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Abstract. In [4], the existence of the solution is proved for a scalar linearly growing bac-

kward stochastic differential equation (BSDE) if the terminal value is L exp
(
µ
√

2 log (1 + L)
)

-

integrable with the positive parameter µ being bigger than a critical value µ0. In this note, we
give the uniqueness result for the preceding BSDE.
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1 Introduction

Let {Wt, t ≥ 0} be a standard Brownian motion with values in Rd defined on some complete
probability space (Ω,F ,P), and {Ft, t ≥ 0} its natural filtration augmented by all P-null sets of
F . Let us fix a nonnegative real number T > 0. The σ-field of predictable subsets of Ω × [0, T ]
is denoted by P.

For any real p ≥ 1, denote by Lp the set of all FT -measurable random variables η such that
E|η|p <∞, by Sp the set of (equivalent classes of) all real-valued, adapted and càdlàg processes
{Yt, 0 ≤ t ≤ T} such that

||Y ||Sp := E

[
sup

0≤t≤T
|Yt|p

]1/p
< +∞,

by Lp the set of (equivalent classes of) all real-valued adapted processes {Yt, 0 ≤ t ≤ T} such
that

||Y ||Lp := E
[∫ T

0
|Yt|p dt

]1/p
< +∞,

and byMp the set of (equivalent classes of) all predictable processes {Zt, 0 ≤ t ≤ T} with values
in R1×d such that

||Z||Mp := E

[(∫ T

0
|Zt|2 dt

)p/2]1/p
< +∞.
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Consider the following Backward Stochastic Differential Equation (BSDE):

Yt = ξ +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdWs, t ∈ [0, T ]. (1.1)

Here, f (hereafter called the generator) is a real valued random function defined on the set
Ω × [0, T ] × R × R1×d, measurable with respect to P ⊗ B(R) ⊗ B(R1×d), and continuous in the
last two variables with the following linear growth:

|f(s, y, z)− f(s, 0, 0)| ≤ β|y|+ γ|z|, (s, y, z) ∈ [0, T ]× R× R1×d

with f0 := f(·, 0, 0) ∈ L1, β ≥ 0 and γ > 0. ξ is a real FT -measurable random variable, and
hereafter called the terminal condition or terminal value.

Definition 1.1 By a solution to BSDE (1.1) we mean a pair {(Yt, Zt), 0 ≤ t ≤ T} of predictable
processes with values in R × R1×d such that P-a.s., t 7→ Yt is continuous, t 7→ Zt belongs to
L2(0, T ) and t 7→ f(t, Yt, Zt) is integrable, and P-a.s. (Y, Z) verifies (1.1).

By BSDE (ξ,f), we mean the BSDE with generator f and terminal condition ξ.
It is well known that for (ξ, f0) ∈ Lp×Lp (with p > 1), BSDE (1.1) admits a unique adapted

solution (y, z) in the space Sp × Mp if the generator f is uniformly Lipschitz in the pair of
unknown variables. See e.g. [6, 3, 1] for more details. For (ξ, f0) ∈ L1 ×L1, one needs to restrict
the generator f to grow sub-linearly with respect to z, i.e., with some q ∈ [0, 1),

|f(t, y, z)− f0(t)| ≤ β|y|+ γ|z|q, (t, y, z) ∈ [0, T ]× R× R1×d

for BSDE (1.1) to have a unique adapted solution (see [1]) if the generator f is uniformly Lipschitz
in the pair of unknown variables.

In [4], the existence of the solution is given for a scalar linearly growing BSDE (1.1) if the

terminal value is L exp
(
µ
√

2 log (1 + L)
)

-integrable with the positive parameter µ being bigger

than a critical value µ0 = γ
√
T , and the preceding integrability of the terminal value for a

positive parameter µ less than critical value µ0 is shown to be not sufficient for the existence of a
solution. In this note, we give the uniqueness result for the preceding BSDE under the preceding
integrability of the terminal value for µ > µ0.

We first establish some interesting properties of the function ψ(x, µ) = x exp
(
µ
√

2 log (1 + x)
)

.

We observe that the obtained solution Y in [4] has the nice property: ψ(|Y |, a) belongs to the
class (D) for some a > 0, which is used to prove the uniqueness of the solution by dividing the
whole interval [0, T ] into a finite number of sufficiently small subintervals.

2 Uniqueness

Define the function ψ:

ψ(x, µ) := x exp
(
µ
√

2 log (1 + x)
)
, (x, µ) ∈ [0,+∞)× (0,+∞).

We denote also ψ(·, µ) as ψµ(·)
The following two lemmas can be found in Hu and Tang [4].

Lemma 2.1 For any x ∈ R and y ≥ 0, we have

exy ≤ e
x2

2µ2 + e2µ
2
ψ(y, µ). (2.2)
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Lemma 2.2 Let µ > γ
√
T . For any d-dimensional adapted process q with |qt| ≤ γ almost surely,

for t ∈ [0, T ],

E
[
e

1
2µ2
|
∫ T
t qsdWs|2

∣∣∣ Ft] ≤ 1√
1− γ2

µ2
(T − t)

. (2.3)

Proposition 2.3 We have the following assertions on ψ:
(i) For µ > 0, ψ(·, µ) is convex.
(ii) For c > 1, we have ψµ(cx) ≤ ψµ(c)ψµ(x) for any x ≥ 0.
(iii) For any triple (a, b, c) with a > 0, b > 0 and c > 0, we have

ψ(ψ(x, a), b) ≤ e
ab2

c ψ(x, a+ b+ c).

Proof. The first assertion has been shown in [4]. It remains to show the Assertions (ii) and (iii).
We prove Assertion (ii).

ψµ(cx) = cx exp
(
µ
√

2 log (1 + cx)
)

≤ cx exp
(
µ
√

2 log [(1 + c)(1 + x)]
)

= cx exp
(
µ
√

2 log(1 + c) + 2 log(1 + x)
)

≤ cx exp
(
µ
√

2 log(1 + c) + µ
√

2 log(1 + x)
)

= ψµ(c)ψµ(x).

We now prove Assertion (iii). We have

(ψb ◦ ψa) (x)

= ψa(x) exp
(
b
√

2 log (1 + ψa(x))
)

= x exp
(
a
√

2 log (1 + x)
)

exp

(
b

√
2 log

(
1 + xea

√
2 log (1+x)

))

≤ x exp
(
a
√

2 log (1 + x)
)

exp

(
b

√
2 log

(
(1 + x)ea

√
2 log (1+x)

))

= x exp
(
a
√

2 log (1 + x)
)

exp

(
b

√
2 log (1 + x) + 2a

√
2 log (1 + x)

)
.

In view of the following elementary inequality:

2a
√

2 log (1 + x) ≤ a2b2

c2
+

2c2

b2
log (1 + x),

we have

(ψb ◦ ψa) (x)

≤ x exp
(
a
√

2 log (1 + x)
)

exp

(
b

√
2 log (1 + x) +

a2b2

c2
+

2c2

b2
log (1 + x)

)

≤ x exp
(
a
√

2 log (1 + x)
)

exp

(
b
√

2 log (1 + x) + b

√
a2b2

c2
+ b

√
2c2

b2
log (1 + x)

)
.
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Therefore,

(ψb ◦ ψa) (x)

≤ x exp
(
a
√

2 log (1 + x)
)

exp

(
b
√

2 log (1 + x) +
ab2

c
+ c
√

2 log (1 + x)

)
≤ xe

ab2

c exp
(

(a+ b+ c)
√

2 log (1 + x)
)
.

�

Consider the following BSDE:

Yt = ξ +

∫ T

t
f(s, Ys, Zs) ds−

∫ T

t
ZsdWs, (2.4)

where f satisfies
|f(s, y, z)− f0(s, 0, 0)| ≤ β|y|+ γ|z|, (2.5)

with f0 := f(·, 0, 0) ∈ L1, β ≥ 0 and γ > 0.

Theorem 2.4 Let f be a generator which is continuous with respect to (y, z) and verifies ine-
quality (2.5), and ξ be a terminal condition. Let us suppose that there exists µ > γ

√
T such that

ψ(|ξ|+
∫ T
0|f0(t)| dt, µ) ∈ L1(Ω,P). Then BSDE (2.4) admits a solution (Y, Z) such that

|Yt| ≤
1√

1− γ2

µ2
(T − t)

eβ(T−t) + e2µ
2+β(T−t) E

[
ψµ

(
|ξ|+

∫ T

t
|f0(s)| ds

) ∣∣∣∣ Ft] .
Furthermore, there exists a > 0 such that ψ(Y, a) belongs to the class (D).

Proof. Let us fix n ∈ N∗ and p ∈ N∗. Set

ξn,p := ξ+ ∧ n− ξ− ∧ p, fn,p0 := f+0 ∧ n− f
−
0 ∧ p, fn,p := f − f0 + fn,p0 .

As the terminal value ξn,p and fn,p(·, 0, 0) are bounded (hence square-integrable) and fn,p is
a continuous generator with a linear growth, in view of the existence result in [5], the BSDE
(ξn,p, fn,p) has a (unique) minimal solution (Y n,p, Zn,p) in S2 ×M2. Set

f̄n,p(s, y, z) = |fn,p0 (s)|+ βy + γ|z|, (s, y, z) ∈ [0, T ]× R× R1×d.

In view of Pardoux and Peng [6], the BSDE (|ξn,p|, f̄n,p) has a unique solution (Ȳ n,p, Z̄n,p) in
S2 ×M2.

By comparison theorem,
|Y n,p
t | ≤ Ȳ

n,p
t .

Letting qn,ps = γ sgn(Zn,ps ) and

Pqn,p = exp{
∫ T

0
qn,ps dWs −

1

2

∫ T

0
|qn,ps |2ds}P,

we obtain,

|Y n,p
t | ≤ Ȳ n,p

t

= Eqn,p
[
eβ(T−t)|ξn,p|

∣∣∣Ft]+

∫ T

t
eβ(s−t)|fn,p0 (s)| ds

≤ eβ(T−t)Eqn,p
[
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

∣∣∣Ft]
≤ 1√

1− γ2

µ2
(T − t)

eβ(T−t) + e2µ
2+β(T−t) E

[
ψµ

(
|ξ|+

∫ T

t
|f0(s)| ds

) ∣∣∣∣ Ft] .
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Since Y n,p is nondecreasing in n and non-increasing in p, then by the localization method in
[2], there is some Z ∈ L2(0, T ;R1×d) almost surely such that (Y := infp supn Y

n,p, Z) is an
adapted solution. Therefore, we have for a > 0, using Jensen’s inequality and the convexity of
ψa(·) := ψ(·, a) together with Assertion (ii) of Proposition 2.3, we have

ψa(|Y n,p
t |) ≤ ψa

(
eβ(T−t)Eqn,p

[
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

∣∣∣Ft])
≤ ψa

(
eβ(T−t)

)
ψa

(
Eqn,p

[
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

∣∣∣Ft])
≤ ψa

(
eβ(T−t)

)
Eqn,p

[
ψa

(
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

) ∣∣∣Ft]
≤ ψa

(
eβ(T−t)

)
E
[
exp

(∫ T

t
qn,ps dWs

)
ψa

(
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

) ∣∣∣Ft] .
For b > γ

√
T , applying Lemma 2.1, we have

ψa(|Y n,p
t |) ≤ ψa

(
eβ(T−t)

)
E
[
exp

(∫ T

t
qn,ps dWs

)
ψa

(
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

) ∣∣∣Ft]
≤ ψa

(
eβ(T−t)

)(
E

[
exp

(
1

2b2

(∫ T

t
qn,ps dWs

)2
)∣∣∣Ft]

+e2b
2
E
[
ψb ◦ ψa

(
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

) ∣∣∣Ft]).
Using Lemma 2.2 and Assertion (iii) of Proposition 2.3, we have for any c > 0,

ψa(|Y n,p
t |)

≤ ψa

(
eβ(T−t)

)( 1√
1− γ2

b2
(T − t)

+ e2b
2+ab2

c E
[
ψa+b+c

(
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

) ∣∣∣Ft]).
For µ > γ

√
T , we can choose a > 0, b > γ

√
T , and c > 0 such that a + b + c = µ. Then, we

have

ψa(|Y n,p
t |)

≤ ψa

(
eβ(T−t)

)( 1√
1− γ2

b2
(T − t)

+ e2b
2+ab2

c E
[
ψµ

(
|ξn,p|+

∫ T

t
|fn,p0 (s)| ds

) ∣∣∣Ft])

≤ ψa

(
eβ(T−t)

)( 1√
1− γ2

b2
(T − t)

+ e2b
2+ab2

c E
[
ψµ

(
|ξ|+

∫ T

t
|f0(s)| ds

) ∣∣∣Ft]).
Letting first n→∞ and then p→∞, we have

ψa(|Yt|)

≤ ψa

(
eβ(T−t)

)( 1√
1− γ2

b2
(T − t)

+ e2b
2+ab2

c E
[
ψµ

(
|ξ|+

∫ T

t
|f0(s)| ds

) ∣∣∣Ft])

≤ ψa

(
eβT
)( 1√

1− γ2T
b2

+ e2b
2+ab2

c E
[
ψµ

(
|ξ|+

∫ T

0
|f0(s)| ds

) ∣∣∣Ft]).
Consequently, we have ψa(|Y |) belongs to the class (D). �

Now we state our main result of this note.
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Theorem 2.5 Assume that the generator f is uniformly Lipschitz in (y, z), i.e., there are β > 0
and γ > 0 such that for all (yi, zi) ∈ R×R1×d, i = 1, 2, we have

|f(t, y1, z1)− f(t, y2, z2)| ≤ β|y1 − y2|+ γ|z1 − z2|.

Furthermore, assume that there exists µ > γ
√
T such that ψ(|ξ|+

∫ T
0|f(t, 0, 0)| dt, µ) ∈ L1(Ω, P ).

Then, BSDE (2.4) admits a unique solution (Y, Z) such that ψ(Y, a) belongs to the class (D) for
some a > 0.

Proof. The existence of an adapted solution has been proved in the preceding theorem. It remains
to prove the uniqueness.

For i = 1, 2, let (Y i, Zi) be a solution of BSDE (2.4) such that ψai(Y
i) belongs to the class

(D) for some ai > 0. Define

a := a1 ∧ a2, δY := Y 1 − Y 2, δZ := Z1 − Z2.

Then both ψa(Y
1) and ψa(Y

2) are in the class (D), since ψ(x, µ) is nondecreasing in µ, and the
pair (δY, δZ) satisfies the following equation

δYt =

∫ T

t
[f(s, Y 1

s , Z
1
s )− f(s, Y 2

s , Z
2
s )] ds−

∫ T

t
δZs dWs, t ∈ [0, T ].

By a standard linearization we see that there exists an adapted pair of processes (u, v) such that
|us| ≤ β, |vs| ≤ γ, and f(s, Y 1

s , Z
1
s )− f(s, Y 2

s , Z
2
s ) = usδYs + δZsvs.

We define the stopping times

τn := inf{t ≥ 0 : |Y 1
t |+ |Y 2

t | ≥ n} ∧ T, n = 1, 2, · · · ,

with the convention that inf ∅ =∞. Since (δY, δZ) satisfies the linear BSDE

δYt =

∫ T

t
(usδYs + δZsvs) ds−

∫ T

t
δZs dWs, t ∈ [0, T ],

we have the following formula

δYt∧τn = E
[
e
∫ τn
t∧τn us ds+

∫ τn
t∧τn 〈vs,dWs〉− 1

2

∫ τn
t∧τn |vs|

2dsδYτn

∣∣∣∣ Ft] .
Therefore,

|δYt∧τn | ≤ E
[
e
∫ τn
t∧τn us ds+

∫ τn
t∧τn 〈vs,dWs〉|δYτn |

∣∣∣∣ Ft]
≤ eβTE

[
e
∫ τn
t∧τn 〈vs,dWs〉|δYτn |

∣∣∣∣ Ft] . (2.6)

Now we show that the family of random variables e
∫ τn
t∧τn 〈vs,dWs〉|δYτn | is uniformly integrable. For

this note that, thanks to Lemma 2.1,

e
∫ τn
t∧τn 〈vs,dWs〉|δYτn | ≤ e

1
2a2

(
∫ τn
t∧τn 〈vs,dWs〉)

2

+ e2a
2
ψa(|δYτn |). (2.7)

For t ∈ [T − a2

4γ2
, T ], we have from Lemma 2.2,

E

[∣∣∣∣e 1
2a2

(
∫ τn
t∧τn 〈vs,dWs〉)

2
∣∣∣∣2
]

= E
[
e

1
a2

(
∫ τn
t∧τn 〈vs,dWs〉)

2
]
≤ 1√

1− 2γ2

a2
(T − t)

≤
√

2,
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and, thus, the family of random variables e
1

2a2
(
∫ τn
t∧τn 〈vs,dWs〉)

2

is uniformly integrable.
On the other hand, since ψa is nondecreasing and convex, we have thanks to Proposition 2.3

(ii)

ψa(|δYτn |) ≤ ψa(|Y 1
τn |+ |Y

2
τn |) = ψa(

1

2
× 2|Y 1

τn |+
1

2
× 2|Y 2

τn |)

≤ 1

2
ψa(2|Y 1

τn |) +
1

2
ψa(2|Y 2

τn |) ≤
1

2
ψa(2)[ψa(|Y 1

τn |) + ψa(|Y 2
τn |)].

From (2.7) it now follows that, for t ∈ [T− a2

4γ2
, T ], the family of random variables e

∫ τn
t∧τn 〈vs dWs〉|δYτn |

is uniformly integrable.
Finally, letting n → ∞ in inequality (2.6), we have δY = 0 on the interval [T − a2

4γ2
, T ]. It

is then clear that δZ = 0 on [T − a2

4γ2
, T ]. The uniqueness of the solution is obtained on the

interval [T − a2

4γ2
, T ]. In an identical way, we have the uniqueness of the solution on the interval

[T − a2

2γ2
, T − a2

4γ2
] . By a finite number of steps, we cover in this way the whole interval [0, T ],

and we conclude the uniqueness of the solution on the interval [0, T ]. �

References

[1] P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, Lp solutions of backward stochastic
differential equations. Stochastic Process. Appl. 108 (2003), no. 1, 109–129.

[2] P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value. Probab.
Theory Related Fields 136 (2006), no. 4, 604–618.

[3] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in
finance. Math. Finance 7 (1997), no. 1, 1–71.

[4] Y. Hu and S. Tang, Existence of solution to scalar BSDEs with L exp
(√

2
λ log (1 + L)

)
-

integrable terminal values. Electron. Commun. Probab. 23 (2018), Paper No. 27, 11pp.

[5] J. P. Lepeltier and J. San Martin, Backward stochastic differential equations with continuous
coefficient. Statist. Probab. Lett. 32 (1997), 425–430.

[6] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation.
Systems Control Lett. 14 (1990), no. 1, 55–61.

7


