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Summary

� The role of silicon (Si) in alleviating biotic and abiotic stresses in crops is well evidenced by

empirical studies; however, the mechanisms by which it works are still poorly known. The aim

of this study is to determine whether or not phytolith composition and distribution in wheat

are affected by drought and, if so, why.
� Durum wheat was grown using hydroponics in the presence of polyethylene glycol (PEG)-

6000 to perform a water-stress simulation. We developed an original method for in situ anal-

ysis of phytoliths in leaves via X-ray imaging.
� PEG was efficient in inhibiting water uptake by roots and creating stress, and prevented a

small fraction of Si from being accumulated in the shoots. The application of Si with PEG

maintained shoot and root fresh weights (FW) and relative water content at higher values

than for plants without Si, especially at PEG 12%.
� Our data show that, under water stress in the presence of Si, accumulation of phytoliths

over the veins provides better support to the leaf, thus allowing for a better development of

the whole plant than in the absence of Si. The development of silicified trichomes in durum

wheat depends primarily on the availability of Si in soil and is not an adaptation to water stress.

Introduction

Drought stress is of increasing concern because its impact on crop
production is expected to increase as a result of global warming
(Tubiello et al., 2007). One approach to mitigating the effect of
global warming on crop production is to select crops adapted to
water shortage. In this regard, it is required that we improve our
knowledge on the interactions between plants and soil (Velde &
Barr�e, 2010), and more specifically on the role of elements (such
as silicon, Si) that have been neglected in the past. Silicon, the
most common element in the Earth’s crust after oxygen, accumu-
lates highly in the shoots of many terrestrial plants (1–10% DW),
particularly monocots (Hodson et al., 2005). Silicon generally is
not considered as an essential nutrient but is often beneficial for
crops under biotic and abiotic stresses (Ma, 2004; Sacala, 2009;
Guntzer et al., 2012; Zhu & Gong, 2014; Keller et al., 2015;
Rizwan et al., 2015).

The amount of Si/phytoliths (microscopic particles of silica
formed in living plants) accumulated in plants depends on water
and soil Si availability (Jones & Handreck, 1965; Ma & Taka-
hashi, 2002; Dietrich et al., 2003; Henriet et al., 2008; Melzer
et al., 2012; Gocke et al., 2013; Quigley & Anderson, 2014),
plant taxa (Hodson et al., 2005; Ma & Yamaji, 2008; Cornelis
et al., 2011; Katz et al., 2013) and environmental factors such as

grazing (McNaughton et al., 1985; Melzer et al., 2010; Garbuzov
et al., 2011; Cooke & Leishman, 2012; Soininen et al., 2013;
Hartley et al., 2015) or temperature (Dey et al., 2015). It has
been shown that silica concentration is significantly correlated
with transpiration rates (Jones & Handreck, 1965; Hutton &
Norrish, 1974; Euliss et al., 2005; Faisal et al., 2012), although
the active uptake of Si may not allow for a direct quantification
of transpiration (Jarvis, 1987; Mayland et al., 1991; Gocke et al.,
2013).

The beneficial effect of Si for plants affected by drought stress
is still not well established and appears to be involved in improv-
ing water status, osmotic adjustment, photosynthesis, antioxidant
defense and the balance of nutrient uptake (Gong et al., 2003;
Hattori et al., 2005; Eneji et al., 2008; Zhu & Gong, 2014).
The role of Si in alleviating water stress can be further assessed

by the analysis of Si deposited in the plants as phytoliths. Si
deposited beneath the leaf cuticle forms a Si-cuticle double layer
that may decrease transpiration in rice (Yoshida et al., 1962; Ma,
2004). When drought-stress increases, grasses also accumulate
more Si in their leaf epidermis, particularly in the bulliform (mo-
tor) cells (Issaharou-Matchi et al., 2016). In paleoclimatological
studies, the relative abundance of silicified bulliform cells is used
to infer aridity (Bremond et al., 2004; Novello et al., 2012).
However, other studies showed that the silicified bulliform cells
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are favored when transpiration is high (Takeoka et al., 1984) or
simply when the Si content in soils is high (Fernandez Honaine
& Osterrieth, 2012). According to Takeda et al. (2013), silicified
trichomes could efficiently help plants to absorb visible light.
Waterkeyn et al. (1982) suggested that silicified trichomes are
areas of intense transpiration and may thus contribute to cooling
plants; however, this remains speculative (Hodson et al., 1985;
Kaufman et al., 1985). Issaharou-Matchi et al. (2016) showed
that in the drought-adapted grass Pennisetum pedicellatum grow-
ing in South Niger, the amount of silicified trichomes remained
unchanged despite increasing drought stress. Therefore, the role
of phytolith morphotypes in alleviating drought stress remains
controversial.

In order to determine if plants develop specific phytolith distri-
bution under drought stress, we conducted hydroponic experi-
ments using polyethylene glycol (PEG)-6000 for simulating
water stress at the root level (Kaufmann & Eckard, 1971).
Durum wheat was considered here because it is widely cultivated
in dry climate areas. We monitored the growth and physiological
parameters that may be affected by drought and assessed the
putative role of silicon application for mitigating the impact of
drought. We analyzed phytolith morphotypes under an optical
microscope after a wet extraction/acid digestion, and we per-
formed in situ analysis of phytoliths in leaves via X-ray imaging:
combining 2D chemical mapping using micro X-ray fluorescence
spectroscopy (micro-XRF) and 3D imaging using X-ray com-
puted tomography (CT).

Materials and Methods

Experimental layout

Durum wheat variety Claudio (Triticum turgidum subsp. durum
cv Claudio W.) was used as a test case against the application of
silicon as silicic acid neutralized by KOH (Rizwan et al., 2016)
and polyethylene glycol (PEG)-6000 for water stress and grown
in hydroponics in controlled conditions. PEG-6000 (VWR
Chemicals, Strasbourg, France) was used to develop slight to
moderate water stress with the addition of 6% and 12% PEG
solution. The seeds were washed with distilled water, sterilized
with a 2.6% solution of sodium hypochlorite for 3 min, and then
washed again with distilled water for six to seven times to remove
the excess chloride. The seeds were then imbibed for 4 h in water
by maintaining aeration to avoid fermentation. After 4 h, the
seeds were shifted to Petri dishes with filter paper. The seeds ger-
minated after 5 d. The seedlings were then transferred in 12-l
plastic buckets containing nutrient solution (KH2PO4, K2HPO4,
MgSO4�7H2O 0.5 mM, KNO3, Ca (NO3)2�4H2O 1mM, KCl
0.125 mM, H3BO3 50 lM, MnSO4�H2O 12 lM, CuSO4�H2O
0.7 lM, ZnSO4�7H2O 1 lM, MoO4Na2�2H2O 0.25 lM, and
FeIII-EDTA-Na 100 lM) prepared with Milli-Q (Millipore)
water. There were six treatments: control, PEG 6%, PEG 12%,
silicon (Si) 1.5 mM, Si 1.5 mM + PEG 6%, and Si
1.5 mM + PEG 12%. Additional potassium (K) produced by Si
supplementation was subtracted from KNO3 and the resultant
nitrate loss was supplemented with dilute nitric acid. One

hundred plants were maintained in each bucket with continuous
aeration. These plants were grown for 30 d by maintaining a
short day duration of light 8 h : 16 h, day : night at 187 lmol
photon m�2 s�1 light intensity. The pH was adjusted to
6.5� 0.5 daily with 1 mM 2-morpholinoethanesulphonic acid
(MES) buffer. Aeration was maintained via an aeration pump.
Nutrient solutions were changed every 3 d during the first 10 d
and every 2 d during the remaining 20 d.

Analyses of plants

The root and shoot fresh weight (FW) were measured on 17–20
selected plant replicates. Technical problems precluded the mea-
surements of dry weight (DW). The values of the predawn leaf
water potential (LWP) were measured on leaf blades using a
Scholander-type pressure chamber. The measurements were
made on one leaf per seedling and five to six seedlings per treat-
ment at the end of the night period. The fully expanded younger
leaves were also collected (n = 4) to measure relative water con-
tent (RWC) according to Weatherley (1950):

RWC ¼ ðFW �DWÞ
ðturgid weight�DWÞ � 100:

Plants were oven-dried at 70°C and DW was recorded when
constant weight was reached. The turgid weight was obtained by
dipping a leaf in water for 4 h at room temperature, followed by
weighing the leaf and then drying it at 70°C for 72 h. Phy-
tometabolites were monitored using nondestructive Multiplex®

(Orsay, France) equipment that uses fluorescence technology
with multiple excitations to measure chlorophyll and phenolic
compound indices. Only the simple fluorescence ratio under red
(SFR_R) excitation was retained to estimate the chlorophyll con-
tent of seedlings just before harvest. The results are expressed as a
mean of 18 measurements per condition in Multiplex units.

The Si concentration of shoots was determined using 1%
Na2CO3 extraction at 85°C (Meunier et al., 2014). Approxi-
mately 30 mg of dried plant material were mixed with 40 ml of
1% Na2CO3 solution in a polypropylene bottle and placed in a
shaker bath at 85°C and 100 rpm. In principle, all of the Si is dis-
solved after 1 h. A 1-ml aliquot was removed after 3, 4 and 5 h
from each sample bottle and placed into pre-labelled 22-ml scin-
tillation vials containing 9 ml of a solution of 0.021 N HCl to
neutralize Na2CO3. Dissolved Si (DSi) was obtained by the
molybdenum blue colorimetric method using Spectroquant®re-
actants manufactured by Merck (Fontenay sous Bois, France).
Absorption was measured at 820 nm with a Jasco V-650
spectrometer. Calibration lines (R2 > 0.999) were done using
dilute solutions from a standard Si solution at 1 g l�1

(PlasmaCAL). DSi was calculated by averaging the three values at
3, 4 and 5 h.

Phytoliths were extracted in six sets of plant samples, one from
each treatment. Each set included five specimens, with each set
treated together. Shoots only were analyzed after 30 d of growth,
including all leaves and stems. Phytoliths were extracted using
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concentrated HNO3, HClO4 and H2O2 at 50°C to destroy
organic matter before observation and counting under optical
microscope. Slides were prepared with Canada balsam, and then
observations were conducted at 9 500 magnification. Phytolith
morphotypes were described following the international phy-
tolith nomenclature (Madella et al., 2005) and counted separately
to evaluate the degree of silicification of different epidermal cells.
In each slide, phytoliths were counted along five random lines,
and the results were compared through statistical analysis.

All of the data were analyzed statistically using one-way
ANOVA with XLSTAT (Addinsoft) at a significance level of
P < 0.05 via the Tukey test.

In situ phytolith analysis

Leaves for 2D and 3D analyses were prepared using the critical
point drying method following two steps: fixation and dehydra-
tion in a 2.5% glutaraldehyde solution buffered at pH = 7.2 in
0.1M sodium phosphate, followed by soaking in concentrated
solutions of ethanol (from Leica EM CPD300 Application Book-
let 01/12); and supercritical drying using Leica EM CPD300°,
which consists of the replacement of ethanol by CO2 in the
supercritical state. Silicon (Si) and calcium (Ca) were detected
and mapped on dried leaf pieces using an X-ray analytical micro-
scope (XGT-7000; Horiba, Kyoto, Japan) equipped with a
focused X-ray source of 10 lm (Rh target, accelerating voltage of
15 kV, current 0.92 mA). Chemical maps of 2569 256 pixels
with a pixel size of 10 lm and a total counting time of
209 1000 s were recorded.

3D imaging was performed using both micro- and nano-X-ray
computed tomography (micro- and nano-CT). Imaging of the
leaves was performed using a microXCT-400 X-ray microscope
(Zeiss Xradia). Scans were performed at 40 kV (W target) and
250 mA with 2001 projections (angle step of 0.18° from �180
to 180°) and a 10-s exposure time per projection for a total scan
time of 6 h and 30 min. Data were acquired with a 9 10 magnifi-
cation optical objective. The isotropic voxel size achieved under
these conditions was 1.77 lm, and the field of view (FOV) was
1.859 1.859 1.85 mm3. A single trichome was imaged at the
nanoscale using an UltraXRM-L200 X-ray microscope (Zeiss
Xradia) equipped with a copper X-ray source (rotating anode). A
total of 901 projections from �90 to 90° with an angle step of
0.2° were recorded, with an exposure time of 40 s per projection
for a total scanning time of 12 h. This equipment provides 3D
images with a unique resolution at the laboratory scale, that is, a
voxel size of 63.5 nm, and an FOV of 659 659 65 lm3. Recon-
struction of the volume was performed with the XMRECON-

STRUCTED-PARALLEL BEAM-9.0.6445 software using a Filtered Back
Projection algorithm.

Data normalization and thresholding was performed using
AVIZO 8.0 software (Hillsboro, OR, USA). First, histograms of
the reconstructed volumes were extracted. These histograms rep-
resent the X-ray attenuation in each voxel (expressed as an arbi-
trary gray scale value, GSV) of the analyzed volume as a function
of the number of voxels for each GSV (intensity). Normalization
of the histograms was performed using air as an internal standard.

This consisted of shifting and multiplying the histogram GSV
axis by given factors so that all of the air contributions, fitted with
a Gaussian function, overlap (same maximum position and full-
width at half maximum). To obtain in situ 3D images of phy-
toliths, we compared the histograms of GSVs of leaves with and
without Si, and the images obtained after treatment of the gray
levels by AVISO; this comparison allowed for isolating phytoliths
already recognized under the optical microscope and Micro-XRF
2D images. 2D and 3D analyses were completed by scanning
electromicroscopy (SEM) at CEREGE (Hitachi S300N at 20 kV;
Hitachi, Tokyo, Japan) and at the Centre Interdisciplinaire de
Nanosciences de Marseille (CINaM, JEOL JSM-6320F at
15 kV).

Results and Discussion

Effect of PEG and Si on plant development

Compared with the control (no silicon, Si), application of
polyethylene glycol (PEG) at both concentrations significantly
decreased the shoot and root FW as well as relative water content
(RWC) (Fig. 1). The chlorophyll index and leaf water potential
(LWP) were reduced as well, but only significantly with
PEG12%. PEG was therefore efficient in inhibiting water uptake
by roots and creating stress. Our results are in broad agreement
with previous studies (Kaufmann & Eckard, 1971; Chazen et al.,
1995; Pei et al., 2010; Vijayakumari & Puthur, 2016). Applica-
tion of Si to the control conditions (no PEG) had no significant
effect on FW, LWP, RWC and chlorophyll content, but led, as
expected, to a greater Si concentration in the shoots (Fig. 1). Sili-
con concentrations measured in the shoots (1.5–1.7% DW) fall
within the range of values obtained from previous studies of
wheat grown hydroponically (Rizwan et al., 2016) and in fields
(Merah et al., 1999), and within the range of values obtained for
Poales (Hodson et al., 2005). Drought stress induced by PEG led
to a low but significant decrease in Si concentration (from 1.7 to
1.3–1.2% wt). Silicon application did not improve LWP
(PEG12% and Si+PEG12% treatments led to similar values c.
�3.3MPa), but it allowed RWC to remain at c. 60%, despite
PEG treatments. Hence, PEG prevented a small fraction of Si
from being accumulated in the shoots. The addition of Si is
therefore likely to limit transpiration, as shown by previous stud-
ies (Gao et al., 2006; Saud et al., 2014).
The Si concentration in plants where Si was not applied (with

PEG or not) was not null, suggesting contamination during the
experiment. This contamination probably originated from the
chemical products and glassware used for the preparation of
the nutritive solution. The total lack of Si in the plants would have
suggested that Si is not an essential nutrient for the growth of these
varieties. However, the only inference we can make is that the
addition of Si to the nutrient solution did not affect plant develop-
ment when water and nutrients were not limiting factors.

Silicon application in the nutrient solution provides some evi-
dence that Si mitigates the effect of water stress by improving
shoot and root development, and water uptake and retention in
the leaves of durum wheat, in agreement with previous studies
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(Gong et al., 2003; Ahmad et al., 2007; Pei et al., 2010; Sonobe
et al., 2011). The mechanism by which Si increases root water
uptake is not well known and may imply a change in hydraulic
conductivity and/or osmotic adjustment in the roots, as well as
possible regulation by gene expression (Liang et al., 2015; Exley,
2016; Shi et al., 2016). Drought stress also affected photosyn-
thetic pigments, as observed by Barbosa et al. (2015), implying
that Si application significantly improved the functioning of the
photosynthetic machinery, contributing to a better plant growth
(e.g. Rizwan et al., 2015).

Insights from the micro-XRF and CT imaging results

Histograms of Si-treated samples from the micro X-ray fluores-
cence spectroscopy (micro-XRF) and X-ray computed tomogra-
phy (CT) images showed a large contribution at the highest gray
scale value (GSV) (Fig. 2). This contribution does not appear on
the histograms of Si-free samples. Voxels with the highest GSV,
corresponding to the denser parts of the leaves, are then

attributed to Si. The distribution of the denser voxels was fitted
using the Gaussian curve Gauss 4 in Fig. 2. Three other Gaussian
curves were required to fit the remaining GSV corresponding to
air and plant material. The threshold value allowing the visualiza-
tion of Si was set at the intersection between the Gauss 3,
attributed to the plant material, and Gauss 4, attributed to Si.
The distribution of voxels isolated from the thresholding proce-
dure (attributed to phytoliths) was similar to the Si distribution
in the leaf obtained by micro-XRF (Figs 3, 4). Calcium-rich spots
(Fig. 3, green pixels) observed by micro-XRF were not visualized
by micro-CT. The comparison of the 2D chemical map and 3D
image of the same sample region validates the thresholding proce-
dure determined to isolate and visualize phytoliths. Micro-XRF
2D images therefore provide evidence that silicification occurred
essentially in the costal areas over the veins and as isolated tri-
chomes (Figs 3, 4). Nano-CT images showed that silica in durum
wheat leaves was also deposited as a thin silica layer, cementing
cells of the epidermis (Fig. 5) sometimes embedded with tri-
chomes.
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Fig. 1 Mean values for (a, b) growth
parameters, (d) silicon (Si) content, (c, e) leaf
water parameters and (f) chlorophyll index of
durum wheat (Triticum turgidum subsp.
durum cv Claudio W.) subjected or not to
polyethylene glycol (PEG) and Si treatments.
Error bars (only the upper limit is shown)
represent +1 SD. Different letters indicate
that the means are statistically different at
the P ≤ 0.05 level.
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Distribution of phytoliths in the leaves

As expected, without Si treatment, plants produced very few phy-
toliths, and proper counting could not be conducted under the

microscope. Plants that received Si treatment, on the contrary,
produced enough silica bodies and > 1000 phytoliths could be
counted for each Si treatment (Si, Si+PEG6%, and Si+PEG12%)
(Table 1). Silica bodies originating from cells of the upper epider-
mis, such as crenate and rondel morphotypes from silica cells
(20–100 lm long, typical for Pooideae, Twiss et al., 1969), elon-
gate smooth and sinuate bodies from long cells (20–100 lm
long), silica casts of trichomes (10–40 lm long) and trichome
base cells, are the most abundant phytoliths, whereas phytoliths
from parenchyma/collenchyma cells (mainly blocky bodies) are
rare (Table 1; Fig. 6). This pattern is common in grasses (e.g.
Hodson & Sangster, 1988; Ma & Takahashi, 2002). The micro-
scopic analysis of the phytolith particles in plants that received Si
application shows that silicification in durum wheat leaf blades
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Fig. 2 Distribution of gray scale values (GSV) from the micro-computed
tomography (micro-CT) images: fit of micro-CT normalized histograms of
(a) a control leaf and (b) a leaf treated with silicon 1.5mM, with four
Gaussian curves. Each curve is attributed to a material in the sample, with
a given X-ray attenuation. Gauss1 represents voxels of air; Gauss4
represents the denser voxels with higher X-ray attenuation, attributed to
phytoliths. The threshold value used to isolate phytolith voxels (red frame)
was selected at the intersection of curves Gauss3 and Gauss4. Similar fits
were obtained for leaves treated with polyethylene glycol (PEG) 6%, and
PEG 12%. (c) Normalized histograms of reconstructed volumes obtained
by micro-CT for leaves with the six sets of treatment. The normalization
procedure was based on the superimposition of the full-width at half
maximum (FWHM) and the maximum position of all Gauss1 (air)
functions. Si, silicon.

Fig. 3 Micro X-ray fluorescence spectroscopy (micro-XRF) (1 px = 20 lm,
field of view (FOV) = 2.569 2.56mm2) 2D imaging of a dried leaf treated
with silicon 1.5 mM (bar, 1000 lm) showing the distribution of silicon (Si)
(red) and calcium (Ca) (green); the square is the position of the micro-
computed tomography (micro-CT) image shown in Fig. 4(b).
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barely occurred in internal tissues but was important in the epi-
dermis, particularly in the costal areas, in good agreement with
the micro-XRF and micro-CT imaging. Surprisingly, we
observed no cuneiform phytoliths originating from bulliform
cells. Silicification of bulliform cells is common in wheat leaves
(Hodson & Sangster, 1988) but may require > 30 d of growth to
produce phytoliths (Motomura et al., 2004).

Silica layers observed under nano-CT imaging (Fig. 5) were
interpreted to be similar to plate fragments of 1- to 4-lm thick
and some hundreds of micrometers in width under an optical
microscope (Fig. 6). The relative abundance of the plate frag-
ments observed during phytolith analysis cannot be used to infer
the importance of the extracellular silica sheet because fragmenta-
tion may have occurred during phytolith extraction. The extent

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Volume renderings of reconstructed
micro-computed tomography (micro-CT)
images of (a) a control leaf, a leaf treated
with (b) silicon 1.5mM, (c) polyethylene
glycol (PEG) 6%, (d) silicon 1.5mM + PEG
6%, (e) PEG 12% and (f) silicon
1.5mM + PEG 12%. Thresholded voxels,
attributed to phytoliths, are false-colored in
red (surface rendering). Bars, 1500 lm.
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of these plates over the leaf blade is not visible either on the
micro-CT images because of the image resolution
(1 vx = 1.76 lm, which is comparable to the thickness of the sil-
ica layer of only 1–1.3 lm) and/or because of the likely low den-
sity of the silica layer. It was not possible, therefore, to evaluate
differences between treatments, if any, in the silica cuticle layer
structure in durum wheat leaves. Plates are interpreted to be simi-
lar to the cuticle layers observed in the inflorescence bracts for the
drought-adapted grass Phalaris in various British grass genera and
some cereals (Wynn Parry & Smithson, 1964) and in rice

(Yoshida et al., 1962). In the husk epidermis of rice, the silica
layer is as thick as 20–30 lm (Yoshida et al., 1962; Gu et al.,
2013). This silica layer superimposed over the epidermis below
the (organic) cuticle likely constitutes a continuous external layer
that can prevent fungal penetration and/or transpiration through
the epidermis (see review in Liang et al., 2015).

Distribution of phytoliths and water stress

With PEG 6%, silica deposits were discontinuous in the costal
areas and silicified trichomes were scarce on the epidermis
(Fig. 4d). With PEG 12%, silicification was even weaker and
restricted to the costal areas, where crenate silica bodies form
dashed lines and silicified trichomes were barely visible (Fig. 4f).
A simple counting of trichomes from the micro-CT images
showed that the density of silicified trichomes decreased from
51 mm�2 under nondrought condition (+Si) to 21 mm�2 under
Si+PEG 6% and 5 mm�2 under Si+PEG 12% (Table 2). The
decrease in trichome number in leaves with PEG treatments was
not reflected by the relative abundance of phytolith morphotypes,
as obtained by counting under the microscope (Table 1). This is
likely because phytolith countings did not take into account the
decrease in Si content in leaves with PEG treatments. In all PEG
treatments, trichomes were less abundant than the silica cells pre-
sent all over the veins (Table 1); thus, during PEG treatments,
trichomes were more affected than the silica cells. Therefore,
under drought conditions, silicification would have become
restricted to the silica cells over the veins and silicified trichomes
did not appear as an indicator of water stress.

Trichomes are common in silicified plant cells in grasses (Mul-
holland & Rapp, 1992), including durum wheat (Kaplan et al.,
1992). They constitute one of the initial stages of silicification in
grasses (Kaufman et al., 1981; Sangster et al., 1983; Motomura
et al., 2006). For example, de Souza et al. (2014) found that soy-
bean treated with silica showed an increase in trichome density,
thereby contributing to the defense against insects. The addition
of Si to hydroponic nutrient media increased resistance of
cucumber to powdery mildew, where silica accumulation was
restricted to trichomes (Samuels et al., 1993). Here, we did not
observe the development of silicified trichomes as a defense
against stress, contrary to the results in the literature.

Trichomes also were detected in leaves from plants where Si
was not applied (–Si), but they were difficult to count using
micro-CT images because of their small size and their lack of Si
content. Such nonsilicified trichomes were not detected in leaves
treated with Si. Using Energy Dispersive Spectroscopy (EDS)
under SEM, these (–Si) trichomes (Fig. 6) were found to contain
Si in low amount (data not shown), as observed in the bulk
(Fig. 1). The counting using SEM images showed that (–Si) tri-
chomes were rare on the leaf blade in the control plants (density
of 0.3 mm�2 calculated from a count of two non-Si trichomes on
a leaf surface of 7.1 mm2), whereas they were more abundant
under drought conditions (1.5 mm�2 at PEG 12% as 15 tri-
chomes counted on 9.8 mm2). The increase in (–Si) trichomes in
the PEG 12% treatment (Table 2) may indicate a reaction to
water stress, but more measurements are required. There is good

F(b)

(a)

Fig. 5 Magnified view of trichomes from (a) a leaf without silicon (Si)
treatment in scanning electromicroscopy (SEM); Energy dispersive
spectroscopy (EDS) spectra (not shown) showed that Si is present but not
as dominant as is the case for silicified trichome; (b) a leaf treated with
silicon 1.5 mM observed using nano-X-ray computed tomography (nano-
CT) (voxel size of 63.5 nm): volume rendering of the reconstructed volume
(bar, 50 lm).
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evidence that trichomes, for example, without any reference to
their Si content play a role as a defense against herbivory (Dalin
et al., 2008). Leaf pubescence is also documented to be an

adaptation to aridity (Johnson, 1975; Ehleringer & Mooney,
1978; Sandquist & Ehlinger, 1998; Benz & Martin, 2006),
although the exact mechanisms are still to be understood. Wellso

Table 1 Relative abundance (in % relative to total phytolith sum) of phytolith morphotypes obtained from durum wheat (Triticum turgidum subsp. durum
cv Claudio W.) plants (shoots only) grown under silicon (Si), Si+PEG6% and Si+PEG12% treatments

Si Si+PEG6% Si+PEG12%
Total counts 2116 1898 1351
Phytolith morphotypes %

Sub-cuticular
Plate (2–4-lm thick silica layer, may be several hundred micrometers wide) 23.7 C 16.3 CDE 22.2 CD

Upper epidermis
Silicified trichome (tip and tip+base) 6.8 EFG 5.8 FG 6.0 EFG
Silicified epidermal tissue (multicellular) and stomata 1.3 G 0.3 G 0.4 G
Crenate bodies from silica cells 48.1 B 56.5 A 54.3 AB
Rondel (oblong bodies) from silica cells 2.5 G 1.3 G 2.4 G
Elongate smooth or sinuate body from long cells 13.6 DEF 14.5 DE 10.9 DEGF

Parenchyma/Collenchyma
Blocky bodies (parallepipedal) 2.6 G 0.8 G 1.4 G

Unkown anatomical origin
Irregular bodies with angular edges (sclereids?) 0.4 G 0.9 G 0.1 G
Unidentified silica bodies 2.2 G 2.4 G 2.5 G

Different letters indicate that the means are statistically different at P ≤ 0.05 level. PEG, polyethylene glycol.

Fig. 6 Micrographs of phytoliths extracted
from the leaves of durum wheat (Triticum
turgidum subsp. durum cv Claudio W.).
Phytoliths shown here are silicified trichomes
(b, base of trichome; t, trichome), silicified
epidermal short cells (ro, rondel; cr, crenate),
silicified epidermal long cells (el, elongate
smooth or with sinuous edges), fragments of
the silica layer (pl, plate), and silicified
parenchyma or cork tissue fragments in
strand (p/c); un, unidentified silica bodies.
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& Hoxie (1982) showed that the density of trichomes is posi-
tively correlated with temperature and negatively correlated with
soil moisture in wheat grown in a growth chamber.

Beemster & Masle (1996) analyzed the effects of soil resistance
to root penetration on the distribution of leaf cells in wheat
(Triticum aestivum) and found that stressed roots led to an
increase in the proportion of trichomes on the leaves. Doroshkov
et al. (2011) showed that leaf trichomes are different from a given
cultivar of wheat grown in a glasshouse and in field conditions: in
the field, trichomes are more abundant and shorter than the ones
found on wheat grown in controlled conditions, and those char-
acteristics are attributed to adaptation to the more severe field
conditions.

For the first time, here we have considered the silicification of
trichomes as well as the trichome density as a plant response to
drought stress (applied at the root level). The results of the pre-
sent study may not be apparently in agreement with the litera-
ture, where the increase in trichome density is commonly
interpreted as a response to plant stress. However, here, we show
that trichomes may be silicified or nonsilicified and that they
probably do not play the same role, if any, in the plant. In con-
trast to the conclusions found in the literature, the formation of
silicified trichomes cannot be interpreted here as an adaptation to
water stress, but simply as resulting from Si bioavailability. Our
results imply that if Si is less available for the plant, then silicifica-
tion preferentially occurs over the veins and not in the trichomes.
Veins are the principal avenues for the transportation of Si in the
leaves (Whang et al., 1998; Rudall et al., 2014). Taking into
account the benefit of Si for improving the growth of plants
(Fig. 1), our results suggest that it is the phytoliths accumulated
over the veins that are at the origin of the improvements and not
the silicified trichomes. Accumulation of Si in phytoliths over the
veins may provide support to the leaf, thus allowing for better
interception of light and consequently a better photosynthesis
(Kaufman et al., 1985), as well as better water transport. Accord-
ingly, the silicified trichomes, having no function of support,
may act as a reservoir for the excess of Si once the cells above the
veins are filled. The storage function of trichomes also was sug-
gested by Balestri et al. (2014) for heavy metals in fern. This
effect may be useful for documenting the variability of Si

concentration as a function of climatic parameters including arid-
ity or evapotranspiration. Indeed, our results are in good agree-
ment with those of Fernandez Honaine & Osterrieth (2012) in
that the Si content and phytolith distribution are mainly con-
trolled by Si availability. Thus, the use of phytolith types as indi-
cators of aridity or other paleoenvironmental conditions should
be evaluated carefully.

Conclusion

Our experiments have shown that the simulation of water stress
by PEG addition has affected the development of durum wheat.
Although the water stress applied was moderate (not all growth
parameters were affected), Si was efficient at mitigating the early
negative effect of drought. PEG affected not only the concentra-
tion of Si in the shoots, but also its distribution by limiting the
formation of silicified trichomes. The mitigating effect of Si was
attributed to the reinforcement of the structure of leaves through
the preferential phytolith accumulation above the veins. The
development of silicified trichomes in durum wheat depends pri-
marily on the availability of Si in soil and is not an adaptation to
water stress.
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