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Abstract—Cable-in-conduit conductors (CICCs) are composed 

of a large number of strands (superconducting composites and 
copper strands) twisted together in several stages with different 
twist pitches. They are widely used in large fusion tokamaks such 
as JT-60SA or ITER. However, because of their complex 
transposed geometry at strand scale, the knowledge of AC 
coupling losses in these conductors is limited and still has some 
improvement margins to capture its complexity while the 
prediction of their behavior under transient regimes (e.g. central 
solenoid) is of first importance to assess a safe operation in 
tokamaks. Consequently, we have carried out an in-depth 
theoretical generic study of a single stage of a CICC and 
analytically derived the expression of coupling losses using 
physical parameters (time constant and partial shielding 
coefficient) determined from electromagnetic and geometrical 
properties. Our approach has been inspired by the MPAS model 
(extensively used on the experimental ITER database) but starts 
from the analytical description of a single stage and aims at 
reaching the CICC scale in an iterative way. 
 

Index Terms—AC losses, analytical, superconducting, 
transient regimes 
 

I. INTRODUCTION 
 common way [1]–[5] to model coupling losses occurring 
in a superconducting multifilamentary composite subject 

to a transverse and uniform time-varying magnetic field is to 
use the equation 

𝐵!"# + 𝜏𝐵̇!"# = 𝐵$          (1) 
which quantifies the local uniform induction 𝐵!"# inside the 

composite as a function of the uniform external magnetic 
excitation 𝐵$ and of the time constant 𝜏 of the coupling 
currents. 
 The computation of the instant power dissipated by AC 
coupling currents per unit volume of composite leads to the 
following expression 

     𝑃 = 2𝜏𝐵̇!"#
%/𝜇&              (2) 

It has been shown [1]–[3] that the single time constant 
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approach above is valid for any cylindrical composites with a 
central filamentary zone under any magnetic excitation 
regime. This approach still holds for composites with more 
complex design and even for CICCs provided that the 
magnetic excitation variation is slow compared to the largest 
time constant of the system (e.g. for the TFJS1 conductor, 
under 𝑓 = 0.2	𝐻𝑧 (5	𝑠) the discrepancy between the 
experimental data [6] and the single time constant approach 
using 𝑛𝜏 = 62	𝑚𝑠 is lower than 10%, which is consistent with 
the fact that 5	𝑠 ≫ 62	𝑚𝑠). 

 However, when the condition of slow variation is not 
fulfilled, the single time constant approach is no longer 
sufficient to describe the system response as depicted in [7]–
[12].  After several studies [7], [9], [11], [13], the Multizone 
Partial Shielding (MPAS) model [6] offers another analytical 
perspective to treat these cases by assigning a basic time 
constant to each cabling stage of a CICC. Our philosophy, 
inspired by the MPAS model, is based on the fact that the 
response of every stage of a cable to a magnetic excitation can 
be represented by a magnetic dipole partially screening the 
external field variation. Therefore, the instant power density in 
each isolated stage 𝑗 would be in average 

𝑃' = 𝑛𝑘'𝜏'𝐵̇!"#	'
%/𝜇&             (3) 

where 𝜏' is the time constant of the coupling currents and 
𝑛𝑘' the partial magnetic shielding coefficient of stage 𝑗, 𝐵!"#	' 
being the uniform internal induction governed by (1) inside 
stage 𝑗.  
 However in a cable there exists some coupling between 
each stage so that the time constants 𝜏' do not correspond to 
the global time constants of the cable. The cable is in fact 
governed by a matrix equation whose vectors are the coupling 
currents of each stage and whose matrix coefficients are 
analogous to time constants. Using the eigenbasis, new time 
constants 𝛩' (eigenvalues of the matrix) can be found to 
express the total coupling losses as a sum of terms similar to 
(3). As a result, and according to several experimental results 
[9], [6], the total instant power density due to AC coupling 
losses in a cable with 𝑁 time constants (strand counted as one 
stage) can be expressed, as in the MPAS model, as 

𝑃 = ∑ 𝑛𝛼'𝛩'𝐵̇!"#	'
%/𝜇&)

'*+                  (4) 
 the 𝑛𝛼' are the equivalent to the 𝑛𝑘' in the eigenbasis. 

The MPAS model looks to be a very useful analytical tool 
to characterize a conductor response to an external magnetic 
variation as it is being extensively used on ITER conductors 
but has to be adjusted on experimental classical curves. 
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Contrary to this model, our main long term objective is to 
provide the analytical expressions of 𝑛𝛼' and 𝛩' using only 
the electrical and geometrical parameters of a cable. This 
would lead us to a predictive model of AC coupling losses in 
CICCs. In order to do so, we first need to compute the 𝑛𝑘' and 
𝜏' values of each isolated stage. The purpose of the present 
contribution is therefore to derive these expressions. 

II. ANALYTICAL MODELING OF A SINGLE STAGE 
We first derive the electromagnetic equations governing the 

first cabling stage (i.e. a group of composites). Nevertheless it 
is important to note that we will not describe the whole first 
cabling stage, meaning that we will consider only the coupling 
currents circulating from one strand to another without taking 
into account the ones flowing within each strand. In doing so 
we will obtain the behavior of a single stage as we consider 
that the currents inside the composite are due to the shielding 
by the strand stage (i.e. by filaments). 

A. Assumptions 
The strands (of radius 𝑅) present in the considered 𝑁-uplet 

(i.e. group of 𝑁 strands) are composed of  
superconductor core (of radius 𝑅,) surrounded by a copper 

shell and are numbered clockwise from 𝑘 = 1 to 𝑁 on Fig. 1. 
The external magnetic field 𝐵$ is assumed transverse (along 
the y-axis, see Fig. 1) and spatially uniform within the 𝑁-
uplet. The strands are unsaturated (i.e. 𝐸?⃗ = 0?⃗  in the middle of 
each strand). Moreover, we consider A2𝜋𝑅-/𝑙.D

% ≪ 1 where 
𝑅- is the twisting radius and 𝑙. the twist pitch (i.e. a lightly 
twisted bundle). 𝐵$ temporal changes are slow enough to 
neglect displacement current so that ∇??⃗ . J⃗ = 0 where J⃗ is the 
current density inside the 𝑁-uplet, and to neglect the magnetic 
field generated by the currents flowing through the resistive 
parts of the 𝑁-uplet since its dimensions are small enough. 
The equivalent cross-section resistivity between the centers of 
adjacent strands is noted 𝜌# = 𝜌/𝑒//𝑅 and is mostly due to the 
contact zone (of width 𝑙-, resistivity 𝜌/ and thickness 2𝑒/ ≪
𝑅, see Fig. 1). This contact is considered continuous, identical 
between every strand and without any deformation of the 
strands so that 𝑅- = 𝑅/sin	(𝜋/𝑁). 

 

 
Fig. 1.  Scheme showing the cross-section geometry of a triplet (𝑁 =3) 

B. 𝑁-uplet model 
Although all the calculations will not be presented here, the 

global analytical approach of the problem will be detailed in 
this section. The overdot notation is used for time derivatives. 

As mentioned previously, we will consider only the 
response of the isolated first stage by computing the inter-
strand coupling currents called 𝐽0	01+(𝑧) (average current 
density flowing from strand 𝑘 to 𝑘 + 1) and assuming a 
uniform current distribution along each superconducting shell 
noted 𝐼0(𝑧). To be able to express the time constant of the 
system, we assumed an equivalent simplified (rectangle) 
current distribution between each strand. Using Kirchhoff’s 
current law, we first obtain 

2
23
𝐼0(𝑧) = A𝐽04+	0(𝑧) − 𝐽0	01+(𝑧)D𝑙-	          (5) 

In addition, using Faraday’s law of induction, the fact that 
𝐸?⃗ = 0?⃗  along the center of each strand and Ohm’s law, we can 
derive 

2𝑅𝜌#
2
23
𝐽0	01+(𝑧) =

2
23
𝛷̇0	01+(𝑧)	          (6) 

with 𝛷0	01+(𝑧)	 the magnetic flux enclosed between the 
centers of strands 𝑘 and 𝑘 + 1 from 𝑧 = 0 to 𝑧. 

By neglecting the axial component of the magnetic field 𝐵3, 
we can reduce the magnetic vector potential 𝐴 to its axial 
component only, therefore 𝐴 = 𝐴3𝑒3???⃗  and 

2
23
𝛷0	01+(𝑧) = 𝐴3!"#(𝑧) − 𝐴3!(𝑧)           (7) 

𝐴3!(𝑧) is the value of 𝐴3 in the center of strand 𝑘 at 𝑧. 
Finally, using (5), (6) and (7), we derive for 1 ≤ 𝑘 ≤ 𝑁 

  2
$

23$
𝐼0(𝑧) =

5%
%67&

A2𝐴̇3!(𝑧) − 𝐴̇3!'#(𝑧) − 𝐴̇3!"#(𝑧)D   (8) 
𝐴3! can be expressed as 𝐴3(	! + 𝐴3*	! with 𝐴3(	! = −𝑥0𝐵$ 

(𝑥0 is the abscissa of the center of strand 𝑘 at 𝑧) and 𝐴3*	! the 
term due to the induced screening currents (𝐼0)+808). Since 
𝐵̇$ is spatially uniform, using (8), we see that 𝐴̇3(	! induces 
screening currents of the form 𝐼0 = 𝐼& cosA𝜃0(𝑧)D with 𝐼& 
depending on time only and 𝜃0(𝑧) = 2𝜋𝑧/𝑙. + 2(𝑘 − 1)𝜋/𝑁. 
Using this current distribution and the Biot-Savart law for 
vector potential, we can show that 𝐴3*	! = 𝛽𝐼& cosA𝜃0(𝑧)D, 
with 𝛽 an integral depending on 𝑅-, 𝑅,, 𝑙. and 𝑁 only. 
Unfortunately there is no simple analytical expression of 𝛽. 
However, using geometrical considerations on this particular 
configuration we have noticed that the 𝐴3*	! value created in 
the center of strand 𝑘 at 𝑧 by the considered current 
distribution could be accurately approximated by 

𝐴3*	!(𝑧) = 𝜇&𝛾)/(2𝜋). 𝐼& cosA𝜃0(𝑧)D          (9) 

 with, for 𝑁 ≥ 2 𝛾) = ln ]%6%
6+
^ −

2∑ cos _𝑗 %9
)
` ln _sin _𝑗 9

)
``

,5::;<,'#$ =
'*+ > 0 

In order to validate this expression, we have then 
numerically computed 𝛽 for many values of 𝑁 (between 2 and 
100) assuming a realistic ratio 2𝜋𝑅-/𝑙. of 0.065 (ratio used in 
the first cabling stage of JT-60SA TF conductor). The 
discrepancy between computed 𝛽 values and 𝜇&𝛾)/(2𝜋) 
analytical values never exceeded 0.1%. 
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Using the expression given by (9) in (8) enables us to 
reduce the problem to the following equation on amplitude 𝐼& 

b
𝐼& + 𝜏%𝐼&̇ =

5%
7&
𝐵̇$ _

5-
%9
`
%
	𝑓𝑜𝑟	𝑁 = 2

𝐼& + 𝜏)𝐼&̇ =
%5%
7&
𝐵̇$ sin _

9
)
` _ 5-

%9
`
%
	𝑓𝑜𝑟	𝑁 ≥ 3

   (10) 

𝜏% =
>.
%67&

5%
9
_ 5-
%9
`
%
𝛾%, 𝜏) =

>.
67&

5%
9
_ 5-
%9
`
%
sin% _9

)
` 𝛾) (𝑁 ≥ 3) 

The average instant power density 𝑃?:5(𝑧) dissipated from 
𝑧 = 0 to 𝑧 computed dividing 𝑃 =∭ 𝐽. 𝐸?⃗	

@ 𝑑𝑉 by the 
circumscribed volume (see Fig. 1) of the cable 𝜋(𝑅- + 𝑅)%𝑧 
	leads to the expressions (as functions of 𝐼&) 

b
𝑃?:5(𝑧) =

7&9
5%5-$6

𝐼&% i1 − sinc ]
A93
5-
^j 	𝑓𝑜𝑟	𝑁 = 2

𝑃?:5(𝑧) =
7&9
5%5-$6

𝐼&%
)

B+1CDE</,=F
$ 	𝑓𝑜𝑟	𝑁 ≥ 3

   (11)  

where sinc(𝑥) = sin(𝑥)/𝑥. 
 It is important to notice that the average instant power 
density dissipated in a doublet (i.e. 𝑁 = 2) depends on 𝑧; this 
is no longer true for a triplet, a quadruplet and so on. 
 If we now look at equation (10), when the steady state 
regime for coupling currents is reached, we have 𝐼& =
%5%
7&
𝐵̇$ sin _

9
)
` _ 5-

%9
`
%
and 𝐵̇!"# = 𝐵̇$. Although the magnetic 

field inside the 𝑁-uplet 𝐵!"# is not uniform, we can represent 
the 𝑁-uplet as a magnetic dipole introducing an equivalent 
internal uniform magnetic field 𝐵!"#	GH oriented along the y-
axis. In doing so, we just have to replace 𝐵̇$ by 𝐵̇!"#	GH in the 
expression of 𝐼& above since 𝐵̇$ and 𝐵̇!"#	GH are both uniform 
inside the 𝑁-uplet. Using this new formulation and after 
integration in time, equation (10) becomes 

𝐵!"#	GH + 𝜏)𝐵̇!"#	GH = 𝐵$       (12) 
Continuing the analogy with the dipole, we can use (3), 𝜏) 

expressions, (11) and 𝐼& =
%5%
7&
𝐵̇!"#	GH sin _

9
)
` _ 5-

%9
`
%
, to write 

b
𝑛𝑘 = +

%I$
i1 − sinc ]A93

5-
^j = +

%I$
	𝑓𝑜𝑟	𝑧 = 𝑙., 𝑓𝑜𝑟	𝑁 = 2

𝑛𝑘 = )
I,

+

B+1CDE</,=F
$ 	𝑓𝑜𝑟	𝑁 ≥ 3

(13) 

Table 1 displays some values of 𝑛𝑘 for two 𝑅, (i.e. 
filamentary zone radius) to 𝑅 (i.e. strand radius) ratios which 
are bounding values for most strands. It is also interesting to 
note that for a large 𝑁 value (i.e. strands arranged in a circle, 
as edge filaments in a composite) the 𝑛𝑘 function approaches 
2, which is exactly the value given by (2) for a composite. 

 

 
We have now analytically derived the 𝜏 and 𝑛𝑘 values of a 

single stage that respectively correspond to its time constant 
and its partial shielding coefficient, and expressed their values 
as a function of the electrical and geometrical parameters of 
the 𝑁-uplet. 

C. Comparisons with other models 
The purpose of this section is to reinforce the validity of the 

𝑁-uplet model by comparing its results in extreme time 
regimes (constant or infinitely fast magnetic excitation). 

A previous work [14] has derived the following average 
instant power density per unit volume of composite 𝑃l in a one 
stage cable under constant magnetic excitation (i.e. constant 
𝐵̇$) 

𝑃l = %J6
70G09

𝐵̇$
% _.#

%9
`
%
m1 − 6+.∗

6.#
n
%
      (14) 

where 𝑝+ is the twist pitch of the first stage, 𝑝∗ the effective 
twist pitch of filaments in the composite, 𝑅 the composite 
radius and 𝛹 the average angular thickness of contacts 
between two strands (thus 2𝛹𝑅 is the contact width). 

It is then interesting to compare losses expressions (11) and 
(14). Rescaling losses expression (11) to the volume of 

composites and using 𝐼& =
%5%
7&
𝐵̇$ sin _

9
)
` _ 5-

%9
`
%
 leads to 

𝑃l = 5%
70G09

𝐵̇$
% _ 5-

%9
`
%
        (15) 

Expression (15) contains losses arising from the shielding 
by the strand stage which was not considered in our approach. 

Thus (14) is reduced to %J6
70G09

𝐵̇$
% _.#

%9
`
%
, and since, by 

definition, 𝑙- = 2𝛹𝑅 (contact width) and 𝑙. = 𝑝+ (twist pitch 
of the first stage), we observe the exact same results. 

Another relevant comparison, but this time under step 
function regime, was carried out computing the inductance 
matrix of the system (i.e. regarding filamentary zones as 
straight hollow tubes carrying current). The induced currents 
computed with the inductance matrix and with (10) were 
exactly the same. Furthermore, we have also simulated the 
reaction of a group of composites (represented by a hundred 
edge filaments) to a step function using the inductance matrix 
approach but this time considering the filaments as straight 
hollow tubes carrying current. In this case, the effective 
shielded surface (which corresponds to 𝑛𝑘𝑆 with 𝑆 the 
circumscribed surface) differs from less than 20% with the 
value computed using (13). 

The distribution of current observed among the filaments is 
of particular interest since it shares obvious similarities with 
the distribution of current among strands in a two stage cable 
whose modeling is exposed in the next section. 

III. ANALYTICAL MODELING OF TWO STAGES 
This model is in the continuity of the 𝑁-uplet one, but aims 

at describing coupling losses generated in a two cabling stage 
conductor (i.e. 𝑁% groups of 𝑁+ strands). Once again, the 
strand scale is ignored, and the model is focused on the 
dynamics of shielding of the field variation by the two stages. 
The assumptions remain unchanged and, to simplify the 
approach, we will consider each group of 𝑁+ strands as a 𝑁+-
uplet, thus having the 𝑙.#, 𝑙-#, 𝜌##, 𝑅-#, 𝑅+ parameters 
corresponding to the 𝑙., 𝑙-, 𝜌#, 𝑅-, 𝑅 parameters of the 𝑁-uplet 
for 𝑁 = 𝑁+ (see Fig. 1). We then consider this 𝑁+-uplet as an 
element whose volume is the circumscribed volume of the 𝑁+-

TABLE I 
TABLE OF NK VALUES FOR SEVERAL VALUES OF N 

Ratio 
𝑅!/𝑅 

NK VALUE 

 𝑁 = 2 𝑁 = 3 𝑁 = 4 𝑁 = 5 𝑁 = 6 𝑁 → ∞ 
0.7 0.476 0.821 0.983 1.085 1.163 2.000 
0.9 0.626 1.079 1.199 1.258 1.307 2.000 
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uplet, thus with a radius 𝑅% = 𝑅-# + 𝑅+. The 𝑁% groups of 𝑁+ 
strands can then be represented as a 𝑁%-uplet of elements with 
a twist pitch 𝑙.$ and a twisting radius 𝑅-$ and its own values 
of 𝜌#$ and 𝑙-$ parameters. The current flowing in the 
filamentary zone of strand 𝑘+ of element 𝑘% is noted 𝐼0#0$(𝑧) 
and is split by thought into 𝐼0#0$

(+), due to the voltages 

induced between strands of element 𝑘%, and 𝐼0#0$
(%) =

N!$
($)

O#
, 

𝐼0$
(%) being due to the voltages induced between the 𝑁% 

elements. This notation helps to dissociate the shielding 
accomplished by the different stages. 

Under constant 𝐵̇$ regime, the model naturally leads to 
𝐼0#0$ = 𝐼&# cosA𝜃0#D +

N.$
O#
cosA𝜃0$D   (16) 

with b
𝜃0# =

%93
5-#

+ %9(0#4+)
O#

, 𝐼&# =
%5%#
7&#

𝐵̇$ sin _
9
)#
` _5-#

%9
`
%
	

𝜃0$ =
%93
5-$

+ %9(0$4+)
O$

, 𝐼&$ =
%5%$
7&$

𝐵̇$ sin _
9
)$
` _

5-$
%9
`
%  

Expression (16) is a simple superposition of the shielding 
due to each stage. In these conditions the induced currents are 
a sum of two cosine functions with spatial periods 𝑙.# and 𝑙.$ 
along the z-axis.  

However, while investigating transient regimes the 
simulated response of this system to a step function using the 
inductance matrix approach showed clearly that the induced 
currents are also composed of cosine functions with spatial 
periods different from 𝑙.# and 𝑙.$ whose amplitudes are not 
negligible. We have therefore refined the model using an 
approach similar to the 𝑁-uplet one and derived the following 
equations governing the currents flowing in the filamentary 
zones 

r
𝑐+

2$

23$
t𝐼0#0$

(+)u + 𝑀+	+ m𝐼0̇#0$
(+)n = 𝑌+𝐵̇$ +𝑀+	% m𝐼0̇$

(%)n

𝑐%
2$

23$
t𝐼0$

(%)u + 𝑀%	% m𝐼0̇$
(%)n = 𝑌%𝐵̇$ +𝑀%	+ m𝐼0̇#0$

(+)n
  (17) 

where 𝑐+ =
A96#
>.

7&#
5%#

 and 𝑐% =
A96$
>.

7&$
5%$

. 

t𝐼0#0$
(+)u and t𝐼0$

(%)u are the column vectors of the 𝐼0#0$
(+) 

and 𝐼0$
(%) currents, 𝑌+ and 𝑌% are column vectors whose 

coefficients are 𝑦+!#!$ = −(8𝜋𝑅+/𝜇&). sin(𝜋/𝑁+) cosA𝜃0#D 
and 𝑦%!$ = −(8𝜋𝑅%/𝜇&). sin(𝜋/𝑁%) cosA𝜃0$D. 

 To obtain the 𝑀 matrices, which correspond to 
nondimensionalized inductive matrices, we have used 
geometrical considerations (similar to these used in the N-
uplet model) and thus have assumed that the 𝐴3*	!#!$(𝑧) value 
inside the center of strand 𝑘+ of element 𝑘% at 𝑧 created by the 
𝐼0#0$

(+) and 𝐼0$
(%) currents could be approximated by 

𝐴3*	!#!$(𝑧) = − >.
%9
∑ ∑ 𝐼'#'$(z)ln

)#
'#*+ ]

24#4$!#!$(3)

6+
^)$

'$*+   (18) 

with 𝑑'#'$0#0$(𝑧) the distance between the center of strand 
𝑘+ of element 𝑘% and the center of strand 𝑗+ of element 𝑗% at 𝑧, 
but taken equal to 𝑅, if 𝑗+ = 𝑘+ and 𝑗% = 𝑘%.  

Since (18) is an approximation of the real expression of 
𝐴3*	!#!$(𝑧) as a function of the 𝐼0#0$ currents, we have 
therefore performed a comparison between the numerically 
computed values of 𝐴3*	!#!$(𝑧) with Biot-Savart law and (18) 

using several realistic values of the different parameters (save 
𝑁+ and 𝑁% set to 3). We have found out that the discrepancy 
between the two values never exceeded 5%. 

Adapting (8) to the modeling of two stages using simple 
analogies with the 𝑁-uplet model and using (18), it is possible 
to derive the analytical expressions of the coefficients of the 𝑀 
matrices. However, because of their complicated expressions, 
only the one of 𝑀+	+ (a 𝑁+𝑁%-by-𝑁+𝑁% matrix) is presented 

𝑀+	+	(𝑗, 𝑘) = ln {
P2!#!$4#4$(3)Q

$

2!#!$4#'#4$(3).2!#!$4#"#4$(3)
|   (19) 

with 𝑘% = 𝑐𝑒𝑖𝑙 _ 0
)#
`, 𝑗% = 𝑐𝑒𝑖𝑙 _ '

)#
`, 𝑘+ = 𝑘 + 𝑁+(1 − 𝑘%), 

𝑗+ = 𝑗 + 𝑁+(1 − 𝑗%) and 𝑑0#0$'#'$(𝑧) the function defined in 
(18). 

Moreover, the last lines of the two matrix equations (17) 
being redundant, the zero transport current equations 

~
∀	𝑘%, 𝐼)#0$

(+) = −∑ 𝐼0#0$
(+))#4+

0#*+

𝐼)$
(%) = −∑ 𝐼0$

(%))$4+
0$*+

                 (20) 

are also needed to complete the systems. 
 The comparison of the induced currents computed with the 
inductance matrix and with (17) and (20) for a step function 
with 𝑁+ = 3 and 𝑁% = 3 has shown a good agreement (within 
the range of 15%) in terms of average current carried by each 
triplet. 

In a near future, we will be able, thanks to this model, to 
derive the analytical 𝑛𝛼' and 𝛩' values (discussed in the 
introduction) for a two cabling stage conductor before 
iterating this method to the CICC scale. 

IV. CONCLUSION AND PERSPECTIVES 
We have developed a new analytical modeling describing 

AC coupling losses generated in a single stage (𝑁-uplet 
model) for any time regime and represented it as a magnetic 
dipole by expressing fully analytically its 𝑛𝑘 and 𝜏 values. The 
𝑛𝑘 expression has been validated by its limit for a large 
number of strands (𝑁 ≫ 1) and the 𝑁-uplet model is 
consistent with a previous analytical modeling [14] for 
constant 𝐵̇$ and is in good agreement with the inductance 
matrix approach for a step function. We have also derived the 
equation system governing a two cabling stage conductor and 
assessed its inductive part thanks to a comparison with a 
purely inductive model under step function regime; its 
resistive part is strongly advanced and will be finalized 
numerically and/or experimentally. 

Furthermore, the future work will focus on the analytical 
improvement of our model, first, by the incorporation of the 
strand stage, and second, by the analytical derivation of the 
𝑛𝛼' and 𝛩' values, which for now, are experimentally adjusted 
in the MPAS model. This work will be supplemented with 
experimental comparisons, and, since our model considers 
ideal strand trajectories, with its adaptation on a more realistic 
architecture (real strand trajectories) extracted from a non-
destructive analysis of a CICC via X-ray tomography [15]. 
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