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A numerical investigation of normal-mode perturbations of a two-dimensional periodic
finite-amplitude gravity wave propagating on a vertically sheared current of constant
vorticity is considered. For this purpose, an extension of the method developed by
Rienecker & Fenton (1981) is used for the numerical computations of the finite amplitude
waves on a linear shear current. This method enables to compute accurately waves with or
without critical layers and pressure anomalies. The numerical results of the linear stability
analysis extend the weakly nonlinear, analytical results of Thomas et al. (2012) to fully
nonlinear waves. In particular, the restabilization of the Benjamin-Feir modulational
instability, whatever the depth, for an opposite shear current is confirmed. For these
side-band instabilities, the numerical results show some deviations with the weakly
nonlinear theory as the wave steepness of the basic wave and vorticity are increased.
Besides the modulational instabilities new instability bands corresponding to quartet and
quintet instabilities, which are not side-band disturbances, are discovered. The present
numerical results show that with opposite shear currents increasing the shear reduces the
growth rate of the most unstable side-band instabilities, but enhances the growth rate
of these quartet instabilities, which eventually dominate the Benjamin-Feir modulational
instabilities.

Key words:

1. Introduction

The huge literature on free surface water waves is mainly based on the assumption of
irrotational flows. Nonetheless, there are many circumstances under which one cannot
ignore the rotational character of the flow, namely in the presence of an underlying
vertically sheared current. For example, on deep water when a thin shear layer is
generated by wind stress, or in coastal zones where the vertical profiles of mean velocity
are typically determined by bottom friction and also surface wind stress. For a review
on interaction of waves with vertically sheared currents occurring in nature, one can cite
Peregrine (1976), Jonsson (1990) and Thomas & Klopman (1997).
Periodic gravity waves propagating steadily on a rotational current were studied

† Email address for correspondence: marc.francius@mio.osupytheas.fr

Page 1 of 29



2 M. Francius and C. Kharif

by many authors, either mathematically or analytically and numerically. Since the
pioneering work of Constantin & Strauss (2004), there is a huge literature that concerns
the formulation and the mathematical properties of steady periodic surface water waves
with vorticity (existence, unicity, bifurcation). For a review on the recent rigorous results,
the reader can refer to Constantin & Varvaruca (2011) and Kozlov & Kuznetsov (2014).
Among the authors using asymptotic methods or purely numerical methods, on can cite
Tsao (1959), Dalrymple (1974), Brevik (1979), Simmen & Saffman (1985), Teles da Silva
& Peregrine (1988) , Kishida & Sobey (1988), Vanden-Broeck (1996), Swan & James
(2001), Ko & Strauss (2008), Pak & Chow (2009), Cheng, Cang & Liao (2009) , Moreira
& Chacaltana (2015), Hsu, Francius, Montalvo & Kharif (2016), Ribeiro-Jr, Milewski &
Nachbin (2017).
Although the recent important theoretical developments have confirmed that periodic

waves can exist over flows with arbitrary vorticity, it appears that their stability to
infinitesimal disturbances and their subsequent nonlinear evolution have not been studied
extensively so far. In fact, even in the rather simple case of uniform vorticity (linear
shear), few papers have been published on the effect of a vertical shear current on the
side-band instability of a uniform wave train over finite depth. It is noted here that
this instability, which is related to a four-wave resonance (between two small sidebands
and two quanta of the strong carrier wave), is often referred in the literature as the
modulational instability or Benjamin-Feir instability (provided the modulation frequency
is small as compared to the carrier frequency).
Under the weakly nonlinear assumption, Johnson (1976) studied the slow modulation

of a harmonic wave moving on an arbitrary shear flow, in two dimensions only. Using
the method of multiple scales he obtained a two-dimensional nonlinear Schrödinger
equation (NLS equation), from which a condition of linear stability of its plane wave
solution (which correspond to the Stokes wave) was proposed. Using a similar approach
and extending the analysis to three-dimensional disturbances, Oikawa, Chow & Benney
(1987) obtained a set of envelope evolution equations to study the effect of shear on the
directional dependence of the modulational instabilities of weakly nonlinear wave packets.
They also derived an analytical expression of the linear growth rate of three-dimensional
modulational instabilities, and quantitative results were reported only in the simple case
of linear shear. Although the numerical results of Oikawa et al. (1987) suggest that the
shear can modify significantly the three-dimensional characteristics of the modulational
instabilities of the plane wave solution, it is emphasized here that their parameterization
of the undisturbed linear shear flow in terms of one single dimensionless parameter does
not enable to discriminate between the effects of a uniform current (equals to the value
of the current at the surface) and those of the vorticity. In both papers the resulting
third-order envelope equations possess coefficients that depend in a complicated way on
the shear, and are thus not practical to use. Even in the simple case of a linear shear
current, some integrals require numerical evaluation. More significantly, these analytical
results are obtained with the assumption that no critical layer can occur, a crucial feature
which is known to alter the kinematic nature of the wave motion, either it is a periodic
wave or a solitary wave as shown by Miroshnikov (2002). These approaches are therefore
limited to some regions of the parameter space, defined in the present work by the wave
steepness ε, the dimensionless depth kh and a dimensionless parameter (to be defined
later) characterizing the (constant) vorticity of the background shear flow. Here k and h
are the carrier wavenumber and depth, respectively.
For flows with constant vorticity, Li, Hui & Donelan (1987) studied the two-dimensional

side-band instability of a Stokes wave train in deep water. They also obtained an NLS
equation for the amplitude modulations, but the coefficient of the nonlinear term was er-
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roneous as noted by Baumstein (1998). In fact, the latter author investigated the effect of
piecewise-linear velocity profiles on the side-band instability of a finite-amplitude gravity
wave in deep water. Extension of these studies to the case of finite depth was carried out
by Thomas, Kharif & Manna (2012), for two dimensions only, by using the same method
of multiple scales but stemming from a different formulation of the governing equations.
The resulting coefficients of their NLS equation are given explicitly as a function of the
vorticity and depth of shear layer. Explicit analytical expressions are also given for several
characteristics of the two-dimensional modulational instabilities of the Stokes wave. In
this paper, it is found that vorticity modifies significantly the modulational instability
properties of weakly nonlinear plane waves, namely the growth rate and bandwidth. At
third order, the paper also shows the importance of the nonlinear coupling between the
mean flow induced by the modulation and the vorticity. Furthermore, it is shown that
the plane wave solution can be linearly stable to modulational instability for an opposite
shear current (positive vorticity in the present work) independently of the dimensionless
depth parameter kh. For kh > 1.363, in practice, this important property means that
large vorticities can suppress the modulational instability in both following and opposite
shear currents with constant vorticity.

As pointed out by one referee, Hur & Johnson (2015) have recently studied the
modulational stability and instability of periodic traveling waves on a linear shear current
in finite depth, using the so-called vorticity-modified Whitham equation that combines
full linear dispersion relation of water waves and weak nonlinearity stemming from
an approximation of the fully nonlinear ”breaking operator” of shallow water theory.
For any constant vorticity they have shown that periodic traveling gravity waves (with
sufficiently small amplitudes) are spectrally unstable to long wavelengths perturbations
if kh is greater than a critical value that depends on the vorticity, and stable otherwise,
similar to the zero vorticity setting. For irrotational gravity waves, however, the complete
restabilization to the modulational instability is found to occur when kh becomes less
than 1.146, which differs from the known threshold value 1.363. In that respect, it was
shown in Thomas et al (2012) that the introduction of constant vorticity does not modify
this critical value, which is obtained in the limit of zero vorticity. Despite this failure, the
work of Hur & Johnson (2015) confirms that sufficiently large vorticities can suppress
the modulational instability in the case of following shear currents.

To the best of our knowledge, there do not appear to have been many attempts, with
extensive use of numerical techniques, on the study of the stability of finite amplitude
gravity waves on currents with vertical shear. Following the general scheme, pioneered
by Longuet-Higgins (1978a) and Longuet-Higgins (1978b), Okamura & Oikawa (1989)
found three kinds of instabilities: two of them related to four- and five-wave resonant
interactions and a third type called rotational instability, essentially three-dimensional,
due to the effects of a strong nonlinear coupling between the mean-flow response and the
fundamental wave, as discovered first by Chow & Benney (1986). These results have been
compared with those for the corresponding irrotational wave, to show that increasing the
shear yields larger growth rates for each most unstable mode associated with the four-
wave and five-wave resonances. Though, for the first time, the rotational instabilities
have been captured numerically from the Euler equations for finite amplitude waves
and constant vorticity, the whole stability domain could not be examined owing to poor
convergence property of their numerical method. Like in many published works, it is
noted here that the same dimensionless parameter is used for both the surface current
and the constant shear, which gives rise to some ambiguity as already mentioned.

Recently, in the same vein, numerical simulations of the Euler equations and of some
high-order approximation, for two-dimensional rotational flows, have been used to analyze
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the nonlinear stability of finite amplitude periodic waves, initially weakly modulated due
to the presence of side-band disturbances. Nwogu (2009) considered an exponentially
sheared current and reported few results on the long-time evolution of modulational
instabilities of periodic gravity waves in deep water. His numerical results demonstrated
that the mean flow vorticity can significantly affect the growth rate of extreme waves in
narrow band sea states. For flows with constant vorticity, Choi (2009) used a conformal
mapping method to obtain new evolution equations, which are solved numerically using
a pseudo-spectral method to study the Benjamin-Feir instability of a modulated wave
train in both positive and negative shear currents. For fixed wave steepness and (unstable)
disturbances, Choi (2009) found that the envelope of the modulated wave train grows
faster in a positive shear current and slower in a negative one, in comparison with the
irrotational case. In contrast to the above mentioned studies on the stability problem,
it is emphasized here that both Nwogu (2009) and Choi (2009) have parameterized
the background current with two different dimensionless parameter, one for the surface
current and one for the vorticity.
In this work we consider the two-dimensional linear stability analysis of finite amplitude

gravity waves propagating steadily on the free surface of a fluid with constant vorticity
and finite depth. As we shall see, the approximation of constant vorticity is twofold. Not
only it simplifies considerably the mathematical analysis of two dimensional steady-state
waves, which are then necessarily irrotational perturbations of the background uniform
shear flow (as a consequence of Kelvin’s theorem), but it also allows a straightforward
extension of some existing numerical methods, originally dedicated to the study of
irrotational finite amplitude waves on finite depth.
The paper is structured as follows. In section 2 we formulate the systems of equations

both for the determination of steady periodic waves on a linear shear current, and for
the evolution of superposed small disturbances, considered in a frame moving with the
basic state. By introducing a velocity potential function for the (necessary) disturbances
and using a normal mode analysis, we formulate the eigenvalue problem to be solved. In
section 3, we present the numerical methods used in this study and the results of their
validation against available numerical and analytical results. In section 4, the results
for subharmonic perturbations are presented, first, for the side-band instability (long-
wavelength disturbances) and, then, for the shorter disturbances involved in quartet and
quintet resonances with the basic wave. We summarize our conclusions in section 5.

2. Mathematical formulation

2.1. Euler equations and periodic wave solutions

The fluid is assumed to be inviscid, the flow is incompressible, the water depth is
taken to be finite and the effect of surface tension is neglected. In the absence of waves,
we shall assume a basic parallel shear current UB(z) of constant vorticity (−Ω0), which
varies linearly in the vertical direction and vanishes at the undisturbed free surface or
mean water level (z = 0).
For periodic 2D waves of permanent form on a linear shear current it is convenient

to consider a co-ordinate system (x, z) moving with the wave speed c > 0, in which the
combined wave-current flow is steady. From the condition of incompressibility we can
then introduce a stream function ψ(x, z), unique up to an additive constant, such that
the total relative fluid velocities are given by

u = UB(z)− c+ ũ =
∂ψ

∂z
, w = w̃ = −∂ψ

∂x
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2D instabilities of surface waves on lineaar shear 5

where the tilde quantities are perturbations due to the waves. We note that by defining
UB(z) = Ω0z, the focus is put on the influence of vorticity on the combined wave-current
system rather than those of uniform current (Doppler effect).
As is well known for two-dimensional incompressible flows, the vorticity vector is

perpendicular to the plane of the motion and, in the absence of vortex stretching, the
vorticity of a fluid particle, ω = (∂xw − ∂zu), is constant along a streamline. Since in the
moving frame of reference the combined wave-current flow of constant vorticity is steady,
we have

∂2ψ

∂x2
+
∂2ψ

∂z2
= Ω0 (2.1)

as the governing equation to be satisfied throughout the fluid, namely −h < z < η(x)
where h is the mean depth and z = η(x) represents the unknown position of the free
surface relatively to the mean surface level z = 0.
The kinematic boundary conditions, which express that both the free surface and the

rigid plane bed are streamlines, can be written as

ψ = 0 on z = −h (2.2)

ψ = −Q on z = η (2.3)

where Q represents the total volume flow rate underneath the wave (per unit span).
Using the Bernoulli equation at the free surface and setting the surface pressure to zero
without loss of generality give the dynamic free surface condition,

gη +
1

2

(

u2 + w2
)

= R on z = η (2.4)

where R is a Bernoulli constant of the flow, which corresponds physically to the specific
energy at the free surface (in the moving frame).
The values of the constants Q and R are unknowns and need to be determined for

solutions ψ(x, z) and η(x) that are periodic in x with finite wave length λ = 2π/k, where
k is the wave number. To guarantee a unique solution, when it exists, the wave height
H is specified as

η(0)− η(λ/2) = H (2.5)

where η(0) and η(λ/2) are the crest and trough elevation respectively, and we impose
the further condition of zero mean level condition,

∫ λ

0

ηdx = 0 (2.6)

Solutions for steep waves on a linear shear current are not currently obtainable ana-
lytically, and numerical approaches are necessary to solve the above nonlinear boundary-
value problem. In this work we use a simple extension of the Fourier approximation
method, originated with Rienecker & Fenton (1981) for irrotational waves, where a
Fourier series is assumed only for the stream function as

ψ(x, z) =
Ω0

2

(

z2 − h2
)

− c (z + h) + α

∞
∑

j=1

Bj
sinh jk (h+ z)

cosh jkh
cos jkx (2.7)

Solutions with this form satisfy automatically the Poisson equation and the kinematic
boundary condition at the bottom, as well as the periodicity condition. In the above
expression α =

√

g/k3 has been introduced for convenience, as we shall work with
dimensionless values, so that the coefficients Bj are dimensionless. When a solution exists
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6 M. Francius and C. Kharif

for given wave height H, mean depth h and constant vorticity −Ω0, the coefficients Bj ,
the wave speed c and the unknown position of the free surface η(x) can be determined
numerically, after truncation of the Fourier series and a collocation method as described
in section 3.

2.2. Linear stability analysis

By confining attention to two-dimensional flows, it should be realized that any pertur-
bations of a flow with constant vorticity (background linear shear current), either small
or of finite amplitude, are necessarily irrotational motions, as a consequence of Kelvin’s
circulation theorem. Hence, in the frame moving with the wave speed c, it follows that
we can introduce a generalized velocity potential φ(x, z, t), which satisfies the relations

φx = ψz −Ω0 (z + h) , φz = −ψx (2.8)

to guarantees that φ is the harmonic conjugate of the function ψh = ψ(x, z, t)− 1

2
Ω0(z+

h)2.
The unsteady water wave problem can then be reformulated in the moving frame and,

in terms of ψ and φ, the governing equations are given by

ψxx + ψzz = Ω0, −h < z < η (2.9)

ψx = 0 on z = −h (2.10)

ηt + ηxψz + ψx = 0 on z = η(x, t) (2.11)

φt + gη −Ω0ψ +
1

2

(

ψ2
z + ψ2

x

)

= f(t) +
1

2
c2 −Ω0ch on z = η(x, t) (2.12)

where f(t) is an arbitrary function of time, which can be set to zero without loss of
generality or absorbed in the definition of either φ or ψh. If the motion is steady, as
in the case of waves of permanent form, the terms with a time derivative disappear
and we recover the governing equations of the steady water wave problem, as it has
been presented in the previous section. Note that in this case the kinematic conditions
(2.10) and (2.11) both express that ψ is constant at the bottom and at the free surface,
respectively.

To consider the stability of these steady waves to infinitesimal two-dimensional distur-
bances, we let

η = η̄(x) + η̃(x, t), ψ = ψ̄(x) + ψ̃(x, t) (2.13)

where the quantities with an overbar correspond to the periodic wave solution and the
quantities with the tilde denote small perturbations, i.e. |η̃| ≪ |η̄| and |ψ̃| ≪ |ψ̄|. After
linearization of the governing equations (2.9-2.12) we obtain

ψ̃xx + ψ̃zz = 0, −h < z < η̄ (2.14)

ψ̃x = 0 on z = −h (2.15)

η̃t + ψ̄z η̃x + η̄xψ̃z +
(

ψ̄zz η̄x + ψ̄xz

)

η̃ + ψ̃x = 0 on z = η̄(x) (2.16)

φ̃t +
(

g + ψ̄xψ̄xz + ψ̄zψ̄zz −Ω0ψ̄z

)

η̃ −Ω0ψ̃ + ψ̄zψ̃z + ψ̄xψ̃x = 0 on z = η̄(x) (2.17)

By using the Cauchy-Riemann relations (2.8) it is easy to check that without vorticity
(Ω0=0) the above equations reduce to those derived by McLean (1982).
Since the linearized equations (2.14-2.17) have coefficients that are periodic in x, it

follows from Floquet or Bloch wave theory that its general solution can be represented

Page 6 of 29



2D instabilities of surface waves on lineaar shear 7

as a linear combination of normal modes in the form

η̃(x, t) = e−iγteipx
∞
∑

j=−∞

aje
ijx (2.18)

ψ̃(x, z, t) = e−iγteipx
∞
∑

j=−∞

bje
ijx sinh [kj(z + h)]

cosh(kjh)
(2.19)

φ̃(x, z, t) = e−iγteipx
∞
∑

j=−∞

cje
ijx cosh [kj(z + h)]

cosh(kjh)
(2.20)

where kj = |p + j|, p an arbitrary real number and γ is an unknown, possibly complex,
eigenvalue to be determined by the requirement that the linearized surface equations
(2.16) and (2.17) have a non trivial solution. Here we have taken the gravitational
acceleration g = 1 and the unperturbed wavelength λ = 2π, which is equivalent to
non-dimensionalizing the problem with the spatial and temporal scale lref = λ/(2π) and
tref =

√
gk (see section 3.1 for more details).

The real physical disturbance, which corresponds to the real part of the above expres-
sions, are not strictly periodic in x unless p is a rational number. When p is an integer (or
p = 0 without loss of generality), the wavelength of the disturbance is the same as that
of the undisturbed wave (λ = 2π) and the disturbance is called superharmonic. When
p is not an integer, the disturbance contains components with wavelength greater than
2π and it is called a subharmonic perturbation. If γ is real, then the disturbance is said
to be stable, whereas if γ is complex, then the disturbance or its complex conjugate is
unstable.
With this normal mode decomposition and the condition of irrotationality for the

disturbances, namely φ̃x = ψ̃z and φ̃z = −ψ̃x, we obtain the following relations between
the sets of coefficients bj , cj

cj = sign (p+ j) bj for |j| 6 ∞, (2.21)

Using this relation and substituting the normal mode decomposition of the general
solution into (2.16) and (2.17), we obtain the following system of equations

G(x)

∞
∑

j=−∞

aje
ijx +

∞
∑

j=−∞

Hj(x)bje
ijx = iγ

∞
∑

j=−∞

Fj(x)bje
ijx (2.22)

∞
∑

j=−∞

Kj(x)aje
ijx +

∞
∑

j=−∞

Lj(x)bje
ijx = iγ

∞
∑

j=−∞

aje
ijx (2.23)

for 0 6 x 6 2π, where

G(x) = g + ψ̄xψ̄xz + ψ̄zψ̄zz −Ω0ψ̄z (2.24)

Hj(x) =

[

i (p+ j) ψ̄x −Ω0

]

sinh [kj (h+ η̄)] + kjψ̄zcosh [kj (h+ η̄)]

cosh (kjh)
(2.25)

Fj(x) = − i sign (p+ j) cosh [kj (h+ η̄)]

cosh (kjh)
(2.26)

Kj(x) = i (p+ j) ψ̄z + ψ̄zz η̄x + ψ̄xz (2.27)

Lj(x) =
i (p+ j) sinh [kj (h+ η̄)] + kj η̄xcosh [kj (h+ η̄)]

cosh (kjh)
(2.28)
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The system of equations (2.22)-(2.23) can be interpreted as a generalized eigenvalue
problem for the complex eigenvalue γ and the coefficients aj and bj as the eigenfunctions.
It is important to note that there is a degeneracy in the dependence of the eigenfunction
on p, since p can be changed to p + n, where n is an integer, without changing the
eigenfunction provided the coefficients aj and bj are relabeled and changed to aj−n and
bj−n, accordingly. Thus, in principle, there would be no loss of generality in confining
ourselves to the range 0 6 p < 1, which does not mean that our analysis is confined to
this range.

2.3. Linear resonant conditions

In the limiting case where the undisturbed state has zero wave height, namely a linear
shear current with a flat free surface, the analytical solutions of the eigenvalue problem
are given by

γ±j (p) = sign(p+ j)
[

−kjc+ ω±

j

]

(2.29)

ω±

j (p) = −Ω0tanh (kjh)

2
±

√

gkjtanh (kjh) +

(

Ω0tanh (kjh)

2

)2

(2.30)

where j = 0,±1,±2, · · · is a mode number. Since the flat surface is regarded here as the
limit of steady waves on a linear shear current with the waveheight approaching zero, the
eigenvalues contain the wave speed c = ω/k. The corresponding eigenvectors are such
that only those components with suffices p+ j are nonzero. All the eigenvalues (2.29) lie
on the real axis and so the flat surface is spectrally stable. Thus the eigensets represent
infinitesimal waves on top of a flat surface, and the plus and minus sign designates
copropagating and contrapropagating disturbances relative to the undisturbed flow.

Like in the irrotational case, it is expected that for small values of the wave steepness
instability bands may happen for modes with p values near the points p where two
eigenvalues for zero amplitude are equal,

γ±j1(p) = γ±j2(p) (2.31)

for some integers j1 and j2. Since we can add any integer to p, only the difference between
j1 and j2 matters and the above condition is usually separated into two classes, depending
upon whether j1 − j2 is even or odd.

• For the class I, j1 − j2 = 2m is even with j1 = m and j2 = −m, and it is found that
for p > 0 the following possibilities exist

γ+m(p) = γ−−m(p) m > 1 (2.32)

• For the class II, j1 − j2 = 2m + 1 is odd with j1 = m and j2 = −m − 1, and it is
found that for p > 0 the following possibilities exist

γ+m(p) = γ−
−m−1(p) m > 0 (2.33)

It is noteworthy that there are no collisions with m > 1 between modes propagating in
the same direction. The collisions of the eigenvalues can also be interpreted as resonances
of two infinitesimal waves with the base flow, when considered from the ”original” fixed
frame of reference. These resonant conditions can be written for the Class I as

ω+
m + ω−

−m = 2mω (2.34)

km + k−m = 2mk (2.35)
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2D instabilities of surface waves on lineaar shear 9

and for the Class II as

ω+
m + ω−

−m−1 = (2m+ 1)ω (2.36)

km + k−m−1 = (2m+ 1)k (2.37)

In this study we have considered the linear stability of the so-called forward mode, for
which the wave speed always exceeds the free surface speed, hence c > 0 here. As the
vorticity parameter varies, the resonances loci (2.32) and (2.33) change as illustrated in
Figure 1 for m = 1, 2 and kh = 10. For large positive values of Ω, the resonances loci
correspond to integer values of p, which are associated with superharmonic disturbances.
Whatever the type of disturbances, there is no coupling between the disturbances and
the undisturbed flow at zero wave height. However, it appears that the linear resonant
conditions (2.32) and (2.33) correspond to collisions of two eigenvalues with opposite
signature or sign of excess total energy, when considered from the moving frame in which
the basic state is a steady flow.
To see this we first compute in the rest frame the excess total energy, which is defined

as the difference between the total energy of moving fluid with a wave perturbation and
without the perturbation. From the analytical linear solutions for sinusoidal waves on
a linear shear current, we can easily show that for a wave disturbance with (intrinsic)
frequency ω̃ = ω±

j and wave number κ = p + j, the excess total energy is given, up to
second order, by

E =
ρgã2

2κtanhκh
ω̃

(

ω̃ +
1

2
Ω0tanhκh

)

(2.38)

where ã denotes the perturbation amplitude. Then, using the invariance of wave action
A = E/ω through Galilean transform we can deduce that, in a frame moving uniformly
at a velocity c, the excess total energy is

E′ =
ρgã2

2tanhκh

(

ω̃ +
1

2
Ω0tanhκh

)(

ω̃

κ
− c

)

(2.39)

Equation (2.39) shows that the excess energy is proportional both to the pseudo frequency
ω̃+ 1

2
Ω0tanhκh and the apparent frequency ω̃−cκ. For a copropagating perturbation, the

pseudo frequency is always positive and we see that the excess energy may be negative if
the relative frequency is negative, namely if the perturbation is moving slower than the
linear basic wave. In contrast for co-propagating perturbations going faster (ω̃/k > c > 0)
and for counter-propagating disturbances (ω̃/k < 0), the excess energy is always positive.

3. Numerical methods

The numerical calculations consist in two parts, determination of the unperturbed
basic flow η̄, ψ̄ and subsequent solution of the eigenvalue problem as a function of the
mode wavenumber p. In this section, we present the numerical methods which have been
used in this study and the results of their validation against available numerical and
analytical results.

3.1. Computation of steady waves

To calculate the unperturbed wave, the kinematic and dynamic surface conditions
(2.3-2.4) are collocated at 2N points equally distributed over one wavelength, though by
symmetry only N +1 points from wave crest to wave trough, will be considered. Letting
ηi = η(xi) where xi = (i − 1)dx, i = 1, ..., N + 1 and dx = λ/2N , the above equations
yield 2N + 2 equations for the 2N + 4 variables [η1, ..., ηN+1, B1, ..., BN , c, R,Q] for a
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Ω

p

Figure 1. Resonances loci p as a function of Ω for µ = 10 and different classes: ——, Class
I(m = 1); - - -, Class II(m = 1); — ·—, Class I(m = 2); · · · · · · , Class II(m = 2).

given value h of the mean depth. The required two additional equations are (2.5) and
(2.6), which specify the wave parameters.
For numerical purposes, it is convenient to work with dimensionless variables. Hence

by choosing the reference scales, as in the (irrotational) deep water case,

lref =
1

k
, tref =

1√
gk
, cref =

√

g

k

the dimensional variables can be scaled as

η′ = kη, ψ′ =

√

k3

g
ψ, c′ =

√

k

g
c, R′ =

k

g
R, Q′ =

√

k3

g
Q, Ω′ =

Ω0√
gk

and the dimensionless equations to be solved become, omitting the primes

Ω

2

(

η2i − µ2
)

− c (µ+ ηi) +

N
∑

j=1

Bj
sinh j (µ+ ηi)

cosh jµ
cos jkxi +Q = 0 (3.1)

ηi +
1

2





N
∑

j=1

jkBj
sinh j (µ+ ηi)

cosh jµ
sin jkxi





2

+
1

2



Ωηi − c+

N
∑

j=1

jkBj
cosh j (µ+ ηi)

cosh jµ
cos jkxi





2

−R = 0 (3.2)

1

2
η1 +

1

2
ηN+1 +

∑

i>2

ηi = 0 (3.3)

η1 − ηN+1 − 2ε = 0 (3.4)
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2D instabilities of surface waves on lineaar shear 11

Cokelet (1977) Present results
ε µ c2 N=16 N=32

0.0602076 0.6960522 0.615059 0.615059401990042 0.615059401990042
0.134191 0.7057777 0.666501 0.666501043068160 0.666501043084253
0.196607 0.7157711 0.727629 0.727628636155880 0.727628677787233

0.127189 2.3106884 0.997193 0.997192554095718 0.997192554095718
0.264080 2.3351905 1.05546 1.05545831121995 1.05545831121994
0.361984 2.3574470 1.12534 1.12533616336992 1.12533616411269

Table 1. Comparison of results for c2 of irrotational waves. Results from Cokelet are the most
accurate presented by this author.

Ω ε Teles da Silva N=16 N=20 N=32
Peregrine (1988)

1 0.06 0.5883 0.588263328985539 0.588263329189877 0.588263329193313
-1 0.25 1.3580 1.35807681735679 1.35807681736914 1.35807681736904

0.5 1.4421 1.44217541243789 1.44204269298035 –

Table 2. Comparison of c for different finite amplitude periodic waves on a linear shear
current with µ = 1.

Formally, the above system of 2N + 4 nonlinear equations can be written as

Fm(Z) = 0 m = 1, ..., 2N + 4

where Z = [η1, ..., ηN+1, B1, ..., BN , c, R,Q] is the vector of arguments of Fm. When
an initial approximation of the solution is known for given values of wave steepness
ε = Hk/2, dimensionless mean depth µ = kh and dimensionless vorticity parameter Ω,
the above system of equations can be solved iteratively using Newton’s method, which
iterates with quadratic convergence towards the required nonlinear solution. The initial
approximation to the solution is assumed to be a linear wave on constant vorticity.
Alternatively, for large wave steepness or strong vorticity it may be necessary to use
initially the results obtained from previous computations, provided those initial data are
not too far from the target solution.

This numerical method has been validated by comparison with both the numerical
results of Cokelet (1977), for irrotational steady waves (Ω = 0), and the few (rare)
results reported by Teles da Silva & Peregrine (1988) for finite amplitude periodic waves
on a linear shear current of finite depth. Tables 1 and 2 show the comparison for the
squared wave velocity c2 and c, since these parameters have traditionally been used as
the first basis for comparison between wave theories. A very good agreement is obtained
between our numerical results and those reported by these authors.

In order to check the numerical results in some broader range of parameter space,
we have also compared our numerical results with the predictions from a third-order
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Figure 2. Wave velocity c as a function of ε for different values of Ω and µ = 2. Solid lines
represent the numerical solution and the dashed lines represent the third-order solution.
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Figure 3. Surface wave profiles for ε = 0.20, Ω = 0.5 and µ = 2. The solid line represents the
numerical solution and the dashed line represents the third-order solution.

solution, derived recently by Hsu et al. (2016) to investigate analytically the effects
of vorticity on the characteristics of Stokes gravity and capillary-gravity waves in finite
depth. Figure 2 shows the comparison for the phase velocity, considering only the forward
mode, as a function of the wave steepness and for different fixed values of the shear
parameter. The weakly nonlinear results are plotted over the largest range of steepness
that could be considered with our numerical method. It is interesting to notice that the
weakly nonlinear predictions match well with the numerical results far beyond the weakly
nonlinear regime, although the analytical and numerical wave profiles are not entirely
coincident. This is illustrated in figure 3 for the surface profile of a periodic wave with
ε = 0.20, Ω = 0.5 and µ = 2. It should be realized that although the relative error on c
is small, as shown in figure 2, the errors on η and φ can be much larger, as well as those

Page 12 of 29



2D instabilities of surface waves on lineaar shear 13

on the Fourier coefficients. In figure 3, the numerical wave profiles have been obtained
with N = 32 harmonics for the stream function.

In general, the performance of most numerical methods for solving exact nonlinear
waves deteriorates as the wave gets steeper, and the present method can not escape this
fact. Indeed, the present approach fails owing to divergence of the (truncated) series for
the stream function, when the computed solution is approaching a limiting configuration
in the phase space of the governing dimensionless parameters; even though the interior
flow is completely free of singularities and the free surface is smooth. For a given value of
µ, this occurs either with downstream propagating waves (when Ω > 0) or with upstream
propagating waves (whenΩ < 0). In the former case, the failure of convergence is reflected
in the non-decrease for large N of the coefficients of the Fourier series of the stream
function, because the analytic continuation of the stream function out of the physical
domain develops singularities approaching the wave crest from above. In the latter case,
the method also fails before the surfaces become multivalued, i.e. overhanging waves
develop, which is reflected in oscillatory behavior of the Fourier coefficients in which case
Fourier expansions are not appropriate. For any sign of the vorticity, the present method
is also expected to break down in the limit of very long waves, when a large number of
modes has to be taken.

Despite these limitations, it should stressed that when the present method converges, it
provides highly accurate results, even with a low number of modes, which may be readily
used for computation of the interior flow variables such as, for instance, fluid velocities
and pressure which are required in practical problems. This contrasts with many other
numerical methods, such as those based on surface integro-differential equations (Vanden-
Broeck 1996; Ashton & Fokas 2011) or on the conformal mapping technique (Choi 2009;
Ribeiro-Jr et al. 2017), which require the results to be mapped back to the physical
domain.

We shall conclude this section by noticing that the present method also enables
to compute waves on a linear shear current when an interior stagnation point and a
recirculating region exist, either with or without pressure anomalies first mentioned in
Teles da Silva & Peregrine (1988). To illustrate this, we show in figure 4 the streamlines
pattern for three different periodic waves with Ω = −2 and kh = 1. For the sake of
visibility, the spacing between the streamlines is constant in each region separated by
the separatrix streamline (Ψ = 0), but the flow rate between two consecutive streamlines
differs in each region. For each wave the ratio between the flow rates is fixed to plot eight
streamlines inside the recirculating region. As it can be seen the flow patterns, reported
in figure 4 only in a half-wavelength interval , correspond to waves with three stagnation
points: two saddles at the bottom and a center under the crest. As the steepness increases,
the center of the separated eddy is shifted upwards, its vertical extent increases and its
horizontal extent at the bottom is decreased. Note that here pressure anomalies exist only
for the highest wave (not shown). According to the classification proposed very recently
by Ribeiro-Jr et al. (2017), our results fall in ”region 2” of their paper (see their figure
5).

3.2. Computation of eigenvalues

Once the unperturbed wave has been computed, the normal modes decompositions
(2.18-2.20) are truncated at N Fourier modes to solve the eigenvalue problem. Like
McLean (1982) we use a collocation method with 2N +1 grid points, equally distributed
between two adjacent crests of the unperturbed wave, to transform the infinite dimen-
sional eigenvalue problem (2.22-2.23) into a discrete system of order 4N + 2, which can
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Figure 4. Streamlines pattern for periodic waves with Ω = −2 and µ = 1: (a) ε = 0.05 for
which c = 1.9207810276, (b) ε = 0.25 for which c = 1.9427455675 and (c) ε = 0.45 for which
c = 1.998.

be written as

Av = γBv

where v = (a−N, . . . ,aN,b−N, . . . ,bN)t. Here the matrices A and B are complex
functions of the mode p and the unperturbed wave that is specified itself by ε, kh and
Ω. For each disturbance with mode number p, the eigenvalues γn are obtained with an
eigenvalue solver based on the QZ algorithm, as well as their associated eigenvector
(anj , bnj)

t, for n = 1, . . . , 4N + 2 and j = −N, . . . , N . Instability corresponds to
Im (γn) > 0 for at least one mode n, given the values of p and the unperturbed
wave. In computations of the linear stability of the unperturbed wave, we choose to
set 0 6 p 6 0.5, owing to the symmetries of the eigenvalue problem and the degeneracy
of the normal mode decomposition with regard to the choice of p. In practice, the effects
of modal truncation must be monitored by increasing N until the relevant eigenvalues
have converged. For all the cases considered in the present work, our numerical results
have been accepted when the convergence of the eigenvalues has been reached with at
least six significant digits for the more difficult cases.
Our numerical method for the truncated version of the eigenvalue problem (2.22)-(2.23)

has been checked against the analytical results of Thomas et al. (2012) for the quartet
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Figure 5. Growth-rate Im(γ) as a function of p for waves with ε = 0.05, µ = 10 (left) and
kh = 2 (right), and different shear values: —, Ω = 0; — —, Ω = ±0.2; —.—,Ω = ±0.4. Dotted
lines represent the corresponding weakly nonlinear results. The curves above the solid line are
for Ω > 0.

resonant interactions in weakly nonlinear gravity waves in flows with constant vorticity. In
fact, preliminary checks of our numerical implementation of the present method has been
done with other strictly numerical results of McLean (1982) and Francius & Kharif (2006)
for two-dimensional quartet interactions between irrotational waves on finite depth (Ω =
0). Since the focus in the present study is on the effect of vorticity on two-dimensional
perturbations, the details of this comparison is not shown here. It suffices to say that
the comparison with the data shows a very good agreement, provided the steady waves
computed with the present method are obtained with sufficiently high accuracy.
Instead, we focus on the comparison with the weakly nonlinear theory that serves in

fact two purposes. First, it is a mean to check our numerical results when Ω 6= 0, since
we have not found in the literature useful quantitative results for the 2D instabilities
due to quartet resonances; secondly, the numerical results may confirm some weakly
nonlinear predictions like, for instance, the complete restabilization to two-dimensional
long-wavelength perturbations, which occurs for sufficiently large (constant) vorticity and
kh > 1.363. This important analytical result will be discussed in the next section.
Figure 5 shows the comparison of the dimensionless growth rates of the two-dimensional

quartet instabilities varying with p for ε = 0.05, Ω = 0,±0.2,±0.4 and two values of
the dimensionless depth µ = 10, 2. In either case an increase of positive shear yields a
wider range of unstable wavenumbers and enhanced growth-rates. For ε = 0.01, the
numerical results agree very well with the analytical results and the corresponding
curves are indiscernible (not shown here). From figure 5, we see that the increase of
wave steepness increases the difference between the analytical and the numerical results,
although the variation of this difference with p depends on the value of the dimensionless
depth (for any given steepness). Figure 5 also shows that the linear growth rates of these
quartet instabilities decrease when µ decreases. As is well-known for irrotational waves,
the complete restabilization to two-dimensional long-wavelength perturbations occurs for
the critical value µ ≈ 1.363. It should also be noticed that for p ≪ 1, namely for very
long-wavelength perturbations, we have always found an excellent agreement between
the numerical results and the analytical results of these two-dimensional instabilities.
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4. Results

The stability of the periodic waves was studied in details for two values of the dimen-
sionless mean depth, µ = 10 and µ = 2, for a range of values of the vorticity parameter
Ω and several values of the wave steepness ε, namely ε = 0.01, 0.05, 0.10, 0.15, 0.20.
Actually, for each value of µ and ǫ considered here, our numerical computations of the
unperturbed waves cover a large range of shear values in which Ω varies from −2 to the
maximal value allowed by the other parameters. In order to facilitate the presentation
of our numerical results and to analyze the effects of vorticity on the characteristics of
the two-dimensional instabilities under investigation, we have decided to select only few
values of ε.

First, we present the numerical results for the quartet instabilities of the modulational
type, namely due to side-band wave disturbances (0 < p < 1), and compare them
with the results of the approximate analysis of Thomas et al. (2012), which has shown
the disappearance of the Benjamin-Feir modulational instability due to the increase of
the shear strength. In particular, we focus on the characteristics of the most unstable
modes in order to check the validity of the analytical predictions, and also to confirm
the restabilization of the modulational instability both for upstream and downstream
propagating waves. Secondly, we present preliminary numerical results for disturbances
that are not of the modulational type, namely for perturbations of Class I(m = 1)
with p > 1 and Class II(m = 1) with p > 1, and discuss their importance as the
vorticity is varied. Finally, the results showing the restabilization of uniform wavetrain
to modulational disturbances are discussed. Emphasis is put, in particular for deep water
waves, on the differences between the results from the weakly nonlinear theories and those
obtained by numerical calculations.

4.1. Maximum growth rates of the modulational instability

Before we show the numerical results for the most unstable disturbances associated
with the quartet resonances, we briefly recall here some analytical results of Thomas et al.
(2012), which are used in the present section. As already mentioned in the introduction,
these authors have derived recently a NLS equation when there is a background linear
shear flow. This equation is given for the complex envelope amplitude a(ξ, τ)

iaτ + Laξξ =M |a|2a (4.1)

where ξ = ǫ(x − cgt) and τ = ǫ2t are coordinates to describe the slow modulation in
space and time of a unidirectional wavetrain with a carrier wave with wavenumber k and
frequency ω, cg is the group velocity of the carrier wave. In this framework, ε represents
a small dimensionless amplitude parameter and the surface elevation z = η(x, t) can be
written, to the leading order, as

η(x, t) =
1

2
ǫa(ξ, τ)exp[i(kx− ωt)] + c.c+O(ǫ2) (4.2)

where c.c. represents the complex conjugate.
As is well known for the NLS equation (4.1), the sign of the product of the dispersive

coefficient L and the nonlinear coefficient M governs drastically the amplitude modula-
tions of weakly nonlinear wave packets, as well as those of initially-uniform wave trains.
In the defocussing regime (LM > 0) the plane wave solution of (4.1), which is given by

a(ξ, τ) = a0e
−iMa2

0
τ (4.3)

where a0 is an arbitrary constant, is always modulationally stable to spatial periodic
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perturbations whose real and imaginary parts are proportional to eiKξ, where ±K
represents perturbations of the fundamental wavenumber k. In contrast, in the focusing
regime (LM < 0) the plane wave solution (4.3) is modulationally unstable whenever K
lies in a finite band, 0 < K < Kc with Kc =

√

2 |M/L|a0. Over this range of unstable
wavenumbers K, the maximum growth rate of the quartet instability is

γmax =M1ωa
2
0k

2 (4.4)

when

Kmax =
√

|M1/L1|a0k2 (4.5)

where L1 = k2L/ω and M1 = M/(ωk2). To correct a misprint in the definition of L in
Thomas et al. (2012), the expressions for the dispersive and nonlinear coefficients are
given here,

L =
ω

k2σ(2 +X)

[

µ(1− σ2)[1− µσ + (1− ρ)X]− σρ2
]

M =
−ωk2(U + VW )

8(1 +X)(2 +X)σ4

respectively, where ρ = cg/cp denotes the ratio of the group velocity to the phase velocity
of the carrier wave, µ = kh is the dimensionless water depth, σ = tanh(µ) and X =
σΩ0/ω where Ω0 represents the dimensional shear. The lengthy expressions for U , V and
W can be found in Thomas et al. (2012).
The most unstable modes with dimensionless wavenumber pmax = Kmax/k in our

notation, as well as their growth rates, were obtained numerically by solving the truncated
version of the eigenvalue problem (2.22)-(2.23), and are shown in figure 6 as a function
of the dimensionless vorticity, Ω, for µ = 10 and ε = 0.01, 0.05, 0.10, 0.15, 0.20. For
−2 6 Ω 6 1 and the two smallest values of ε, a good quantitative agreement between
our numerical results and the analytical predictions is observed. In fact, for ε = 0.01, we
found some differences between numerical and analytical growth-rates when 2 6 Ω 6 4
(not shown here), the latter overestimating the former. For the steepest waves considered
here, ε > 0.15, the analytical predictions are found to overestimate the characteristics
of the most unstable modes, namely pmax and γmax, although the variations of these
characteristics with Ω are consistent between the two results.

For µ = 2 the same analysis was carried out for ε = 0.01, 0.05, 0.10, 0.15, and the
results are shown in figure 7. The agreement between the two results is remarkably very
good for negative values of Ω (upstream propagating waves), for both pmax and γmax,
and this even for the steepest waves considered here. However, the two results show a
tendency to diverge with increasing (positive) values of Ω, except for the waves with
ε = 0.01. In this case, interestingly, a very good agreement between the two results is
observed in the range of vorticity −2 6 Ω 6 2.
Both figures 6 and 7 confirm one prominent feature of the effect of vorticity, namely the

restabilization of the modulational instability for upstream propagating waves (Ω < 0)
and large enough negative shear. For small steepness, say ε = 0.01, the numerical results
agree very well with those of the weakly nonlinear theory. For downstream propagating
waves (Ω > 0) the analytical results of Thomas et al. (2012) also predict restabilization of
the modulational instability in finite depth, when Ω increases above a positive threshold
value that depends only on µ (in the limit p → 0). As shown in figure 7 our numerical
results for ε = 0.01 also confirm this analytical prediction. As already mentioned for
downstream propagating waves, the differences between the analytical and the numerical
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Figure 6. (a) Wavenumber pmax of the most unstable mode and (b) its growth-rate γmax as a
function of Ω, for µ = 10 and ε = 0.01 (stars), 0.05 (asterisks), 0.10 (diamonds), 0.15 (squares),
0.20 (circles); Solid lines represent the weakly nonlinear results.

results increase with increasing nonlinearity, and there is poor qualitative agreement. For
upstream propagating waves, however, it should be noticed that the negative value Ωc,
below which the modulational instability restabilizes, does not seem to be affected by
the increase of nonlinearity of the basic wave.

It is emphasized here that the disappearance of the modulational instability for
upstream propagating waves has been predicted very recently by Thomas et al. (2012),
but this has not been confirmed with an (alternative) independent method. For this
reason we have pursued our analysis by carrying out computations for long-wavelength
perturbations, with the purpose of checking further the weakly nonlinear theory. In the
limits as p→ 0 and ε→ 0, this theory predicts for µ > 1.363 that the stability boundary
is −1 < X 6 Xc1 < 0 for upstream propagating waves and 0 < Xc2 6 X for downstream
propagating waves (see figure 3 of Thomas et al. (2012)). Here X = σΩ with Ω = Ω0/ω,
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Figure 7. (a) Wavenumber pmax of the most unstable mode and (b) its growth-rate γmax as
a function of Ω, for µ = 2 and ε = 0.01 (stars), 0.05 (diamonds), 0.10 (squares), 0.15 (circles);
Solid lines represent the weakly nonlinear results.

which is related to Ω by the relation

Ω =
σ1/2Ω

√

1 + σΩ
(4.6)

The critical values Xc1 and Xc2 depend only on µ and Ω. They can be determined either
analytically or graphically, as we have done, by plotting for a fixed µ the variations of
the (scaled) nonlinear coefficient M1 with Ω and finding the critical values for which it
vanishes. As discussed in Thomas et al. (2012), in the deep water limit σ = 1,Xc1 = −2/3
and Xc2 increases without bound.

We considered waves with µ = 10 and ε = 0.01 and the growth rates of long-wavelength
perturbations were obtained numerically with a few very small values of p, and the
shear parameter Ω was incremented from −2 to 1 with steps of 0.01. The numerical
results, shown in figure 8, indicate that the restabilization of the modulational instability
occurs at the threshold value, X∗ = −0.657 (Ω = −1.12), in close agreement with the
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Figure 8. Restabilization of modulational perturbations for wave propagating upstream.
Growth rate versus X = σΩ0/ω for different wavenumbers (p ≪ 1) with ε = 0.01 and µ = 10.

theoretical value Xc ≈ −0.654 (Ωc = −1.11). As indicated by the analytical results
the restabilization of the modulational instability occurs when the range of unstable
wavenumbers has shrunk to zero and the stability boundaries have merged at p = 0.
A similar restabilization occurs with downstream propagating waves (Ω > 0), but as

the shear parameter X is increased above the positive threshold value Xc2. Though we
have not addressed this issue in detail, namely by comparing the analytical results found
by Thomas et al. (2012) with the results of the present strictly numerical method, we
have compared the marginal stability curve obtained with the analytic solutions of NLS
equation with vorticity from Thomas et al. (2012) with that obtained by Hur & Johnson
(2015) (see their equation 3.3 in Theorem 3.1), in order to comply with the demand of
one referee. As the issue of concern here is that of the linear stability of the forward mode,
in particular to long wavelength perturbations, it is found that the predictions of Hur &
Johnson (2015) match perfectly the results of Thomas et al. (2012) only for downstream
propagating waves (Ω > 0) and, say roughly, Ω > 1.5. For smaller and decreasing values
of Ω, the differences between the two results increases without bounds. More importantly,
both analytical results are in total contradiction for upstream propagating waves (Ω < 0).
In this case, the model of Hur & Johnson (2015) does not predict the restabilization of the
modulational instability whatever the value of the depth, provided the shear is sufficiently
large. Though interesting, this comparison will be reported elsewhere in detail, since in
the present work we have not studied the marginal stability curve for the modulational
instability in the (Ω,µ) parameter space.

4.2. Growth rates of two-dimensional instabilities

In our investigations we have also detected other band of instabilities, which are
associated with the quartet resonances with p > 1, i.e. not of the modulational type,
and the quintet resonances which correspond to instabilities of Class II(m = 1). These
instabilities were identified by inspecting the dominant components of the eigenvectors
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Figure 9. Growth-rate of quartet instabilities, Class I(m = 1) with p < 1, for µ = 2, ε = 0.05
and for (a) negative and (b) positive values of the shear: ——, Ω = 0; - - -, |Ω| = 0.2; — ·—,
|Ω| = 0.4; · · · · · · , |Ω| = 0.8.

associated with their complex eigenvalues. In some region of the parameter space we
have observed that the maximum growth rates of some of these instabilities are larger
than those of quartet instabilities with p > 1. For this reason, we present here some
preliminary results which were obtained for µ = 2, ak = 0.05 and several values of the
shear parameter Ω = 0,±0.2,±0.4,±0.8.

For comparison of these results with those for the quartet instabilities near p = 0,
we show in figure 9 the growth rates of these modulational instabilities versus p for
the different values of Ω considered here. As we have already seen, the Class I(m = 1)
instability region with p < 1 is increased (decreased) as Ω increases (decreases).

Figures 10 and 11 show, for upstream propagating waves, the effects of increasing
the shear on the instability bands associated to Class I(m = 1) and Class II(m = 1)
disturbances with p > 1, respectively. As the shear increases, both instability regions
moves to the right and, though initially their bandwiths and the maximum growth rates
diminish slightly, these increase for sufficiently large negative values of Ω. For Ω = −0.8,
figures 10(d) and 11(d) reveal that the maximum growth rate of these two dimensional
instabilities is larger than both that of the most unstable mode of the Class I(m = 1)
with p < 1 and that of the most unstable mode of the Class II(m = 1) with p > 1. In
each figure the dashed line indicates the corresponding value of the maximum growth
rate of the quartet instabilities with p < 1, namely of the modulational type.

Comparing figures 10(c) and 10(d) reveals that this Class I(m = 1) instability region
must include p = 2 for some values −0.8 < Ω < −0.4. When this occur, the colliding
modes have dominant wavenumbers p +m = 2 + 1 = 3 and p −m = 2 − 1 = 1, which
correspond to superharmonic instabilities of the basic wave. This result suggests that this
two-dimensional superharmonic instability, which appears due to the effect of vorticity,
can play an important role (yet to be explored) in the dynamics of weakly modulated
wave trains on a linear shear current.

It should be noticed that the results in figure 11 also indicate three occurrences of
superharmonic instabilities, as the shear is varied in the ranges −0.8 < Ω < 0. The first
occurrence is due to collision of the modes p+m = 3+1 = 4 and p−m− 1 = 3− 2 = 1,
the second one with p +m = 4 + 1 = 5 and p −m − 1 = 4 − 2 = 2 and the third with
p+m = 5+1 = 6 and p−m− 1 = 5− 2 = 3. Although these superharmonic instabilities
of Class II(m = 1) do not generally correspond to the (dominant) maximum growth rate,
they appear together with the most unstable (subharmonic) disturbances and it would
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Figure 10. Growth-rate of quartet instabilities, Class I(m = 1) with p > 1, for µ = 2 and
ε = 0.05; (a) for Ω = 0; (b) −0.2; (c) −0.4; (d) −0.8. The dashed line indicates the corresponding
value of the maximum growth rate of the Class I(m = 1) instabilities with p < 1.
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Figure 11. Growth-rate of quintet instabilities, Class II(m = 1) with p > 1, for µ = 2 and
ε = 0.05; (a) for Ω = 0; (b) −0.2; (c) −0.4; (d) −0.8; (dashed line) as in figure 10.
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Figure 12. Growth-rate of quartet instabilities, Class I(m = 1) with p > 1, for µ = 2 and
ε = 0.05; (a) for Ω = 0; (b) 0.2; (c) 0.4; (d) 0.8; (dashed line) as in figure 10.
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Figure 13. Growth-rate of quintet instabilities, Class II(m = 1) with p > 1, for µ = 2 and
ε = 0.05; (a) for Ω = 0; (b) 0.2; (c) 0.4; (d) 0.8; (dashed line) as in figure 10.
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be interesting to study the effects of increasing nonlinearity on their characteristics. This
point could be explored in future studies.
Figures 12 and 13 show, for downstream propagating waves, the effects of increasing

the shear on the instability bands associated to Class I(m = 1) and Class II(m = 1)
disturbances with p > 1, respectively. The effects of vorticity are different here and
seem to be weaker for the waves considered here. As the shear increases, both instability
regions moves to the right and, their bandwiths and the maximum growth rates have
slightly changed in the range 0 < Ω < 0.8. In contrast with the results obtained for
upstream waves, no superharmonic instabilities are detected. It is noticed, however, that
the bandwith of the class I(m = 1) instability region tends to shrink to zero, and also
that the whole instability region approaches p = 1, as shown in figure 12(d).

4.3. Discussion

The results reported in section 4.1 appear to confirm the analytical results of Thomas
et al. (2012). These constitute somewhat numerical evidences of this important property
of the modulational instability, namely its restabilization at sufficiently large values of
the vorticities.

For small wave steepness, it appears that the sign of the vorticity does not matter
in this restabilization of the basic wave, although its effects on the growth rates are
of primary importance. For ε = 0.01 and µ = 10 the restabilization is observed only
with upstream propagating waves, while for µ = 2 it occurs both with upstream and
downstream propagating waves, in agreement with the analytical results of Thomas et al.
(2012).

It can be seen, from figures 6 and 7, that for upstream propagating waves on a linear
shear current, the effects of vorticity become dominant over those of nonlinearity as the
shear is increased. For Ω < 0 and wave steepness as high as ε = 0.20, these results
show a very good comparison of the analytical results with our numerical solutions, and
therefore suggest that the NLS model could be a powerful tool for predicting qualitative
features of modulated upstream-waves on a strong linear shear current. In particular
correct predictions of the most unstable modes of Class I(m = 1) are recognized, as well
as the instability ranges. For the case of downstream propagating waves (Ω > 0) and
large shear, in contrast, the analytical results become quickly invalid as the nonlinearity is
increased. A good agreement can be expected, however, provided the steepness is not too
large, as shown in figure 7(b) for µ = 2 and ε = 0.01. More importantly, the analytically
predicted restabilization of the modulational instability is confirmed both for upstream
and downstream propagating waves by the present numerical results.

Although there has been preliminary analytical evidence for waves in deep water, from
Li et al. (1987) using a linear shear current and Baumstein (1998) using a piecewise
linear current, suggesting that weak velocity shear can enhance modulational instability
and strong velocity shear can suppress instability, it should be emphasized here that the
predictions of these previous analytical studies are not supported by the present numerical
results and, thus, by the weakly nonlinear theory of Thomas et al. (2012) in the limit
µ → ∞ (σ → 1). As explained below, the source of disagreement can be immediately
understood when one realizes that in deep water the wave-induced mean-flow is a key
feature in the slow spatial modulations of weakly nonlinear waves.

Inspection of previous analytical studies reveals that although Li et al. (1987) and
Baumstein (1998) applied the same method of multiple scales to the governing equations,
like Thomas et al. (2012), the wave-induced mean flow component of the solution was
set arbitrarily to zero in their derivation of the modulation equation. At first sight this
assumption sounds like a good idea for small velocity shear and wave steepness, if we keep
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in mind that for irrotational weakly modulated wavetrains in deep water the feedback
from this wave-induced mean flow is due to higher-order effects and do not appear to the
order of approximation of NLS equation.
As shown in Thomas et al. (2012), however, special care should be taken in the limit

µ→ ∞ for the NLS equation presented in this work. In this limit they obtained

iaτ + L∞aξξ =M∞|a|2a (4.7)

with

L∞ = − ω

k2
(1 +Ω)2

(2 +Ω)3
, M∞ =

ωk2

8

[

(

4 + 6Ω + 6Ω
2
+Ω

3
)

−Ω
2 (2 +Ω)2

(1 +Ω)

]

(4.8)

As emphasized in Thomas et al. (2012), even though the wave-induced mean velocity
approaches zero in the deep water limit, its interaction with the carrier wave yields
an O(ǫ3) term that has a non zero finite limit when µ → ∞. For one dimensional
modulations this additional term with the same periodicity as the fundamental wave is
directly proportional to |a|2a. More precisely, it corresponds to the second term in the
brackets defining the nonlinear coefficient M∞, which cancels only without background
vorticity (as expected). When this term is neglected, the expression for M∞ agrees with
that of Baumstein (1998), after adoption of our notation. As noticed by Baumstein (1998),
Li et al. (1987) obtained a somewhat different formula for the nonlinear coefficient M∞

which, in our notation, can be expressed

MLi =
ωk2

8(2 +Ω)
(8 + 16Ω + 10Ω

2 −Ω
4
) (4.9)

This should be compared with (4.8), which can also be expressed as

M∞ =
ωk2

8(1 +Ω)
(4 + 10Ω + 8Ω

2
+ 3Ω

3
) (4.10)

Less surprisingly, in all previous analytical studies, the same expression was obtained for
the coefficient L∞, since the wave-induced mean flow does not affect dispersion to the
leading order approximation.
In order to compare these analytical models and also to clarify the debate on the effects

of large (positive) vorticities on the modulational instability, we have computed for each
NLS model the maximum growth rates with equation (4.4) as the vorticity is varied. The
results of these computations are shown in figure 14, as well as the strictly numerical
results for waves with µ = 10 and ε = 0.01 and the corresponding analytical predictions
obtained with equation (4.8).

Irrespective of the sign of the vorticity, the analytical models yield almost identical
results when the velocity shear is sufficiently small. For large vorticities, however, the
model of Li et al. (1987) is the only one that predicts restabilization at large vorticities
for downstream propagating waves (Ω > 0). As shown in figure 14 by the numerical
results, when µ = 10 and ε = 0.01, this restabilization is not confirmed by our numerical
results, which are in turn in close agreement, over the range of Ω values investigated
here, with the analytical predictions from Thomas et al. (2012).

Baumstein (1998) has claimed that ”...the shear strength increase first enhances, but

later suppresses, the instability.”. Surprisingly the analytical results, obtained with (4.8)
and neglecting the term associated with the wave-mean-flow interaction (second term
in the bracket of M∞), contradict this statement. In fact, for the background flow,
Baumstein (1998) has assumed a piecewise linear velocity profile, and thus a layer of
uniform vorticity (Ω) and depth (∆) overlies an infinitely deep fluid (at rest). More
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Figure 14. Maximum growth rate of the modulational instability as a function of the
dimensionless shear, X = σΩ0/ω, for deep water waves: - - -, Baumstein’s model; — ·—, Li
et al.’s model; ——, Thomas et al.’s model. For waves with µ = 10 and ε = 0.01, the symbols
correspond to the present numerical results and the dotted line represent the weakly nonlinear
results from Thomas et al.’s model.

importantly, his conclusion has been reached from numerical computations with finite
values of the shear depth. It should be realized, however, that in the limit of infinite shear
depth there is some inconsistency with this approach, owing to his definition of the surface
current, U0 = Ω∆ where ∆ is the shear depth. Hence, the condition that U0 remains
bounded in the limit ∆ → ∞ implies to consider simultaneously the limit Ω → 0. This
explains perhaps why Baumstein’s model for deep water waves yields consistent results
on a rather short range of (small) vorticities, as shown in figure 14.

In figure 14 it is seen that the other analytical models do not predict, for large
vorticities, the restabilization in the case of upstream propagating waves (Ω < 0), and
their predictions of the maximum growth rate differ remarkably from those obtained with
the model of Thomas et al. (2012), which are in very good agreement with the reference
numerical results.

This restabilization of upstream propagating waves is also observed when µ = 2, as
shown in figure 8 for ε = 0.01. For this case, it is noticed that no other instabilities have
been detected in our computations as Ω was varied in the range −2 6 Ω 6 Ωc1. For
higher wave steepness, however, several bubbles of instabilities were detected, but not
shown here, as Ω was varied in this range. These two-dimensional instabilities are not of
the modulational type. Although we have not yet identified all of them, we may rest on
our experience to presume that these instabilities are observed as the instability bands
of either Class I(m > 1) or Class II(m > 1) cross integer values of p > 1. The properties
of these instabilities are currently under investigation and will be reported in a future
publication.

5. Conclusions

With the purpose of investigating the two-dimensional linear stability of finite am-
plitude steady waves on a linear shear current, we have developed firstly a Fourier
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approximation method of these solutions that enables very accurate determination of the
basic wave motion. The present work concerns only the forward mode. The results have
been compared successfully with other numerical solutions, available in the published
literature. An excellent agreement have also been observed between the present numerical
results and those obtained with a third-order approximation of the solution, provided the
steepness is small and, in the case of upstream propagating waves, the shear is sufficiently
small.
The stability analysis of these two-dimensional gravity waves propagating steadily on

a vertical shear current of constant vorticity has been carried out in deep water (µ = 10)
and finite depth (µ = 2). The effects of the vorticity on the boundaries of the instability
band and the characteristics of the most unstable mode have been analyzed.
For weakly nonlinear waves and moderate values of the vorticity we have rediscovered

the analytical results of Thomas et al. (2012) on long-wavelength instabilities associated
with quartet resonances, i.e. Class I(m = 1) with p < 1. We have extended their results
to higher values of the wave steepness of the basic wave and of the vorticity. In deep
water, we found some differences between numerical and analytical growth-rates for ε >
0.10. In finite depth, deviations between the two approaches occur for ε > 0.10 and
Ω > 0.5. Note that disagreement occurs for smaller values of the vorticity when the wave
steepness increases. Furthermore, the numerical results confirm the restabilization of the
Benjamin-Feir modulational instability as the shear is increased, both with upstream
and downstream propagating waves, in agreement with the analytical results of Thomas
et al. (2012).

We have also identified instabilities associated with quartet resonances of Class I(m =
1) with p > 1 and higher-order quintet resonances Class II(m = 1) with p > 1. Although
these instabilities are weak, increasing the vorticity has substantially different effects
depending on the direction of propagation of the finite amplitude waves along the shear
flow. For the case ε = 0.05, µ = 2, and the considered range of shear values, the
present numerical results reveal that the Benjamin-Feir instability always dominates
for downstream propagating waves, whereas the most unstable disturbance of the Class
I(m = 1) with p > 1 has the largest the growth rate for upstream propagating waves,
provided the shear parameter Ω is less than a certain negative critical value.
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