV completions in order to assess
if the theory is able to pass experimental constraints at
those scales.

Needless to say, our bounds neither apply to Lorentz-
violating models of massive gravity (e.g. [60]), nor to the-
ories with a massless graviton: one can avoid our bounds
by dropping any of the assumptions on the S-matrix that
led to them.

There are several directions where our bounds can find
fruitful applications. The most immediate ideas involve
theories with Goldstone particles, e.g. the EFT for the
Goldstino from SUSY breaking or the R-axion from R-
symmety breaking, and the dilaton from scale-symmetry
breaking. In these theories there exist universal cou-
plings that are set by the various decay constants, and
there are also non-universal parameters whose sizes and
signs are often not accessible with the standard positiv-
ity bounds. Our results would allow instead to relate
these non-universal parameters to the decay constants
and extract thus non-trivial information on the EFT’s, of
phenomenological relevance, see e.g. [27–29, 61, 62]. An-
other phenomenologically interesting direction would be
towards theories that have suppressed 2-to-2 amplitudes
but unsuppressed 2-to-3 amplitudes, as those discussed
e.g. in [32].

It is also attractive to recast our bounds in diverse
spacetime dimensions. We tested the consistency of the

conjectured a-theorem in d = 6 (see e.g. [63]) with our
bounds, at least when the RG flow is initiated by spon-
taneous breaking of scale invariance. In this case, we an-
ticipate here that for large coefficients of the Weyl- and
diffeomorphism-invariant 4-derivative term b, the vari-
ation of the a-anomaly ∆a can not be negative with-
out violating our bound. More specifically, the (con-
ventionally chosen dimensionless) points in the plane
(b,∆a) must fall in a band, parametrically of the form
b > loop × ( 3

2∆a − b2)2 > 0, which implies only a fi-
nite range 0 < b < b∗ consistent with a negative ∆a
and our bound. Considering instead lower dimensional
spacetimes, one could investigate what our bound implies
e.g. for massive gravity theories in d = 3 [64, 65].

One further stimulating avenue is to use our bounds
to extend the no-go theorems for massless higher spin
particles in flat space (see e.g. [66–70]) to the case of
small but finite masses. While the no-go theorems can
be evaded with arbitrarily small masses, we expect that
our bound can, analogously to the case we explored for
massive gravity, put a limit on how light higher-spin par-
ticles can be relative to the cutoff of the theory. Such a
result would represent a quantitative assessment of why
light higher-spin particles can not emerge, even in prin-
ciple, in non-gravitational theories without sending the
cutoff to zero or making them decouple.

One important open question, that for the time being
remains elusive, is whether it is possible (at least under
extra assumptions) to extend our results to theories with
massless particles and with spin J ≥ 2. If that would be
the case, the resulting bounds would provide new insights
on the long-distance universal properties of the UV com-
pletion of quantum gravity, such as string theory. The
bounds would also apply to IR modifications of GR such
as Horndeski-like theories, where the graviton remains
massless.
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Appendix A: g∗-counting via ~-counting

In this appendix we recall how dimensional analysis
is useful to extract the scaling with respect to coupling
constants.

Rescaling the units from ~ = 1 to ~ 6= 1 while keeping
c = 1 reintroduces a conversion factor between energy
(or momentum) units, E , and length (or time) units, `,
i.e. ` = ~/E . With canonically normalized kinetic terms,
we have the following scaling with ~: [A] = E [~]−1/2,
[∂] = E [~]−1, [m] = E , and [g∗] = [~]−1/2, where g∗
is (a collective name for) coupling constant(s) and m a
physical mass. Note for instance that a Higgs quartic
coupling λ scales really like a coupling squared [λ] =
[g2
∗]. Quantum corrections scale indeed like powers of

the dimensionless quantity g2
∗~/(16π2) or λ~/(16π2), so

that they are important for g2
∗ ∼ 16π2/~ ∼ λ, as long as

there are no large dimensionless number (such as e.g. the
number of species). Extending this dimensional analysis
to fermions, it is immediate to see that Yukawa couplings
scale also like ~−1/2.

Importantly, the relation between VEV’s, couplings,
physical masses and the associated Compton lengths is

[λ−1] =
[m
~

]
= [g∗〈A〉] . (A1)

Therefore a coupling times a VEV is nothing but an in-
verse physical length, which can be converted to a phys-
ical mass by plugging in the conversion factor, aka ~. In
other words, the appearance of a coupling in Eq. (A1)
tells us that parametrically VEV’s are to masses (or
Compton lengths) like apples are to oranges.7 The im-
mediate consequence of this exercise is that the reduced
Planck mass mPl has units of a VEV, [mPl] = [A], and
not of a physical mass scale, in full analogy with an ax-
ion decay constant [fa] = [A]. The UV completion of
GR should enter at some physical energy g∗mPl~, which
is parametrically different than mPl because of the cou-
pling g∗.

This analysis with ~ 6= 1 is useful to keep track of
the appropriate g∗ counting; the structure of a generic
Lagrangian that automatically reproduces it is,

L =
Λ4

g2
∗
L̂
(
∂

Λ
,
g∗A

Λ
,
g∗ψ

Λ3/2

)
, (A2)

where Λ is a physical mass scale and L̂ is a polynomial
with dimensionless coefficients, where we have restored
~ = 1 units. The Lagrangian Eq. (A2) accounts for the
intuitive fact that any field insertion in a given non-trivial
process requires including a coupling constant as well.
A class of simple theories with only one coupling and
one scale (see e.g. Ref. [71]) are those where all dimen-

sionless coefficients in L̂ are of the same order (except

7 We thank Riccardo Rattazzi who inspired this adage, with his
interventions at the J. Hopkins workshop in Budapest in 2017.

for those associated with terms that break a symmetry,
which can be naturally suppressed). This structure rep-
resents a generalization of the naive counting of factors
of 4π, routinely used in strongly coupled EFT’s in parti-
cle physics (see e.g. [72]), which goes under the name of
naive dimensional analysis (NDA).

With the g∗-counting at hand, we immediately recog-
nize that the (strong coupling) scale Λ3

3 = m2mPl con-
ventionally used in massive gravity is not parametrically
a physical threshold, since it misses a coupling constant.
This is made manifest by the fact that the graviton mass
is a physical mass scale but mPl is only a VEV. Alterna-
tively, in the decoupling limit the coefficient of the cubic
Galileon must carry a coupling g∗, that is [c3] = [g∗]
to match the general scaling of Eq. (A2). The actual
correct parametric scaling for the physical cutoff is thus
Λ3 = g∗Λ

3
3. A weakly coupled theory corresponds to a

suppressed Λ relative to Λ3, i.e. g∗ � 1, like a weakly
coupled UV completion of GR corresponds to states en-
tering much earlier than 4πmPl.

Appendix B: Polarizations

We adopt the following basis of linear polarizations

(
εT (k1)

)µν
=

1√
2

 0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


µν

,

(
εT

′
(k1)

)µν
=

1√
2

 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


µν

, (B1)

(
εV (k1)

)µν
=

1√
2m

 0 kz1 0 0
kz1 0 0 E
0 0 0 0
0 E 0 0


µν

,

(
εV

′
(k1)

)µν
=

1√
2m

 0 0 kz1 0
0 0 0 0
kz1 0 0 E
0 0 E 0


µν

,

(
εS(k1)

)µν
=

√
2

3


kz 2

1

m2
0 0

kz1E

m2

0 −1/2 0 0
0 0 −1/2 0

kz1E

m2
0 0

E2

m2


µν

,

which are associated to the particle kµ1 = (E,k1) =
(E1, 0, 0, k

z
1) moving along the z-axis with E2 = k2

1 +m2.
These polarizations are real, symmetric, traceless, or-
thogonal, transverse to k1, and with norm ε∗µνε

νµ = 1.8

8 We are taking the same matrix entries of Ref. [14], except that
that we have removed the i factor from the vector polarizations
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FIG. 4. Exclusion plots in the (c3, d5) plane for ghost-free
massive gravity, for fixed accuracy δ = 1%, mass m =
10−32 eV, and coupling g∗ = 3 · 10−10, using inelastic chan-
nels. See the caption of Fig. 3 for other information about the
figure. For couplings larger than g∗ ≈ 4.4 · 10−10 the green
island disappears, for the same value of the mass, and the
model is ruled out.

The polarizations associated to the other momenta kµi in
the 2-to-2 scattering, in the center of mass frame, are ob-
tained by a Lorentz transformation of those in Eq. (B1),
for instance(

εV (k3)
)µν

= Rµµ′R
ν
ν′

(
εV (k1)

)µ′ν′

(B2)

with Rµµ′ the rotation around the y-axis by cos θ =

1 + 2t/(s − 4m2) such that k3 = Rk1. While this
definition is valid and legitimate, it corresponds effec-
tively to consider k1 as the canonical reference vector,
rather than (m, 0, 0, 0), upon which constructing the mas-
sive one-particle states via boosting. Alternatively, it
means that the standard Lorentz transformation that
sends (m, 0, 0, 0) to k1 is a boost along the z-axis fol-

lowed by a rotation that sends ẑ to k̂1 (like it is done
e.g. for massless particle in Ref. [66]), rather than the se-
quence rotation-boost-rotation usually adopted for mas-
sive states [66]. The advantage of our convention is that
it removes the little group matrix that would otherwise
act on the polarization indexes z = T, T ′, V, V ′, S when
performing the rotations that send k1 to ki (the Wigner
rotation must be adapted accordingly too). For massless
particles the differences between the two conventions is
essentially immaterial as the little group acts just like
phases.

Appendix C: Non-elastic channels in massive gravity

We report in this appendix the impact of the inelastic
channels in setting the lower bound on the graviton mass
using Eq. (26) with X 6= z1z2. Their effect is not very
significant, see Fig. 4. The resulting maximum value of
the new min{Fi}(c3, d5) function, that includes now the

inelastic channels, is 4.3 · 106, at the point (ĉ3, d̂5) ≈
(0.19,−0.022). This lightly lower value barely improves
the bound in Eq. (36), obtained with the elastic channels
only.

The inelastic cross-sections on the right-hand side of
Eq. (26) are calculated using the hard-scattering ampli-
tudes for s, t� m2

MV V SS(s, t) =MSSV V (s, t) = −MV SV S(t, s) , (C1)

MV ′V ′SS(s, t) =MSSV ′V ′
(s, t) = −MV ′SV ′S(t, s) ,

MV V V ′V ′
(s, t) =MV ′V ′V V (s, t) =MV V ′V V ′

(t, s) .

They are related to the elastic amplitudes simply by ex-
changing s ↔ t, up to an overall sign (which is not
physical as it can be changed by redefining the phases
of the polarizations, e.g. adding a factor i to the V
and V ′ polarizations). Note that this relation is a
manifestation of crossing symmetry in the Goldstone-
equivalence limit. Amplitudes involving tensor polariza-
tions scale more slowly with energy, as s/m2

Pl = sm4/Λ6
3

or s2/(m2m2
Pl) = s2m2/Λ6

3, in the hard-scattering limit
s, t� m2, for instance

MTTTT = − (s2 + st+ t2)2

m2
Plst(s+ t)

+
9(1− 4c23)t(s+ t)

2m2
Pls

. (C2)

Therefore they are not useful to derive bounds with our
methods. Moreover, crossing symmetry, relating e.g. the
hard-scattering limits ofMTSTS andMTTSS , is not just
exchanging s↔ t, even in the decoupling limit, precisely
because one is sensitive in this case to the subleading
corrections.

For completeness, we report here also the following
residues

ΣTTIR =
m2

Λ6
3

, ΣTSTSIR =
m2

Λ6
3

(5− 12c3) , (C3)

ΣTTSSIR = − m
2

2Λ6
3

(1− 8c3 + 24c23 + 16d5) ,

which have been used in the main text to obtain the
bound Eq. (30) from maximally mixed ST states [14].

and taken all upper Lorentz indexes. We checked that our choice
satisfies the completeness relation. The i factor is never impor-

tant in elastic amplitudes, but it should actually be included
whenever considering mixed-helicity states that include vector
components, as done in [14].
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