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Summary
Objectives: To compare the mechanical 

properties of locking compression plate (LCP) 

and limited contact dynamic compression 

plate (LC-DCP) constructs in an experimental 

model of comminuted fracture of the canine 

femur during eccentric cyclic loading.

Methods: A 20 mm mid-diaphyseal gap was 

created in eighteen canine femora. A 

10-hole, 2.4 mm stainless steel plate (LCP or

LC-DCP) was applied with three bicortical

screws in each bone fragment. Eccentric cyc-

lic loadings were applied at 10 Hertz for

610,000 cycles. Quasistatic loading / unload-

ing cycles were applied at 0 and 10,000

cycles, and then every 50,000 cycles. Struc-

tural stiffness was calculated as the slope of

the linear portion of the load-displacement

curves during quasistatic loading / unloading

cycles. 

Results: No bone failure or screw loosening 

occurred. Two of the nine LCP constructs 

failed by plate breakage during fatigue test-

ing, whereas no gross failure occurred with 

the LC-DCP constructs. The mean first stiff-

ness of the LCP constructs over the course of 

testing was 24.0% lower than that of con-

structs stabilized by LC-DCP. Construct stiff-

ness increased in some specimens during 

testing, presumably due to changes in bone-

plate contact. The first stiffness of LC-DCP 

constructs decreased by 19.4% and that of 

locked constructs by 34.3% during the cyc-

ling period. A biphasic stiffness profile was 

observed: the second stiffness was signifi-

cantly greater than the first stiffness in both 

groups, which allowed progressive stabiliza-

tion at elevated load levels.

Clinical significance: Because LCP are not 

compressed to the bone, they may have a 

longer working length across a fracture, and 

thus be less stiff. However, this may cause 

them to be more susceptible to fatigue fail-

ure if healing is delayed.
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Introduction

Comminuted diaphyseal fractures are fre-
quently encountered in veterinary medi-
cine and present challenges for orthopaedic 
surgeons. Femoral fractures represent 45% 
of long-bone fractures and diaphyseal frac-
tures occur in 56% of cases (1, 2). The ref-
erence treatment for long-bone fractures in 
small animals is internal fixation and, for 
many years, the best option has been to use 
Dynamic Compression Plates®. Many other 
implants have since been developed to 
limit the potential complications and facili-
tate treatment of comminuted fractures. 
The Limited Contact-Dynamic Compres-
sion Plate® (LC-DCP) was designed to 
minimize contact between the plate and 
bone while allowing axial dynamic com-
pression. Because the plate has an even 
area moment of inertia, stress concen-
tration at the holes is reduced. One of the 
latest implants to be developed is the Lock-
ing Compression Plate® (LCP) in which the 
combination hole accepts both standard 
cortical screws and locking screws.

The LCP may provide a structural ad-
vantage over the LC-DCP because of the ad-
ditional stability resulting from the creation 
of a fixed-angle rigid construct. The bone 
vascular supply is protected due to the ab-
sence of bone-plate compression. Precise 
anatomic contouring of the LCP is not 
required so it is easier to use in biological os-
teosynthesis. These features could make the 
LCP well suited to the stabilization of com-
minuted diaphyseal fractures (3-7).

Comparisons of the biomechanical 
characteristics of different implants, and 



Table 1 Number of constructs for which a second or a third stiffness appeared and the time of their 
appearance.

LCP

LC-DCP

LCP: Locking compression plate; LC-DCP: Limited contact dynamic compression plate.

Number of constructs

2nd stiffness

8 out of 9

6 out of 9

3rd stiffness

3 out of 8

2 out of 6

Time of appearance
(range of number of cycles)

2nd stiffness

10,000 – 410,000

10,000 – 310,000

3rd stiffness

160,000 – 460,000

560,000

more particularly of LCP and LC-DCP, 
have been reported in the literature (3, 4, 6, 
8-15). Many studies with a wide range of
protocols have involved bone or synthetic
bone under cyclic conditions (3-5, 9,
16-27). To our knowledge, only a few re-
ports have described axial compression
cyclic testing with constant load under fa-
tigue conditions (4, 11, 22, 26, 28-31).
However only two of these studies com-
pared LCP and LC-DCP, but none specifi-
cally evaluated 2.4 mm LCP and LC-DCP
(4, 11).

The purpose of this study was to com-
pare the mechanical properties of LCP and 
LC-DCP constructs in an experimental 
model of comminuted fracture of canine 
femora during eccentric cyclic loading. 

Materials and methods
Bone specimens

Nine pairs of femora were harvested from 
adult canine cadavers of the same breed and 
wrapped in gauze soaked in isotonic saline 
solution (NaCl 0.9%) before freezing 
(-20°C). All dogs had been euthanatized for 
reasons unrelated to orthopaedic disease. 
All femora were first radiographed to ensure 
bone maturity and the absence of any bone 
disease. For testing, the femora were thawed 
at room temperature (20–22°C) and were 
kept moist by being wrapped in saline-
soaked gauze which was dipped in saline 
throughout the experiment. 

Implants

Ten-hole 2.4 mm stainless steel LCPa with 
2.4 mm self tapping locking screwsa and 

10-hole 2.4 mm stainless steel LC-DCPa

with 2.4 mm self-tapping cortical bone
screws were used for this study.

Construct assembly

The femora were divided into two groups. 
Right femora were used for LCP testing, 
and left femora were used for LC-DCP test-
ing (▶ Figure 1). For each pair of cadaveric 
femora, the plates (LCP or LC-DCP) were 
contoured and applied to the lateral aspect 
of the bone using bone forceps. Each plate 
was applied with three bicortical screws in 
each bone fragment by the same author 
(AA). Self-tapping 2.4 mm locking screws 
were used in the LCP group and self-tap-
ping 2.4 mm standard screws were used in 
the LC-DCP group. All screws were 
tightened to 0.8 Nm using a torque-limit-
ing screwdrivera. The proximal screw was 
inserted in each plate at the level of the 
minor trochanter. After application of the 
bone plate, a transverse, mid-shaft femoral 
20 mm ostectomy was performed using an 
oscillating bone saw. Care was taken to en-
sure that the saw blade had no contact with 
the plate. The gap between the two frag-
ments was measured. The plates were ap-
plied in buttress fashion, leaving four 
empty holes, two of them being over the 
fracture gap completely. A new set of im-
plants was used for each construct, and 
none of the implants were reused for mech-
anical testing.

Mechanical testing

The distal part of each femur was potted in 
polyurethane casting resinb with at least 10 
mm between the distal end of the plate and 

the resin. This resin was firmly attached to 
the testing machine basec. The load was ap-
plied on the femoral head through a cup at-
tached to the actuator (▶ Figure 2). 

Each specimen was subjected to cyclical 
testing under load control. The test began 
with four quasistatic loading / unloading 
cycles between 26 and 260 N. Cyclic com-
pression loadings were then applied from 
26 to 260N at 10 Hertz for 610,000 cycles. 
Quasistatic loading / unloading cycles (26 
– 260N) were applied at 0 and 10,000
cycles, and then every 50,000 cycles at a
loading rate of 26 N/min. The predeter-
mined intervals of 50,000 cycles were auto-
mated and the mechanical loading was
continuous for 610,000 cycles without any
idle period between cyclic and static load-
ing. The maximal load applied was chosen
based on the estimated yield point deter-
mined on preliminary tests.

The structural stiffness was calculated 
as the slope of the linear portion of the 
load-displacement curves during quasis-
tatic loading / unloading cycles. A relative 
stiffness was calculated as the percent of 
the difference between the stiffness at each 
time interval and the initial stiffness, di-
vided by the initial stiffness. When two or 
three slopes appeared on the load displace-
ment curve during the cycling tests, the in-
flection points of the curves were math-
ematically determined.

Data analysis

Statistical comparisons were done by two-
way ANOVA, Yates' chi-square tests, and z 
tests. The results are reported as mean ± 
standard deviation. Statistical significance 
was defined as p <0.05.

Results

The length of the osteotomized gap was 
20.1 ± 0.9 mm for the LCP constructs and 
20.7 ± 0.8 mm for the LC-DCP constructs. 

No bone failure or screw loosening oc-
curred in any of the models tested. Two out 
of the nine LCP plates broke at the level of 
the proximal osteotomy site, between 

c Electropuls 1000: Instron, High Wycombe, UKa Synthes, Etupes, France b Rencast FC 52: Gaches chimie, Toulouse, France



Table 2 First and second stiffness (mean ± SD) over the cycling period, at the first appearance and at 
the end of cycling for the locking compression plate and limited contact dynamic compression plate 
constructs.

First stiffness over cycling period (N/m)

First stiffness of the first cycle (N/m)

First stiffness of the last cycle (N/m)

Second stiffness over cycling period (N/m)

Second stiffness at the first appearance (N/m)

Second stiffness of the last cycle (N/m)

Load at appearance of second stiffness (N)

Displacement at appearance of second stiffness (mm)

*Differences between the two groups are significant (p <0.05).

LCP

210.78 ± 64.08

253.78 ± 52.00

166.66 ± 39.51

319.36 ± 60.20

217.15 ± 76.08

338.33 ± 54.60

99.65 ± 28.81

0.64 ± 0.26

LC-DCP

261.43 ± 74.67*

302.12 ± 86.63

243.46 ± 76.80*

433.86 ± 159.77*

597.55 ± 256.74

471.89 ± 164.58

86.47 ± 0.41

0.53 ± 0.19*

A B

310,000 cycles and then increased to 471.89 
± 164.58 N/m up to 610,000 cycles (▶ Fig-
ure 6). The change in the second stiffness 
during cyclic testing differed significantly 
between the two plate constructs (p <0.05).

group increased from 217.15 ± 76.08 N/m 
to 338.33 ± 54.60 N/m during cyclic test-
ing. The second stiffness in the LC-DCP 
group initially decreased from 597.57 ± 
256.74 N/m to 405.96 ± 165.78 N/m at 

410,000 and 460,000 cycles for the first 
construct and between 460,000 and 
510,000 cycles for the second one. Both 
failures occurred at the level of the locking 
part of the third or fourth hybrid plate 
hole. The seven other constructs survived 
fatigue testing with no evidence of gross 
failure. None of the LC-DCP constructs ex-
hibited any gross failure during fatigue test-
ing.

In many cases, the load deformation 
curves revealed an evolution from constant 
stiffness over the elastic loading range to a 
biphasic or triphasic profile (▶ Figure 3, 

▶ Table 1). A first, second and third stiff-
ness value was therefore calculated. The
differences between the two bone-plate
constructs for the appearance of a biphasic
or triphasic profile were not significant.

The mean first stiffness of the LCP con-
structs (210.78 ± 64.08 N/m) was signifi-
cantly lower than than that of the LC-DCP 
constructs (261.43 ± 74.67 N/m) (p <0.05). 
The mean second stiffness of the LCP con-
structs (319.36 ± 60.20 N/m) was also sig-
nificantly lower than the LC-DCP con-
structs (435.86 ± 159.77 N/m) (p <0.05) 
(▶ Table 2).

For the bone-plate constructs that only
had a monophasic profile, the stiffness for 
the LC-DCP construct (297.80 ± 78.37 
N/m) was not significantly different from 
the second stiffness of the LCP construct 
(319.36 ± 60.20 N/m) (p = 0.10).The differ-
ence in first stiffness, between the LC-DCP 
group (302.12 ± 86.63 N/m) and the LCP 
group (253.78 ± 52.00 N/m) at the begin-
ning of the fatigue test was not significant. 
At the end of the fatigue tests, the mean 
first stiffness decreased to 243.46 ± 76.80 
N/m for the LC-DCP group and 166.66 ± 

39.51 N/m for the LCP group (▶ Figure 4). 
Over the cycling period, the initial first 

stiffness decreased by 19.4% for the LC-
DCP constructs and by 34.3% for the lock-

ed constructs (▶ Figure 5). This decline 
stabilized at about 310,000 cycles for the 
LC-DCP constructs but continued to de-
crease for the LCP constructs. The change 
in the first stiffness during cyclic testing 
differed significantly between the two con-
structs (p <0.05).

The second stiffness was significantly 
greater than the first stiffness for both 
groups. The second stiffness in the LCP 

Figure 1  
Photographs showing 
the locking compres-
sion plate (A) and 
 limited contact 
 dynamic compression 
plate (B) constructs.



cantly greater for the LCP group (0.91 ± 
0.18 mm) compared with the LC-DCP 
group (0.73 ± 0.23 mm) (p <0.05).

Discussion

The mechanical properties of the LCP and 
LC-DCP bone-plate constructs used in our 
study were characterized by a quasi-
physiological combination of axial com-
pression, a bending moment, and weak 
torque moment generated by application of 
axial load directly to each eccentrically 
positioned femoral head (32). 

As previously described by Aguila et al, 
cyclic loading was considered to be func-
tionally relevant in contributing to implant 
failure and the disruption of osteosynthesis 
(3). Throughout the loading/unloading 
cycles, and according to previous tests per-
formed on pre-test specimens, the load was 
selected to keep within the linear-elastic 
domain. The loading rate was low (26 
N/min) to suppress the influence of bone 
viscoelasticity (33, 34). Even though the 
cycling rate of 10 Hz was greater than that 
of walking and trotting in dogs, which is 
between 1.25 Hz and 2.5 Hz, this higher 
rate was necessary to achieve 600,000 

Figure 2 Mechanical test setup for the eccen-
tric loading protocol. The distal femur was secured 
within the mold which was fixed to the base of 
the testing machine. The load was applied on the 
femoral head through a cup attached to the 
 actuator.

There were too few values for the third 

stiffness (▶ Table 1) to be taken into ac-
count and we decided not to consider these 
values as being representative of a mechan-
ical characteristic. 

The loads that produced the initial 
changes in stiffness decreased over time. 
The first time that two slopes were ob-
served, the load was 86.47 ± 0.41 N for the 
LC-DCP group and 99.65 ± 28.81 N for the 
LCP group. Both decreased subsequently 
to 72.76 ± 34.88 N for the LCP group and 
to 74.73 ± 39.67 N for the LC-DCP group 
at 310,000 cycles and then increased 
slightly to 80.31 ± 30.30 N for the LCP 
group and to 87.21 ± 37.93 N for the LC-

DCP constructs (▶ Figure 7). These differ-
ences were not significant.

The mean displacement observed at the 
appearance of the second stiffness was sig-
nificantly higher for the LCP constructs 
(0.64 ± 0.26 mm) than for the LC-DCP 
constructs (0.53 ± 0.19 mm) (p <0.05). The 
maximal displacement was also signifi-

Figure 3 Load deformation curves over 610,000 cycles for the two constructs. A) Limited contact 
 dynamic compression plate construct showing the monophasic and biphasic profile. B) Locking 
 compression plate construct showing the monophasic and triphasic profile.
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cycles before bone dehydration (35). Par-
ticular attention was paid to the storage of 
specimens. Freezing has long been the 
most widely accepted means of bone stor-
age (34, 36). Freezing and thawing the fe-
murs in saline-soaked gauze, and wetting 
the gauze that was wrapped around the fe-
murs in saline kept the specimen moist and 
prevented any adverse effects of dehy-
dration throughout the testing period (34). 

In the fracture gap model that was used 
in our study, offset axial loading induced 
plate bending. As loads are applied to such 
a configuration, the maximal plate deflec-
tion becomes proportional to the working 
length squared (37). Stoffel et al have 
shown that the working length has the 
greatest effect on construct stability (30). 
Due to differences in plate design and plate 
hole geometry, the working length of the 
LCP construct (37 mm) was less than the 
LC-DCP construct (40 mm) in our study. 
This theoretical difference in working 
length of 7.5 % between the two plates was 

likely to increase the stiffness of LCP con-
structs compared with that of the LC-DCP 
constructs. However, the compression 
forces between the plate and the femur in-
duced by the tightening of the conventional 
cortical screws should decrease the work-
ing length of LC-DCP constructs, as the 
plate and bone are in more intimate con-
tact.

When the LCP constructs were cycli-
cally loaded in eccentric compression, the 
mean initial stiffness over the course of 
testing was 21.4 % lower than that of LC-
DCP constructs. Similar results have been 
previously described with cyclic loading in 
bending and in torsion for 4.5 LC-DCP 
and LCP (19, 38). In contrast, stiffness of 
the LCP was significantly higher than that 
of conventional plating configuration when 
tested in axial compression (19, 38). Struc-
tural stiffness did not differ significantly 
between 3.5 LC-DCP and LCP constructs 
in a canine femoral fracture gap model 
subjected to four-point bending tests (3). 

Other studies also reported an absence of 
significant differences in stiffness between 
locked and non-locked constructs (30, 31, 
38).

The influence of slippage between plate 
and bone or the influence of working 
length on the structural stiffness of plate-
bone constructs depends on the loading 
mode. Direct comparisons of our results 
and these other studies are hindered by the 
variations in loading applications, experi-
mental models, implant types and con-
struct materials. 

Over the cycling period, the starting 
point of the load-displacement curves of 
both the LCP and LC-DCP constructs 
shifted to the right as clearly demonstrated 
in ▶ Figure 3 A and B. This suggests a per-
manent deformation of the system that 
could be attributed to changes in the cup-
femoral head interface or changes in the 
screw-bone or bone-plate interfaces.

In the current study, both plate con-
structs exhibited a biphasic stiffness profile 
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with a first stiffness and a second stiffness. 
The second stiffness appeared when the 
load was around 60% to 70% of the body 
weight and allowed progressive stabiliza-
tion at loads that can occur in clinical situ-
ations in the dog (32). This finding sug-
gests that both constructs would probably 
provide acceptable clinical stability for 
bone healing.

Since the first stiffness of the LC-DCP 
bone-plate constructs was equivalent to the 
second stiffness of LCP constructs, the 
functional working length of the former 
was probably shorter than that of the latter. 
For LC-DCP bone-plate constructs, the 
functional plate working length was short-
er than the distance between the two 
screws placed closest to the osteotomy gap. 
Under the conditions of our gap model 
subjected to offset axial compression, load-
ing of the construct led to plate bending. 
Whichever plate was used, bending was as-
sumed to increase the contact area 
between 

plate and bone immediately adjacent to the 
femoral osteotomy gap and thereby de-
crease the working length of the plate 
(▶ Figure 8). This led to the appearance of
the second stiffness. The difference in stiff-
ness is probably due to the extent of bone
contact between the bone and plate for the
two bone-plate constructs. The compres-
sion forces induced by the two screws
placed closest to the osteotomy gap act on
the working length but this effect progress-
ively decreases as one moves away from the
screw to the osteotomy gap. In contrast, the
working length for the LCP group was the
distance between the central screws that
were not in intimate contact with the
femur. This difference in functional work-
ing length explains the lower first stiffness
of LCP constructs compared with the LC-
DCP group.

This ability to bear elevated loads as a 
result of modification of the bone-plate 
construct may be important in preventing 

fixation failure. Biphasic profiles have al-
ready been reported in far cortical locking 
constructs in which a contact between 
screw and bone in the near cortex occurred 
during loading (20). The biphasic stiffness 
profile can be compared to the nonlinear 
behaviour of Ilizarov fixators that become 
progressively stiffer with an increase in 
load (39). 

The decrease in initial stiffness after 
610,000 cycles was greater for LCP con-
structs (34.3%) than for LC-DCP con-
structs (19.4%). A decrease in stiffness dur-
ing cyclic loading has been previously 
demonstrated in experimental studies on 
human cadaveric humeri, human cadaveric 
clavicles, canine cadaveric humeri, as well 
as fiberglass and epoxy composite humeral 
models (4, 23, 40, 41). The most important 
finding in the current study was that, after 
cyclic loading, the stability of the locked 
screw LCP constructs was significantly 
lower than that of unlocked LC-DCP con-
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structs. This decrease in stiffness during 
cyclic loading suggests that some degree of 
construct deformation had occured, poss-
ibly caused by a slippage at some interface 
within the system, such as the junction of 
the plate and bone, the screw and bone or 
the screw and plate. 

At present, LCP are frequently used in 
minimally invasive plate osteosynthesis for 
the treatment of comminuted diaphyseal 
long-bone fractures (42, 43). 

It has been proposed to treat diaphyseal 
long-bone fractures with flexible fixation 
using long plates and with the screws posi-
tioned at the plate extremities (7, 
44-48).Under these conditions, from a bio-
logical standpoint, the greater flexibility of 
LCP observed in our study could be con-
sidered as an advantage compared with 
LC-DCP. The benefits of flexible fixation in 
promoting bone healing have been well 
documented (7, 42, 47, 49, 50). In recent 
studies, it was found that fractures in dogs

that were treated by minimally invasive 
plate osteosynthesis, using flexible plates, 
healed faster than fractures stabilized with 
conventional plating (46, 51). However, 
this potential advantage must be balanced 
with the risk of plate failure as occurred in 
two LCP constructs in our study.

This ex vivo mechanical study has sev-
eral inherent limitations. The in vivo situ-
ation is far more complex than that of a ca-
daveric femur and biomechanical results 
cannot be directly extrapolated to the clini-
cal setting (30). When performing cyclic 
testing designated to resemble a clinical en-
vironment after fracture fixation, the load-
ing plane should be considered (44). As 
previously described, our setup used an 
offset axial loading to simulate loading of a 
plated femoral fracture (3, 32, 44). This 
testing methodology had the limitation of 
being isolated to a single plane, without 
considering more complex forces such as a 
combination of bending and torsional 

forces. In the diaphyseal region of the 
femur, however, axial and bending forces 
predominate and these forces were rep-
licated in our testing protocol (52, 53). 
Using uniform testing conditions allowed 
for valid comparisons between treatment 
groups.

As in other studies, in vivo factors, such 
as callus development, were not included in 
this model and were not addressed in the 
current study (28). Thus, our results, which 
suggest that the biomechanics of locked 
plate-screw constructs differ from those of 
traditional compression plates under cyclic 
loading, may not accurately reflect the dif-
ference in biomechanical behaviour be-
tween LCP and LC-DCP constructs on 
comminuted fractures of canine femora in
vivo.

In the stabilization of fractures of long 
bones, there is a compromise between flex-
ible fixation, which enhances callus 
formation and improves the healing pro-

Figure 6 Evolution of second stiffness for the locking compression plate and limited contact dynamic compression plate groups over the cycling period. 
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cess, and unstable fixation, which leads to 
non-union or implant failure (30). The 
main problem, when selecting a plate for 
osteosynthesis of comminuted fractures, is 
to determine how the mechanical environ-
ment of the fracture and implant failure 
can be controlled (30). In the current study, 
two LCP plates broke during fatigue testing 
whereas no failure occurred with the LC-
DCP constructs. It is possible that, in the 
case of these two LCP constructs, the flexi-
bility was too high and this threshold was 
crossed. Even though the LCP constructs 
were less stiff than the LC-DCP constructs 

in this ex vivo study, nothing suggests that 
the mechanical environment of the fracture 
would be unfavourable to bone healing. 

Interfragmentary motion plays a 
signifi-cant role in fracture healing. The 
identifi-cation of motion properties 
(translation, rotation, combined 
translation-rotation) is important since 
shear and tension-com-pression strain 
will condition the tissue

phenotype and healing patterns. It was par-
ticularly challenging to obtain real-time 
measurements of this evolving motion dur-
ing the fatigue tests. Despite this, our ex-
perimental data showed that the effective 
stiffness of LCP plate-bone constructs was 
lower than that of LC-DCP plate-bone 
constructs and that the maximal displace-
ment of the LCP group was higher than 
that of the LC-DCP group. As the bound-
ary conditions and loading conditions were 
identical for each tested construct, and 
since the plate-bone constructs were 
mounted in series with the caudal and dis-
tal intact bone parts, we could conclude 
that the interfragmentory translation mo-
tion due to compression was lower for the 
LC-DCP plate bone constructs.

Evaluation of the effects on fracture 
healing would require an in vivo study of 
bilateral osteotomies stabilized with either 
a LCP or a LC-DCP. However this would 
raise ethical and technical problems and 

involve limitations. Firstly, consideration of 
the pain associated with a bilateral osteot-
omy would be mandatory, and the clinical 
relevance of the surgical technique would 
need to be discussed. Secondly, bias would 
be introduced due to different weight bear-
ing on the two limbs during the healing 
period. 

Locking compression plates are widely 
used for minimally invasive plate osteosyn-
thesis. To our knowledge, no comparative 
studies of periosteal or bone vasculariz-
ation with standard and locked plates have 
been published. A few studies compared 
minimally invasive plate osteosynthesis 
and open reduction internal fixation on ca-
nine tibia, and radius and ulna fracture re-
pair, and proposed a benefit of the minim-
ally invasive plate osteosynthesis technique 
(46, 51). One cadaveric study demon-
strated preservation of the vasculature at 
the fracture site using 3.5 mm LCP and 
non-locking screws with the minimally in-
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Figure 7 Evolution of loads that induced a second stiffness for the locking compression plate and limited contact dynamic compression plate groups over 
the cycling period.



13. Strom AM, Garcia TC, Jandrey K, et al. In vitro 
mechanical comparison of 2.0 and 2.4 limited-
contact dynamic compression plates and 2.0 dy-
namic compression plates of different thicknesses. 
Vet Surg 2010; 39: 824-828.

14. Will R, Englund R, Lubahn J, et al. Locking plates 
have increased torsional stiffness compared to 
standard plates in a segmental defect model of 
clavicle fracture. Arch Orthop Trauma Surg 2011; 
131: 841-847.

15. Zahn K, Frei R, Wunderle D, et al. Mechanical 
properties of 18 different AO bone plates and the 
clamp-rod internal fixation system tested on a gap 
model construct. Vet Comp Orthop Traumatol 
2008; 21: 185-194.

16. Amato NS, Richards A, Knight TA, et al. Ex vivo 
biomechanical comparison of the 2.4 mm uni-
LOCK reconstruction plate using 2.4 mm locking 
versus standard screws for fixation of acetabular 
osteotomy in dogs. Vet Surg 2008; 37: 741-748.

17. Beingessner D, Moon E, Barei D, et al. Biomechan-
ical analysis of the less invasive stabilization sys-
tem for mechanically unstable fractures of the dis-
tal femur: Comparison of titanium versus stainless 
steel and bicortical versus unicortical fixation. J 
Trauma 2011; 71: 620-624.

18. Borgeaud M, Cordey J, Leyvraz PE, et al. Mechan-
ical analysis of the bone to plate interface of the 
LC-DCP and of the PC-FIX on human femora. In-
jury 2000; 31 Suppl 3: C29–36.

19. Bottlang M, Doornink J, Byrd GD, et al. A non-
locking end screw can decrease fracture risk 
caused by locked plating in the osteoporotic dia-
physis. J Bone Joint Surg Am 2009; 91: 620-627.

20. Bottlang M, Doornink J, Fitzpatrick DC, et al. Far 
cortical locking can reduce stiffness of locked plat-
ing constructs while retaining construct strength. J 
Bone Joint Surg Am 2009; 91: 1985-1994.

21. Celestre P, Roberston C, Mahar A, et al. Biomech-
anical evaluation of clavicle fracture plating tech-
niques: does a locking plate provide improved sta-
bility? J Orthop Trauma 2008; 22: 241-247.

22. Dalstrom DJ, Nelles DB, Patel V, et al. The protec-
tive effect of locking screw placement on nonlock-
ing screw extraction torque in an osteoporotic su-
pracondylar femur fracture model. J Orthop Trau-
ma 2012; 26: 523-527.

23. Davis C, Stall A, Knutsen E, et al. Locking plates in 
osteoporosis: a biomechanical cadaveric study of 
diaphyseal humerus fractures. J Orthop Trauma 
2012; 26: 216-221.

24. Doornink J, Fitzpatrick DC, Boldhaus S, et al. Ef-
fects of hybrid plating with locked and nonlocked 
screws on the strength of locked plating constructs 
in the osteoporotic diaphysis. J Trauma 2010; 69: 
411-417.

25. Estes C, Rhee P, Shrader MW, et al. Biomechanical 
strength of the Peri-Loc proximal tibial plate: a 
comparison of all-locked versus hybrid locked/
nonlocked screw configurations. J Orthop Trauma 
2008; 22: 312-316.

26. Forward DP, Doro CJ, O'Toole RV, et al. A bio-
mechanical comparison of a locking plate, a nail, 
and a 95 degrees angled blade plate for fixation of 
subtrochanteric femoral fractures. J Orthop Trau-
ma 2012; 26: 334-340.

27. Zlowodzki M, Williamson S, Cole PA, et al. Bio-
mechanical evaluation of the less invasive stabili-
zation system, angled blade plate, and retrograde 

support was received for the implants from 
Depuy Synthes.

Conflict of interest 

There is no conflict of interest.

References

1. Unger M, Montavon PM, Heim UF. Classification 
of fractures of long bones in the dog and cat: Intro-
duction and clinical application. Vet Comp Or-
thop Traumatol 1990; 3: 41–50.

2. Braden TD, Eicker SW, Abdinoor D, et al. Charac-
teristics of 1000 femur fractures in the dog and cat. 
Vet Comp Orthop Traumatol 1995; 8: 203-209.

3. Aguila AZ, Manos JM, Orlansky AS, et al. In vitro 
biomechanical comparison of limited contact dy-
namic compression plate and locking compression 
plate. Vet Comp Orthop Traumatol 2005; 18: 
220-226.

4. Filipowicz D, Lanz O, McLaughlin R, et al. A bio-
mechanical comparison of 3.5 locking compres-
sion plate fixation to 3.5 limited contact dynamic 
compression plate fixation in a canine cadaveric 
distal humeral metaphyseal gap model. Vet Comp 
Orthop Traumatol 2009; 22: 270-277.

5. Fulkerson E, Egol KA, Kubiak EN, et al. Fixation of 
diaphyseal fractures with a segmental defect: a bio-
mechanical comparison of locked and conven-
tional plating techniques. J Trauma 2006; 60: 
830-835.

6. Gardner MJ, Brophy RH, Campbell D, et al. The 
mechanical behavior of locking compression 
plates compared with dynamic compression plates 
in a cadaver radius model. J Orthop Trauma 2005; 
19: 597–603.

7. Perren SM. Evolution of the internal fixation of 
long bone fractures. The scientific basis of biologi-
cal internal fixation: choosing a new balance be-
tween stability and biology. J Bone Joint Surg Br 
2002; 84: 1093-1110.

8. Blake CA, Boudrieau RJ, Torrance BS, et al. Single 
cycle to failure in bending of three standard and 
five locking plates and plate constructs. Vet Comp 
Orthop Traumatol 2011; 24: 408-417.

9. Catanzarite J, Alan R, Baig R, et al. Biomechanical 
testing of unstable humeral shaft fracture plating. J 
Surg Orthop Adv 2009; 18: 175-181.

10. Florin M, Arzdorf M, Linke B, et al. Assessment of 
stiffness and strength of 4 different implants avail-
able for equine fracture treatment: a study on a 20 
degrees oblique long-bone fracture model using a 
bone substitute. Vet Surg 2005; 34: 231-238.

11. Snow M, Thompson G, Turner PG. A mechanical 
comparison of the locking compression plate 
(LCP) and the low contact-dynamic compression 
plate (DCP) in an osteoporotic bone model. J Or-
thop Trauma 2008; 22: 121-125.

12. Sod GA, Mitchell CF, Hubert JD, et al. In vitro bio-
mechanical comparison of locking compression 
plate fixation and limited-contact dynamic com-
pression plate fixation of osteotomized equine 
third metacarpal bones. Vet Surg 2008; 37: 
283-288.

Figure 8 Photograph showing reordering of 
plate-bone contacts with changes in effective 
plate length. During loading, plate bending 
 increased the contact area between plate and 
bone close to the proximal or distal femoral gap 
and thereby decreased the working length of the 
plate.

vasive plate osteosynthesis technique as 
compared to open reduction internal fix-
ation (50). Bone healing was shown to be 
faster when the minimally invasive plate 
osteosynthesis technique, as compared 
with open reduction techniques, was used 
to treat tibia fractures in the dog (42).

The suggested benefits of locking plate 
technology in improving the biology of 
fracture healing and reducing disruption of 
the soft-tissue envelope and the periosteal 
vascular supply, as a result of minimally in-
vasive plating have to be balanced with the 
mechanical behaviour of such plates.

Acknowledgements

The authors wish to express thanks to 
DePuy Synthes for their help in the realiz-
ation of this work. No funding was received 
in relation to this research. Partial 
financial 



intramedullary nail for the internal fixation of dis-
tal femur fractures. J Orthop Trauma 2004; 18: 
494–502.

28. Hammel SP, Pluhar GE, Novo RE, et al. Fatigue 
analysis of plates used for fracture stabilization in 
small dogs and cats. Vet Surg 2006; 35: 573-578.

29. Rose BW, Pluhar GE, Novo RE, et al. Biomechan-
ical analysis of stacked plating techniques to stabil-
ize distal radial fractures in small dogs. Vet Surg 
2009; 38: 954-960.

30. Stoffel K, Dieter U, Stachowiak G, et al. Biomech-
anical testing of the LCP - how can stability in 
locked internal fixators be controlled? Injury 2003; 
34 Suppl 2: B11–9.

31. O'Toole RV, Andersen RC, Vesnovsky O, et al. Are 
locking screws advantageous with plate fixation of 
humeral shaft fractures? A biomechanical analysis 
of synthetic and cadaveric bone. J Orthop Trauma 
2008; 22: 709-715.

32. Goh CS, Santoni BG, Puttlitz CM, et al. Compari-
son of the mechanical behaviors of semicontoured, 
locking plate-rod fixation and anatomically con-
toured, conventional plate-rod fixation applied to 
experimentally induced gap fractures in canine fe-
mora. Am J Vet Res 2009; 70: 23-29.

33. Lakes RS. Viscoelastic measurement techniques. 
Rev Sci Instrum 2004; 75: 797–810.

34. Turner CH, Burr DB. Basic biomechanical 
measurements of bone – a tutorial. Bone 1993; 14: 
595–608.

35. Dueland RT, Vanderby R, McCabe RP. Fatigue 
study of six and eight mm diameter interlocking 
nails with screw holes of variable size and number. 
Vet Comp Orthop Traumatol 1997; 10: 194-199.

36. Boutros CP, Trout DR, Kasra M, et al. The effect of 
repeated freeze-thaw cycles on the biomechanical 

properties of canine cortical bone. Vet Comp Or-
thop Traumatol 2000; 13: 59–64.

37. Sanders R, Haidukewych GJ, Milne T, et al. Mini-
mal versus maximal plate fixation techniques of 
the ulna: the biomechanical effect of number of 
screws and plate length. J Orthop Trauma 2002; 
16: 166-171.

38. Fitzpatrick DC, Doornink J, Madey SM, et al. 
Relative stability of conventional and locked plat-
ing fixation in a model of the osteoporotic femoral 
diaphysis. Clin Biomech 2009; 24: 203-209.

39. Caja V, Kim W, Larsson S, et al. Comparison of the 
mechanical performance of three types of external 
fixators: linear, circular and hybrid. Clin Biomech 
1995; 10: 401-406.

40. Demirhan M, Bilsel K, Atalar AC, et al. Biomech-
anical comparison of fixation techniques in mid-
shaft clavicular fractures. J Orthop Trauma 2011; 
25: 272-278.

41. Gardner MJ, Griffith MH, Demetrakopoulos D, et 
al. Hybrid locked plating of osteoporotic fractures 
of the humerus. J Bone Joint Surg Am 2006; 88: 
1962-1967.

42. Guiot LP, Dejardin LM. Prospective Evaluation of 
minimally invasive plate osteosynthesis in 36 non-
articular tibial fractures in dogs and cats. Vet Surg 
2011; 40: 171-182.

43. Haaland PJ, Sjostrom L, Devor M, et al. Appendi-
cular fracture repair in dogs using the locking 
compression plate system: 47 cases. Vet Comp Or-
thop Traumatol 2009; 22: 309-315.

44. Chao P, Conrad BP, Lewis DD, et al. Effect of plate 
working length on plate stiffness and cyclic fatigue 
life in a cadaveric femoral fracture gap model sta-
bilized with a 12-hole 2.4 mm locking compres-
sion plate. BMC Vet Res 2013; 9: 125-131.

45. Kubiak EN, Fulkerson E, Strauss E, et al. The evol-
ution of locked plates. J Bone Joint Surg Am 2006; 
88 Suppl 4: 189–200.

46. Pozzi A, Risselada M, Winter MD. Assessment of 
fracture healing after minimally invasive plate os-
teosynthesis or open reduction and internal fix-
ation of coexisting radius and ulna fractures in 
dogs via ultrasonography and radiography. J Am 
Vet Med Assoc 2012; 241: 744-753.

47. Sarrau S, Meige F, Autefage A. Treatment of femo-
ral and tibial fractures in puppies by elastic plate 
osteosynthesis – A review of 17 cases. Vet Comp 
Orthop Traumatol 2007; 20: 51-58.

48. Wagner M. General principles for the clinical use 
of the LCP. Injury 2003; 34 Suppl 2: B31–42.

49. Cabassu JP. Elastic plate osteosynthesis of femoral 
shaft fractures in young dogs. Vet Comp Orthop 
Traumatol 2001; 14: 40-45.

50. Garofolo S, Pozzi A. Effect of plating technique on 
periostal vasculature of the radius in dogs: a ca-
daver study. Vet Surg 2013; 42: 255-261.

51. Baroncelli AB, Peirone B, Winter MD, et al. Retro-
spective comparison between minimally invasive 
plate osteosynthesis and open plating for tibial 
fractures in dogs. Vet Comp Orthop Traumatol 
2012; 25: 410-417.

52. Palierne S. Quantification objective de la géométrie 
et du comportement biomécanique du fémur dans 
l'espèce canine: application à quatre groupes mor-
phologiques [Objective quantification of geometry 
and biomechanical behavior of femur in canine 
species: application to four mophological groups] 
[PhD Dissertation]. Toulouse: Toulouse; 2006.

53. Taylor SJ, Walker PS. Forces and moments teleme-
tered from two distal femoral replacements during 
various activities. J Biomech 2001; 34: 839-848.


