
HAL Id: hal-01792773
https://hal.science/hal-01792773v2

Submitted on 14 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching DevOps at the Graduate Level: A report from
Polytech Nice Sophia

Benjamin Benni, Philippe Collet, Guilhem Molines, Sébastien Mosser,
Anne-Marie Déry-Pinna

To cite this version:
Benjamin Benni, Philippe Collet, Guilhem Molines, Sébastien Mosser, Anne-Marie Déry-Pinna.
Teaching DevOps at the Graduate Level: A report from Polytech Nice Sophia. First international
workshop on software engineering aspects of continuous development and new paradigms of software
production and deployment, LASER foundation, Mar 2018, Villebrumier, France. �hal-01792773v2�

https://hal.science/hal-01792773v2
https://hal.archives-ouvertes.fr


Teaching DevOps at the Graduate Level

A report from Polytech Nice Sophia

Benjamin Benni1, Philippe Collet1, Guilhem Molines1,2,
Sébastien Mosser1, and Anne-Marie Pinna-Déry1

1 Université Côte d’Azur, CNRS, I3S, France
{benni,collet,molines,mosser,pinna}@i3s.unice.fr

2 IBM France Lab, guilhem.molines@fr.ibm.com

1 Introduction

The massive evolution of IT development towards new Web architectures, from
service-oriented to micro-services, clouds and containers, call for changes in the
way software is developed, deployed and maintained. DevOps has emerged as a
set of practices bridging software development (Dev) with software operations
(Ops) [1]. DevOps makes up a model in which development, quality assurance,
releasing, deployment, operation with infrastructure management, and mainte-
nance are integrated and automated as much as possible. With automation and
monitoring present at all stages, a DevOps approach is supposed to reduce the
time between a change (e.g., a commit) and its availability in production, while
mastering quality.

From a teaching perspective, hiring companies for software engineering stu-
dents are currently in the middle of a technological transformation to introduce
DevOps pipelines in their organizations, while agile and continuous integration
practices are still in the process of being digested. It is clearly necessary for
our students to be aware of such practices to complement their background
in software engineering and architecture, and also to make a difference at re-
cruitment time. At first sight, it seems easy to integrate DevOps principles with
software development projects and other courses dealing with large software sys-
tems or software architectures. Still, different issues arise when materializing the
course. As DevOps mainly deals with a technological pipelines, a trade-off must
be found between using a complete and relevant stack, and understanding the
DevOps principles and its pillars: platform, deployment, testing, and people [2].
Furthermore, using toy examples over the isolated elements of a DevOps pipeline
would transform the course in a set of basic tutorials, missing a comprehensive
point of view of both the principles and the end-to-end technological hands-on.

In this paper, we report on a course dedicated to “N-tiers Architectures and
DevOps”, which aimed at introducing DevOps while tackling these identified
issues. It is taught at the graduate level at Polytech Nice Sophia since 2015. The
target audience is 4th year (graduate) students specialized in software engineer-
ing and architecture. In the remainder of this paper, we discuss the identified
challenges to construct this course, as well as the vision to implement it. We



then give some details on the course content and on the used case studies. We
conclude by summarizing results and discussing future development.

2 Challenges & Vision

We believe that Software Architecture and DevOps are two sides of the same
coin: one needs DevOps concepts to properly implement and deliver complex
architectures, and complex architectures justify such an approach. The course
follows a project-based approach to support both parts and we rely on the de-
velopment dimension of the project to create a continuum between architecture
and operations. When materializing the course, we then identified the following
challenges:

– Even if the technological stack can be hard to apprehend and deploy, tools are
just a means to an end, and the course must focus on the pillars associated
to DevOps: platform, deployment, testing, and people [2]. As a consequence,
the course must focus on the concepts, and use tools only as an illustration.
Moreover, coupling architecture to DevOps is important as both approaches
complement each others, and the course must smoothly merge these two
dimension to support a fully-fledged curriculum.

– We defend that toy examples are not enough, and delivering such a con-
tent using isolated labs cannot lead to the comprehensive point of view we
envisioned. It is important to rely on a project-based approach where stu-
dents will be confronted to real-life choices, at architectural, development
and operation levels.

As a consequence, the course must provide theoretical concepts for architec-
ture design, software development and operational deployment around a shared
project that will be used as a backbone during lab assignments. To simulate
real-life software engineering, the labs must be defined thanks to an open and
informal specification expressed in business terms, and it will be up to the stu-
dents to design the right architecture, implement it in an iterative way and
support its deployment thanks to a continuous delivery pipeline.

3 Course Content

In the school of engineering, the presented course is taught to 4th year students
(graduate level) that have chosen a specialization in software engineering and ar-
chitecture. It is thus an optional course in the master curriculum with a capacity
of 50 students per year.

3.1 Overall Organization

The presented version is the result of merging two course slots, each one over
a half-day along a full semester, so that the course is scheduled on each Friday



for the spring session. It notably enables to easily and dynamically focus a day
or half of it to a specific topic, i.e., a software architecture topic or an element
of the DevOps pipeline, or to give time for the main project development (cf.
Figure 1).

Fig. 1. 2018 planning of the “N-tiers Architectures and DevOps” course

Prerequisites for the course are the following:

– A strong background in object-oriented programming, with fluency in Java;
– The knowledge of some software engineering principles and tooling, i.e., life-

cycle, code versioning (Git), unit testing (JUnit), automated construction
(Maven);

– Notions of design and UML, mainly to abstract from the associated project
code through component and deployment diagrams.

These prerequisites are all coming for the mandatory courses defined by the
graduate program followed by the attendees.

The teaching team has slightly evolved over time, but it has been constantly
led by a full-time professor and an industrial partner who holds a part-time po-
sition in the school in addition to his daily job as a software architect. The team
is completed by two other teachers, making a specialized pair for each axis, soft-
ware architecture and DevOps. This enables each pair to easily follow student
project development according to each axis. Students are organized in teams of
four, and the course is known to require a strong investment in software devel-
opment from them. The same case study is addressed under the two different
and complementary axes, and students have to work on the development of a
system that implements the specifications associated to the chosen case study
as lab assignment.

To support the development of such a system, we implemented a reference
system named The Cookie Factory (TCF) [3] (see Section 4.1 for details). In the
first weeks, the course focuses on the concepts associated to n-tiers architectures
and the pre-requisites associated to DevOps, i.e., understanding modularization



and testing. To support this task, students are asked to analyze the implemen-
tation of TCF. They quickly identify that it is implemented as a single monolith
that needs to be modularized at all levels (business implementation, test, and
deployment). This step helps them to get confidence with the project technolog-
ical stack, as well as to identify why and how a DevOps approach is a good fit
for such class of systems.

In the following sections, we describe the content of each course axis and show
how the reference case study and developed project help in building a consistent
solution to the identified challenges.

3.2 Software Architecture

For the software architecture part, we focus on the definition of an n-tiers ar-
chitecture using software components (implemented as EJBs using the Java EE
framework). A part of the architecture is also developed in .Net, emphasizing
the need to support system interoperability using Web Services. An introductory

Fig. 2. Technological stack for the architectural axis

course is setting up the work context and the technological stack (cf. Figure 2),
while the next courses introduce several principles and some associated tech-
nologies using the TCF case study as an illustration:

– Notions of software architecture, layers, and diagrams to represent them;
– The many architectural viewpoints, with focus on functional (work at the in-

terface level), development (modularity and dependency management), and
deployment viewpoints;



– Object-relational mapping (ORM) variants, and related architectural pat-
terns;

– Introduction to Enterprise Java Beans (EJBs), with an overview of the bean
types (entity, session, message), their business focus, as well as the principles
of inversion of control and dependency injection;

– A focus on session beans, defining a 3-tiers architectures, and introducing
stateful and stateless principles and impacts on an architecture;

– Introduction to the notion of services (being different from Web Services
technical implementation), contracts and the impact of their different kinds
(no contract, light form, strong contract), discussion on bad practices (e.g.,
REST is different from CRUD);

– Focus on domain-driven design, and its implementation through entity beans,
issues in modeling relationships, lazy loading, query languages in ORMs, etc.

– Architectural MVC pattern with its implementation in JSF over Java EE,
the messaging paradigm and its implementation in JMS, light form of aspect-
orientation and its implementation in Java EE interceptors.

As shown on the planning (Figure 1), the conduct of the successive lectures
follows the design and development of their own architecture for their project
(Poly’Event project on the planning). Students should propose an initial ar-
chitecture with only the introduction, trying to build something consistent with
their own background. Then each new lecture enables to criticize their successive
propositions, using the TCF case study during the lecture (e.g., with architecture
dojos where students and professor co-define an architecture respecting several
properties during the lecture), and on their own project during the labs. This
enables to mix the learning of many technological elements with the different
notions of software architecture, their impacts and the necessary trade-offs a
software architect should master in her day-to-day work. The TCF case study
brings both a starting point for the project and an existing architecture to crit-
icize and evolve as the course progresses.

3.3 DevOps

For the DevOps dimension, the aim is to address the problem of aligning a
development (dev) team with the operational one (ops) to build a given piece of
software. Addressed issues are notably how to slice the code into independent
modules that can be compiled, tested and deployed in a continuous way, and
how to properly test the integration between such loosely coupled components.

This part of the course is organized in a slightly different way. While the
students starts to define their own project architecture, the first part of DevOps
introduces theoretical concepts and aims at applying them in a separate lab on
mutation testing [4]. The organization of this part is as follows:

– Introduction on software delivery, lifecycle and pipelines;
– Reminder on quality assessments, introduction on the different types of tests,

how to architect and run them;



– Focus on functional and integration testing, and on what should be consid-
ered when running them.

With these lectures, several labs are targeted at building a mutation testing
pipeline over a Java project, using Maven, scripts, and a Java source code trans-
formation library3. The objective is to make concrete the creation of a pipeline
using a software project to build other artifacts, run other tasks (compiling the
mutant projects separately), get results (deciding whether a mutant project is
passing existing tests or not).

The rest of the lectures focus on introducing the principles and technologies
related to the DevOps pillars:

– continuous integration, with build on servers, separated components, their
dependencies, notions of artifacts, and necessary repositories, Jenkins4 and
Artifactory5 being chosen as technological support;

– other subjects related to continuous management, i.e., quality assessment
through static code analysis, code branching for a better organization;

– deployment, with the main differences between testing and production envi-
ronments, as well as test orchestration;

– software containers and virtual machines, focusing on the Docker6 light con-
tainer ecosystem, with its composition and scalability mechanisms.

As this part of the course progresses, the students have to apply the principles
with the proposed technology to their projects. Considering the platform pillar,
the tools selected by the students (e.g., continuous integration server, testing
framework, containers) must be justified and used accurately w.r.t the needs
associated to their own project. At the deployment level, it is up to the students
to mitigate the constraints from the development team, the operational context
and the customer’s expectations to create the right build plan. For the testing
pillar, students know about unit tests and the course introduces integration
and acceptance tests. Students must justify that the built product is rightly
tested at these different levels. Finally, considering the people pillar, they have
to modularize their code (and the associated tests, build plans,. . . ) in a way that
fits their development team and their business objectives [5].

This organization enables the DevOps part of the course to provide real
practice of industrial tools applied to a non-toy N-tiers architecture that students
are extending at the same time, and also to focus on application of the different
principles and pillars of DevOps.

3.4 Evaluation

The evaluation of the course is organized around multiple milestones and deliv-
eries:

3 Spoon, http://spoon.gforge.inria.fr/
4 Jenkins, https://jenkins.io/
5 Artifactory, https://jfrog.com/artifactory/
6 https://www.docker.com/



– after two weeks a first Minimum Viable Product (MVP) architecture should
be provided by the student teams, for feedback only.

– After two other weeks, an architecture-report must be provided. It contains
the following elements: use cases diagrams, business objects definition as
class diagram, associated persistent-schema and object-relational mapping
definition, interfaces pseudo-code definition (e.g., Java like), components de-
scribed by a component diagram, deployment of the defined components as
a deployment diagram. Each artifact must be justified with respect to its
relevance in the proposed architecture.

– At the same time, the mutation testing pipeline should be delivered (through
a tagged commit on the provided Git repository). A small report is also de-
livered, answering the following questions: what are your directory structure
and language/script choices? How are mutators compiled and applied to
your target project? Which mutations did you write, and why? What issues
did you run into, and how did you solve them? What characterizes good
mutators?

– At mid-term, demos of the minimal viable product architecture and its as-
sociated DevOps tooling are conducted through technical interviews driven
by a team of two teachers, one per axis. At that stage, the key-point in ar-
chitecture is to demonstrate a walking skeleton of the technical stack, from
the input entered by the user, sending a request to the Java EE compo-
nent backend through a Web Service, with an interaction with a third-party
service simulated in .Net. For DevOps, the focus is on demonstrating that
Continuous Integration (CI) is mastered, compiling the project in a way that
respects the dependencies among modules, relying on an artifact repository
to store the produced binaries. A CI server is expected, so to support the
build process and artifacts storage, through inter-dependent build plans.

– Similar demos are also conducted near the end of the course. Technical in-
terviews are conducted by teams, switched from the previous demos. On
the architecture side, students should demonstrate a comprehensive archi-
tecture, going from the persistence layer to the exposition one (i.e., web
services, JSF). They must be able to defend strengths of their architecture,
as well as discuss its limitations and evolution capabilities. For DevOps,
the pipeline should have evolved from a CI system to a fully instrumented
Continuous Delivery (CD) pipeline, ensuring software quality through vari-
ous levels of testing, and generating the product deliverables as composable
Docker images.

– Codes and reports should be finally delivered before the exams.

The lab and project evaluations are completed by two final exams, one per
axis. Exam subjects mix small targeted questions with a large question on a given
case study, evaluating the students capability to step back on the development
and DevOps practices. Each axis has also its own marking breakdown:

– Software architecture part: architecture report: 15%; intermediate demon-
stration: 10%; final presentation: 15%; project (code and report): 20%; final
exam: 40%.



– DevOps: mutation testing: 15%; intermediate demonstration: 15%; final pre-
sentation: 15%; project (code and report): 15%; final exam: 40%.

4 Case Studies

We describe here the main reference case study, showing its features, architecture
and the kind of complexity it exhibits to support our teaching approach. We also
give a brief description of the projects submitted to students in the past years.

4.1 Reference Case Study: The Cookie Factory (TCF)

The Cookie Factory7 is an imaginary major bakery brand in the USA, providing
a plausible context to the creation of the software system. The Cookie on Demand
(CoD) system is an innovative service offered by TCF to its valued customers.
They can order cookies online thanks to an application, and select when they
will pick-up their order in a given shop. The CoD system is supposed to ensure
to TCF’s happy customers that they will always retrieve their prepaid warm
cookies on time.

As shown on Figure 3, the system is defined as layers:

– A remote client, that will run on each customer’s device;
– An EJB kernel, implementing the business logic of the CoD system;
– An external partner (simulating a Bank, implemented in .Net);
– An interoperability layer between the kernel and its partners. Communica-

tion with the client is supported by an RPC (SOAP) service, and communi-
cation with the bank as a REST one.

To deliver the expected features, the CoD system defines the following inter-
nal interfaces (Figure 4):

– CartModifier: operations to handle a given customer’s cart, like adding or
removing cookies, retrieving the contents of the cart and validating the cart
to process the associated order;

– CustomerFinder: a finder interface to retrieve a customer based on her iden-
tifier (here simplified to her name);

– CustomerRegistration: operations to handle customer’s registration (e.g.,
users profile)

– CatalogueExploration: operations to retrieve recipes available for purchase
in the CoD;

– OrderProcessing: process an order (kitchen order lifecycle management);
– Payment: operations related to the payment of a given cart’s contents;
– Tracker: order tracker to retrieve information about the current status of a

given order.

7 https://github.com/polytechnice-si/4A_ISA_TheCookieFactory



Fig. 3. Component diagram of The Cookie on Demand system

To ease comprehension by the students, the business objects are simple (Fig-
ure 5): Cookies are defined as an enumerate, binding a name to a price. An Item
models the elements stored inside a cart, i.e., a given cookie and the quantity to
order. A customer makes orders thanks to the CoD system, and an order stores
the set of items effectively ordered by the associated customer (bidirectional
association).

The implementation of TCF is made of 102 Java Classes, representing ap-
proximatively 3, 000 lines of code. As the focus of the course is an introduction
to software architecture, we made the choice to go as lightweight as possible with
respect to the tooling. We thus decided not to deploy a real set of application
servers and use embedded artifacts instead. This is the very justification of using
TomEE+ as Java EE container (instead of a classical Tomcat or Glassfish con-
tainer) and Mono as .Net implementation (instead of the classical Visual Studio
technological stack). We advocate that the execution details are not important
when compared to the complexity of designing the right system. In addition,
mapping this demonstration to existing application servers is pure engineering,
with no added value.

4.2 Case Studies to be developed by students

As previously mentioned, each year, a different product case study is proposed
for the development stage, each being presented like the TCF specification part,
with a product vision, examples, personas and related epics. We give here a brief
description of these projects:



Fig. 4. Interface details of The Cookie on Demand system



Fig. 5. Business objects of the Cookie on Demand system

– PolyEvent is an event management system at the scale of an academic cam-
pus, events being internal or external, with booking of premises, possible
catering, etc. The system should be generic enough to target different cam-
puses, and should handle both the planning stages and the event day and
six personas are defined (logistics manager, premises manager, accounting
manager, an external event organizer, cleaning company contact, campus
event manager).

– A Disloyalty card is a loyalty card targeting a specific commercial zone in-
stead of a retail chain, with a sponsoring from the town council of the zone
(e.g., gifts, parking discount with any purchase) to encourage customers to
visit as many shops as possible in the area. This kind of card boosts local
shops and reward customers who shop in the promoted zone. The developed
system should be deployable in medium to large cities, with few changes be-
tween a deployment to another. The system card can be used as a payment
method for small amounts, and frequent buyers get a VIP status with more
advantages. Personas are different kinds of buyers, e.g., a town employee and
a shop manager.

– Isola 3000 is a ski resort management system for a company owning two re-
sorts, the main feature being lift tickets selling and automatic access control
to the ski lifts. A ticket is an NFC card and lifts are connected with differ-
ent means to the main resort (ethernet, wifi, radio waves, nothing at all).
Outdoor screens show slope availability and are connected in real-time with
connected lifts and patrolmen. Tickets are sold online or at counters, many
pre-built offer are proposed with different discounts, premium statuses, and



specific durations or area restrictions. As these offer might evolve, statistics
over sales are necessary.

– PolyTweet is a social-network based solution to solve communication prob-
lems between students, faculty members and administrative staff within the
school. The system should foster information sharing, by publishing short
messages to channels, the school exposes several public channels available to
external users (for integration purpose with the public website), files can be
attached to messages (e.g., pictures, lab descriptions). Communication chan-
nels can be created as open internal channels, with moderators. To evaluate
the return on investment, metrics over the whole system usage should also
be computed and displayed.

5 Conclusion

Results. The course is close to its full capacity since 2015 (137 students out of
150 slots on 3 years). It is evaluated by the project delivery (code, report and
oral defense), complemented by two exams (case study, 3 hours). We push stu-
dents to stop being consumers of tools, and instead become DevOps architects
able to identify what is necessary and how tools from the state of practice can
be assembled to support a given project. The discussions and interviews made
with partners’ contacts and interns’ tutors are strongly positive on that point.
Recruiters clearly state that such a knowledge makes a strong difference between
candidates at recruitment time (interns or permanent positions). At the student
level, the course received a highly positive feedback in evaluations. Student ex-
pressed as comments their surprise about the importance of the people pillar. We
also noticed that even students who do not specialize into software architecture
after the course are introducing the DevOps philosophy in their projects.

From an academic research point of view, building this course also led to
interesting questions about service containerization from a software engineering
point of view that lead to a publication in the domain of software composition [6].

Future Development In the future, we naturally plan to continue to improve
the content and organization of the course. Next year, we will change the way the
different elements of the pipeline are introduced. The mutation testing pipeline
is not perceived by students as useful as we envisioned, while this organization
pushes the application of advanced concepts as containers to the end of the
timeline. This prevents students from stepping back from their DevOps realiza-
tion, and transitively from their software architecture as well. Our plan is then
to introduce all principles and pillars of DevOps earlier, together with basic
realizations for each part, i.e. a basic pipeline with deployment and a simple
dockerization, so that they can be applied to the project. Then the advanced
concepts, and related technological elements, will be introduced and applied.
By using this course as a prerequisite for some specialization course, we aim
to deliver to students specialized skills (e.g., micro-service development, user



experience) while keeping in mind the close relationship that exists between de-
velopment and operations, leveraging our experience in teaching agility and user
experience.

References

1. Bass, L., Weber, I., Zhu, L.: DevOps: A software architect’s perspective. Addison-
Wesley Professional (2015)

2. Shaw, J.: The Four Pillars of DevOps: Agility for the Enter-
prise (Agile Cambridge). https://www.slideshare.net/johnfcshaw/

four-pillars-of-devops-john-shaw-agile-cambridge-2014 (2014) Accessed:
2017-01-10.

3. Mosser, S.: The Cookie Factory (J2E 7 reference implementation), version 2.2.
https://github.com/polytechnice-si/4A\_ISA\_TheCookieFactory (2017)

4. Woodward, M.R.: Mutation testingits origin and evolution. Information and Soft-
ware Technology 35(3) (1993) 163–169

5. Evans, E.: Domain-Driven Design: Tacking Complexity In the Heart of Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

6. Benni, B., Mosser, S., Collet, P., Riveill, M.: Supporting Micro-services Deploy-
ment in a Safer Way: a Static Analysis and Automated Rewriting Approach. In:
Symposium on Applied Computing, Pau, France (April 2018)


