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, the existence of the solution is proved for a scalar linearly growing backward stochastic differential equation (BSDE) if the terminal value is L exp µ 2 log (1 + L)integrable with the positive parameter µ being bigger than a critical value µ 0 . In this note, we give the uniqueness result for the preceding BSDE.

Introduction

Let {W t , t ≥ 0} be a standard Brownian motion with values in R d defined on some complete probability space (Ω, F, P), and {F t , t ≥ 0} its natural filtration augmented by all P-null sets of F. Let us fix a nonnegative real number T > 0. The σ-field of predictable subsets of Ω × [0, T ] is denoted by P.

For any real p ≥ 1, denote by L p the set of all F T -measurable random variables η such that E|η| p < ∞, by S p the set of (equivalent classes of) all real-valued, adapted and càdlàg processes {Y t , 0 ≤ t ≤ T } such that

||Y || S p := E sup 0≤t≤T |Y t | p 1/p
< +∞, by L p the set of (equivalent classes of) all real-valued adapted processes {Y t , 0 ≤ t ≤ T } such that

||Y || L p := E T 0 |Y t | p dt 1/p < +∞,
and by M p the set of (equivalent classes of) all predictable processes {Z t , 0 ≤ t ≤ T } with values in R 1×d such that

||Z|| M p := E T 0 |Z t | 2 dt p/2 1/p < +∞.
Consider the following Backward Stochastic Differential Equation (BSDE):

Y t = ξ + T t f (s, Y s , Z s )ds - T t Z s dW s , t ∈ [0, T ]. (1.1)
Here, f (hereafter called the generator) is a real valued random function defined on the set Ω × [0, T ] × R × R 1×d , measurable with respect to P ⊗ B(R) ⊗ B(R 1×d ), and continuous in the last two variables with the following linear growth: By BSDE (ξ,f ), we mean the BSDE with generator f and terminal condition ξ.

|f (s, y, z) -f (s, 0, 0)| ≤ β|y| + γ|z|, (s, y, z) ∈ [0, T ] × R × R 1×d with f 0 := f (•, 0, 0) ∈ L
It is well known that for (ξ, f 0 ) ∈ L p × L p (with p > 1), BSDE (1.1) admits a unique adapted solution (y, z) in the space S p × M p if the generator f is uniformly Lipschitz in the pair of unknown variables. See e.g. [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF][START_REF] Karoui | Backward stochastic differential equations in finance[END_REF][START_REF] Briand | L p solutions of backward stochastic differential equations[END_REF] for more details. For (ξ, f 0 ) ∈ L 1 × L 1 , one needs to restrict the generator f to grow sub-linearly with respect to z, i.e., with some q ∈ [0, 1),

|f (t, y, z) -f 0 (t)| ≤ β|y| + γ|z| q , (t, y, z) ∈ [0, T ] × R × R 1×d
for BSDE (1.1) to have a unique adapted solution (see [START_REF] Briand | L p solutions of backward stochastic differential equations[END_REF]) if the generator f is uniformly Lipschitz in the pair of unknown variables.

In [START_REF] Hu | Existence of solution to scalar BSDEs with L exp 2 λ log (1 + L)integrable terminal values[END_REF], the existence of the solution is given for a scalar linearly growing BSDE (1.1) if the terminal value is L exp µ 2 log (1 + L) -integrable with the positive parameter µ being bigger than a critical value µ 0 = γ √ T , and the preceding integrability of the terminal value for a positive parameter µ less than critical value µ 0 is shown to be not sufficient for the existence of a solution. In this note, we give the uniqueness result for the preceding BSDE under the preceding integrability of the terminal value for µ > µ 0 .

We first establish some interesting properties of the function ψ(x, µ) = x exp µ 2 log (1 + x) . We observe that the obtained solution Y in [START_REF] Hu | Existence of solution to scalar BSDEs with L exp 2 λ log (1 + L)integrable terminal values[END_REF] has the nice property: ψ(|Y |, a) belongs to the class (D) for some a > 0, which is used to prove the uniqueness of the solution by dividing the whole interval [0, T ] into a finite number of sufficiently small subintervals.

Uniqueness

Define the function ψ:

ψ(x, µ) := x exp µ 2 log (1 + x) , (x, µ) ∈ [0, +∞) × (0, +∞).
We denote also ψ(•, µ) as ψ µ (•)

The following two lemmas can be found in Hu and Tang [START_REF] Hu | Existence of solution to scalar BSDEs with L exp 2 λ log (1 + L)integrable terminal values[END_REF].

Lemma 2.1 For any x ∈ R and y ≥ 0, we have

e x y ≤ e x 2 2µ 2 + e 2µ 2 ψ(y, µ). (2.2) Lemma 2.2 Let µ > γ √ T . For any d-dimensional adapted process q with |q t | ≤ γ almost surely, for t ∈ [0, T ], E e 1 2µ 2 | T t qsdWs| 2 F t ≤ 1 1 -γ 2 µ 2 (T -t) . (2.3) Proposition 2.3
We have the following assertions on ψ: Proof. The first assertion has been shown in [START_REF] Hu | Existence of solution to scalar BSDEs with L exp 2 λ log (1 + L)integrable terminal values[END_REF]. It remains to show the Assertions (ii) and (iii). We prove Assertion (ii).

(i) For µ > 0, ψ(•, µ) is convex. (ii) For c > 1, we have ψ µ (cx) ≤ ψ µ (c)ψ µ (x)
ψ µ (cx) = cx exp µ 2 log (1 + cx) ≤ cx exp µ 2 log [(1 + c)(1 + x)] = cx exp µ 2 log(1 + c) + 2 log(1 + x) ≤ cx exp µ 2 log(1 + c) + µ 2 log(1 + x) = ψ µ (c)ψ µ (x).
We now prove Assertion (iii). We have

(ψ b • ψ a ) (x) = ψ a (x) exp b 2 log (1 + ψ a (x)) = x exp a 2 log (1 + x) exp b 2 log 1 + xe a √ 2 log (1+x) ≤ x exp a 2 log (1 + x) exp b 2 log (1 + x)e a √ 2 log (1+x) = x exp a 2 log (1 + x) exp b 2 log (1 + x) + 2a 2 log (1 + x) .
In view of the following elementary inequality:

2a 2 log (1 + x) ≤ a 2 b 2 c 2 + 2c 2 b 2 log (1 + x),
we have

(ψ b • ψ a ) (x) ≤ x exp a 2 log (1 + x) exp b 2 log (1 + x) + a 2 b 2 c 2 + 2c 2 b 2 log (1 + x) ≤ x exp a 2 log (1 + x) exp b 2 log (1 + x) + b a 2 b 2 c 2 + b 2c 2 b 2 log (1 + x) .
Therefore,

(ψ b • ψ a ) (x) ≤ x exp a 2 log (1 + x) exp b 2 log (1 + x) + ab 2 c + c 2 log (1 + x) ≤ xe ab 2 c exp (a + b + c) 2 log (1 + x) .
Consider the following BSDE:

Y t = ξ + T t f (s, Y s , Z s ) ds - T t Z s dW s , (2.4) 
where

f satisfies |f (s, y, z) -f 0 (s, 0, 0)| ≤ β|y| + γ|z|, (2.5) 
with

f 0 := f (•, 0, 0) ∈ L 1 , β ≥ 0 and γ > 0.
Theorem 2.4 Let f be a generator which is continuous with respect to (y, z) and verifies inequality (2.5), and ξ be a terminal condition. Let us suppose that there exists µ > γ √ T such that ψ(|ξ|

+ T 0 |f 0 (t)| dt, µ) ∈ L 1 (Ω, P). Then BSDE (2.4) admits a solution (Y, Z) such that |Y t | ≤ 1 1 -γ 2 µ 2 (T -t) e β(T -t) + e 2µ 2 +β(T -t) E ψ µ |ξ| + T t |f 0 (s)| ds F t .
Furthermore, there exists a > 0 such that ψ(Y, a) belongs to the class (D).

Proof. Let us fix n ∈ N * and p ∈ N * . Set

ξ n,p := ξ + ∧ n -ξ -∧ p, f n,p 0 := f + 0 ∧ n -f - 0 ∧ p, f n,p := f -f 0 + f n,p 0 .
As the terminal value ξ n,p and f n,p (•, 0, 0) are bounded (hence square-integrable) and f n,p is a continuous generator with a linear growth, in view of the existence result in [START_REF] Lepeltier | Backward stochastic differential equations with continuous coefficient[END_REF], the BSDE (ξ n,p , f n,p ) has a (unique) minimal solution (Y n,p , Z n,p ) in S 2 × M 2 . Set f n,p (s, y, z) = |f n,p 0 (s)| + βy + γ|z|, (s, y, z) ∈ [0, T ] × R × R 1×d . In view of Pardoux and Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], the BSDE (|ξ n,p |, f n,p ) has a unique solution ( Ȳ n,p , Zn,p ) in

S 2 × M 2 .
By comparison theorem, |Y n,p t | ≤ Ȳ n,p t . Letting q n,p s = γ sgn(Z n,p s ) and

P q n,p = exp{ T 0 q n,p s dW s - 1 2 T 0 |q n,p s | 2 ds}P,
we obtain,

|Y n,p t | ≤ Ȳ n,p t = E q n,p e β(T -t) |ξ n,p | F t + T t e β(s-t) |f n,p 0 (s)| ds ≤ e β(T -t) E q n,p |ξ n,p | + T t |f n,p 0 (s)| ds F t ≤ 1 1 -γ 2 µ 2 (T -t) e β(T -t) + e 2µ 2 +β(T -t) E ψ µ |ξ| + T t |f 0 (s)| ds F t .
Since Y n,p is nondecreasing in n and non-increasing in p, then by the localization method in [START_REF] Briand | BSDE with quadratic growth and unbounded terminal value[END_REF], there is some Z ∈ L 2 (0, T ; R 1×d ) almost surely such that (Y := inf p sup n Y n,p , Z) is an adapted solution. Therefore, we have for a > 0, using Jensen's inequality and the convexity of ψ a (•) := ψ(•, a) together with Assertion (ii) of Proposition 2.3, we have

ψ a (|Y n,p t |) ≤ ψ a e β(T -t) E q n,p |ξ n,p | + T t |f n,p 0 (s)| ds F t ≤ ψ a e β(T -t) ψ a E q n,p |ξ n,p | + T t |f n,p 0 (s)| ds F t ≤ ψ a e β(T -t) E q n,p ψ a |ξ n,p | + T t |f n,p 0 (s)| ds F t ≤ ψ a e β(T -t) E exp T t q n,p s dW s ψ a |ξ n,p | + T t |f n,p 0 (s)| ds F t .
For b > γ √ T , applying Lemma 2.1, we have

ψ a (|Y n,p t |) ≤ ψ a e β(T -t) E exp T t q n,p s dW s ψ a |ξ n,p | + T t |f n,p 0 (s)| ds F t ≤ ψ a e β(T -t) E exp 1 2b 2 T t q n,p s dW s 2 F t +e 2b 2 E ψ b • ψ a |ξ n,p | + T t |f n,p 0 (s)| ds F t .
Using Lemma 2.2 and Assertion (iii) of Proposition 2.3, we have for any c > 0,

ψ a (|Y n,p t |) ≤ ψ a e β(T -t) 1 1 -γ 2 b 2 (T -t) + e 2b 2 + ab 2 c E ψ a+b+c |ξ n,p | + T t |f n,p 0 (s)| ds F t .
For µ > γ √ T , we can choose a > 0, b > γ √ T , and c > 0 such that a + b + c = µ. Then, we have

ψ a (|Y n,p t |) ≤ ψ a e β(T -t) 1 1 -γ 2 b 2 (T -t) + e 2b 2 + ab 2 c E ψ µ |ξ n,p | + T t |f n,p 0 (s)| ds F t ≤ ψ a e β(T -t) 1 1 -γ 2 b 2 (T -t) + e 2b 2 + ab 2 c E ψ µ |ξ| + T t |f 0 (s)| ds F t .
Letting first n → ∞ and then p → ∞, we have

ψ a (|Y t |) ≤ ψ a e β(T -t) 1 1 -γ 2 b 2 (T -t) + e 2b 2 + ab 2 c E ψ µ |ξ| + T t |f 0 (s)| ds F t ≤ ψ a e βT 1 1 -γ 2 T b 2 + e 2b 2 + ab 2 c E ψ µ |ξ| + T 0 |f 0 (s)| ds F t .
Consequently, we have ψ a (|Y |) belongs to the class (D). Now we state our main result of this note.

Theorem 2.5 Assume that the generator f is uniformly Lipschitz in (y, z), i.e., there are β > 0 and γ > 0 such that for all (y i , z

i ) ∈ R × R 1×d , i = 1, 2, we have |f (t, y 1 , z 1 ) -f (t, y 2 , z 2 )| ≤ β|y 1 -y 2 | + γ|z 1 -z 2 |.
Furthermore, assume that there exists µ > γ √ T such that ψ(|ξ| + T 0 |f (t, 0, 0)| dt, µ) ∈ L 1 (Ω, P ). Then, BSDE (2.4) admits a unique solution (Y, Z) such that ψ(Y, a) belongs to the class (D) for some a > 0.

Proof. The existence of an adapted solution has been proved in the preceding theorem. It remains to prove the uniqueness.

For i = 1, 2, let (Y i , Z i ) be a solution of BSDE (2.4) such that ψ a i (Y i ) belongs to the class (D) for some a i > 0. Define

a := a 1 ∧ a 2 , δY := Y 1 -Y 2 , δZ := Z 1 -Z 2 .
Then both ψ a (Y 1 ) and ψ a (Y 2 ) are in the class (D), since ψ(x, µ) is nondecreasing in µ, and the pair (δY, δZ) satisfies the following equation

δY t = T t [f (s, Y 1 s , Z 1 s ) -f (s, Y 2 s , Z 2 s )] ds - T t δZ s dW s , t ∈ [0, T ].
By a standard linearization we see that there exists an adapted pair of processes (u, v) such that

|u s | ≤ β, |v s | ≤ γ, and f (s, Y 1 s , Z 1 s ) -f (s, Y 2 s , Z 2 s ) = u s δY s + δZ s v s .
We define the stopping times 

τ n := inf{t ≥ 0 : |Y 1 t | + |Y 2 t | ≥ n} ∧ T, n = 1, 2

  for any x ≥ 0. (iii) For any triple (a, b, c) with a > 0, b > 0 and c > 0, we have ψ(ψ(x, a), b) ≤ e ab 2 c ψ(x, a + b + c).

  1 , β ≥ 0 and γ > 0. ξ is a real F T -measurable random variable, and hereafter called the terminal condition or terminal value. By a solution to BSDE (1.1) we mean a pair {(Y t , Z t ), 0 ≤ t ≤ T } of predictable processes with values in R × R 1×d such that P-a.s., t → Y t is continuous, t → Z t belongs to L 2 (0, T ) and t → f (t, Y t , Z t ) is integrable, and P-a.s. (Y, Z) verifies (1.1).

	Definition 1.1

  On the other hand, since ψ a is nondecreasing and convex, we have thanks to Proposition 2.3 (ii)ψ a (|δY τn |) ≤ ψ a (|Y1 τn | + |Y 2 τn |) = ψ a ( From (2.7) it now follows that, for t ∈ [T -a 2 4γ 2 , T ], the family of random variables e τn t∧τn vs dWs |δY τn | is uniformly integrable. Finally, letting n → ∞ in inequality (2.6), we have δY = 0 on the interval [T -a 2 4γ 2 , T ]. It is then clear that δZ = 0 on [T -a 2 4γ 2 , T ]. The uniqueness of the solution is obtained on the interval [T -a 2 4γ 2 , T ]. In an identical way, we have the uniqueness of the solution on the interval [T -a 2 2γ 2 , T -a 2 4γ 2 ] . By a finite number of steps, we cover in this way the whole interval [0, T ], and we conclude the uniqueness of the solution on the interval [0, T ].

	and, thus, the family of random variables e	1 2a 2 ( τn t∧τn vs,dWs )
												1 2	× 2|Y 1 τn | +	1 2	× 2|Y 2 τn |)
			≤	1 2	ψ a (2|Y 1 τn |) +	1 2	ψ a (2|Y 2 τn |) ≤	1 2	ψ a (2)[ψ a (|Y 1 τn |) + ψ a (|Y 2 τn |)].
	Therefore,										
			|δY t∧τn | ≤ E e	τn t∧τn us ds+ τn t∧τn vs,dWs |δY τn | F t
						≤ e βT E e	τn t∧τn vs,dWs |δY τn | F t .	(2.6)
	Now we show that the family of random variables e	τn t∧τn vs,dWs |δY τn | is uniformly integrable. For
	this note that, thanks to Lemma 2.1,				
		e	τn t∧τn vs,dWs |δY τn | ≤ e	1 2a 2 ( τn t∧τn vs,dWs )	2	+ e 2a 2 ψ a (|δY τn |).	(2.7)
	For t ∈ [T -a 2 4γ 2 , T ], we have from Lemma 2.2,
	E e	1 2a 2 ( τn t∧τn vs,dWs )	2 2	= E e	1 a 2 ( τn t∧τn vs,dWs )	2	≤	1 a 2 (T -t) 1 -2γ 2	≤	√	2,

, • • • , with the convention that inf ∅ = ∞. Since (δY, δZ) satisfies the linear BSDE δY t = T t (u s δY s + δZ s v s ) ds -T t δZ s dW s , t ∈ [0, T ], we have the following formula δY t∧τn = E e τn t∧τn us ds+ τn t∧τn vs,dWs -1 2 τn t∧τn |vs| 2 ds δY τn F t . 2 is uniformly integrable.
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