
HAL Id: hal-01792736
https://hal.science/hal-01792736

Submitted on 15 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Buffer-Aware Worst-Case Timing Analysis of Wormhole
NoCs Using Network Calculus

Frédéric Giroudot, Ahlem Mifdaoui

To cite this version:
Frédéric Giroudot, Ahlem Mifdaoui. Buffer-Aware Worst-Case Timing Analysis of Wormhole NoCs
Using Network Calculus. 2018 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), Apr 2018, Porto, Portugal. pp. 1-12. �hal-01792736�

https://hal.science/hal-01792736
https://hal.archives-ouvertes.fr

�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	�������������������

��

������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/19912

Deschamps, Henrick and Tauran, Bastien and Cardoso, Janette and Siron, Pierre Distributing Cyber-Physical Systems

Simulation: The Satellite Constellation Case. (2017) In: 5th Federated and Fractionated Satellite Systems Workshop,

2 November 2017 - 3 November 2017 (Toulouse, France). (Unpublished)Giroudot, Frédéric and Mifdaoui, Ahlem

Buffer-Aware Worst-Case Timing Analysis of Wormhole NoCs Using Network Calculus. (2018) In: 2018 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), 11 April 2018 - 13 April 2018 (Porto, Portugal).

Buffer-Aware Worst-Case Timing Analysis of
Wormhole NoCs Using Network Calculus

Frédéric Giroudot
Complex Systems Engineering Dept

ISAE – Université de Toulouse
Toulouse, France

frederic.giroudot@isae.fr

Ahlem Mifdaoui
Complex Systems Engineering Dept

ISAE – Université de Toulouse
Toulouse, France

ahlem.mifdaoui@isae.fr

Abstract—Conducting worst-case timing analyses for worm-
hole Networks-on-chip (NoCs) is a fundamental aspect to guar-
antee real-time requirements, but it is known to be a challenging
issue due to complex congestion patterns that can occur. In that
respect, we introduce in this paper a new buffer-aware timing
analysis of wormhole NoCs based on Network Calculus. Our main
idea consists in considering the flows serialization phenomena
along the path of a flow of interest (f.o.i), by paying the bursts
of interfering flows only at the first convergence point, and
refining the interference patterns for the f.o.i accounting for the
limited buffer size. Moreover, we aim to handle such an issue
for wormhole NoCs, implementing a fixed priority-preemptive
arbitration of Virtual Channels (VCs), that can be assigned to an
arbitrary number of traffic classes with different priority levels,
i.e. VC sharing, and each traffic class may contain an arbitrary
number of flows, i.e. priority sharing. It is worth noting that such
characteristics cover a large panel of wormhole NoCs.

The derived delay bounds are analyzed and compared to
available results of existing approaches, based on Scheduling
Theory as well as Compositional Performance Analysis (CPA).
In doing this, we highlight a noticeable enhancement of the
delay bounds tightness in comparison to CPA approach, and the
inherent safe bounds of our proposal in comparison to Schedul-
ing Theory approaches. Finally, we perform experiments on a
manycore platform, to confront our timing analysis predictions
to experimental data and assess its tightness.

Index Terms—Networks-on-chip, Network Calculus, real time,
worst-case timing analysis, wormhole routing, priority sharing,
VC-sharing, backpressure, flows serialization.

I. INTRODUCTION

Networks-on-chip (NoC) have become the standard inter-
connect for manycore architectures because of their high
throughput and low latency capabilities. Most NoCs use worm-
hole routing [1] to transmit packets over the network: the
packet is split in constant length words called flits. Each flit is
then forwarded from router to router, without having to wait
for the remaining flits. Compared to store and forward (S&F)
mechanisms, the wormhole routing allows to drastically reduce
the storage buffers at each router, as well as the contention-
free end-to-end latency of a packet, i.e. almost insensitive
to the packet path length. On the other hand, the wormhole
routing complicates the possible congestion patterns, since a
packet waiting for a resource to be freed can occupy several

input buffers of routers along its path; thus introducing indirect
blocking delays due to the buffer backpressure1 [2].

Hence, an appropriate timing analysis taking into account
these phenomena has to be considered, to provide safe latency
bounds in wormhole NoCs.

Various timing analysis approaches of such NoCs have been
proposed in the literature, and the most relevant ones can
broadly be categorized under three main classes: Scheduling
Theory-based ([2]–[5]), Compositional Performance Analysis
(CPA)-based ([6], [7]) and Network Calculus-based ([8]–
[10]). However, these existing approaches suffer from some
limitations making them applicable under very specific as-
sumptions, and/or leading to pessimistic bounds on end-to-end
latencies. These limitations are mainly due to:
• considering specific assumptions, such as: (i) distinct

priorities and unique virtual channel assignment for each
traffic flow in a router [3] [2]; (ii) a priority-share policy,
but with a number of Virtual Channels (VC) at least equal
to the number of traffic priority levels like in [4] [5] [8]
[6] or the maximum number of contentions along the NoC
[11];

• ignoring the buffer backpressure phenomena, such as in
[7] [9] [10];

• ignoring the flows serialization phenomena2 along the
flow path by conducting an iterative response time com-
putation, i.e. commonly used in Scheduling Theory and
CPA, which generally leads to pessimistic delay bounds;

• ignoring the buffer size impact on the interference pat-
terns through commonly considering that a packet occu-
pies its complete path during its maximum end-to-end
latency.

Hence, our main objective in this paper is coping with these
limitations:
• First, we introduce a new Buffer-aware timing analysis

of wormhole NoCs based on Network Calculus [12], and
particularly the Pay Multiplexing Only Once (PMOO)
principle [13], to enhance the end-to-end delay bounds

1A logical mechanism to control the flow on a communication channel and
avoid buffer overflow.

2The pipelined behavior of networks infers that the interference between
flows along their shared subpaths should be counted only once, i.e., at their
first convergence point.

accuracy of such networks. Our main idea consists in
considering: (i) the flows serialization phenomena along
the path of a flow of interest (f.o.i), by paying the bursts
of interfering flows only at the first convergence point;
(ii) refined interference patterns for the f.o.i accounting
for the limited buffer size, through quantifying the
way a packet can spread on a NoC with small buffers
under contentions. Moreover, we aim to handle such
an issue for wormhole NoCs, implementing a fixed
priority-preemptive arbitration of VCs, that can be
assigned to an arbitrary number of traffic classes with
different priority levels, i.e. VC sharing, and each traffic
class may contain an arbitrary number of flows, i.e.
priority sharing. Such characteristics cover a large panel
of wormhole NoC routers. These results constitute our
main theoretical contributions;

• Second, we analyse the derived delay bounds and com-
pare them to available results of existing approaches,
based on Scheduling Theory [3] [2] as well as CPA [6].
In doing this, we highlight a noticeable enhancement of
the delay bounds in comparison to CPA approach, and
the inherent safe bounds of our proposal in comparison
to Scheduling Theory approaches. Finally, we perform
experiments on a manycore platform, to confront our
timing analysis predictions to experimental data and
assess the analytical delay bounds tightness. To the best
of our knowledge, the latter aspect is rarely handled in the
literature, since the most relevant works in NoC timing
analysis rely only on simulation to evaluate their ana-
lytical model. These results constitute our main practical
contributions.

The remainder of this paper is organized as follows : we
first review the main related work in Section II. Afterwards,
we recall the main Network Calculus concepts, and present
the system model and an overview of the main steps of
our proposed analysis methodology in Section III. Then, the
introduced refined interference patterns and the delay bound
computation, taking into account the buffer size and the flows
serialization impacts, are detailed in Sections IV and V,
respectively. In addition, we report the comparative analysis
of recent works in the same field against ours, and the derived
experimental results in Section VI. Finally, we draw the main
conclusions and future work in Section VII.

II. RELATED WORK

The most relevant timing analyses of NoCs are mainly using
two approaches: Scheduling Theory and Network Calculus,
to which we can add an “hybrid” method known as Com-
positional Performance Analysis (CPA). The main supported
assumptions of each one of these analyses are summarized in
Table I, and we particularly consider: (i) the use of wormhole
routing with multiple VCs; (ii) the support of VCs Sharing (
i.e. many traffic classes per VC) and priority Sharing (i.e.
many traffic flows per priority level) in each router; (iii)

the integration of the buffer size and the flows serialization
impacts.

Scheduling Theory has been used in [3] to derive worst-
case latency bounds in wormhole NoCs supporting multiple
VCs and with no priority sharing. Then, this method has
been extended in [4] to support the priority sharing. However,
the latter approach may lead to overly pessimistic results
for large NoCs with a high number of flows and a limited
number of virtual channels. Moreover, the authors in [2] have
proved later that the method in [3] could be optimistic in
specific situations, and refined the response time analysis
through the distinction between downstream and upstream
indirect interferences, which leads to a deeper understanding
of the problem. However, they focus only on configurations
with no priority sharing, which limits the applicability of
such a proposal. Interesting enhancements of the work in [4]
have been detailed in [5], where refined interference patterns
between flows have been proposed through accounting for the
physical contention domain impact, but considering only one-
flit size buffers.

More recently, the authors in [7] have developed a model
based on CPA, supporting priority sharing and VC sharing
but ignoring the buffer backpressure. Afterwards, they have
extended this work to support the backpressure in [6]. How-
ever, the proposed analysis has considered only a single VC
with buffer sizes do not go below one packet, and ignored the
flows serialization phenomena.

Finally, there are some recent work based on Network
Calculus [12]. In [8], the authors have solved the chain
blocking problem due to the wormhole routing in a recursive
way, through modeling the flow control system as a router
component, whose behavior depends on the following router.
This method infers complex fixed-point problems solving and
has been validated only on relatively small NoCs with a simple
flows configuration; thus limiting their approach applicability
and scalability. Moreover, they have considered only a single-
VC NoC routers. Afterwards, the authors in [9] have provided
tighter delay bounds, using improved arrival and service
curves while taking buffer size and flows serialization into
account. However, their approach seeks to provide a buffer size
threshold to avoid the buffer backpressure. In addition, they
do not consider wormhole routing as the switching technique;
thus avoiding the complex chain blocking issue. Finally, the
authors in [10] have started the exploration of the buffer size
impact on the interference patterns. However, the considered
wormhole routers do not support the VC concept and the
proposed approach does not integrate the flows serialization
phenomena.

As illustrated in Table I, there is no existing timing analysis
approach, which covers all the technical characteristics of
wormhole NoC routers and supports the buffer size and flows
serialization phenomena. Hence, our main contribution in
this paper is to cope with these different characteristics and
assumptions to compute accurate end-to-end delay bounds in
wormhole NoCs, using Network Calculus.

wormhole multiple VCs priority sharing VCs sharing flows serialization buffer size B (vs packet length L)
Approach Contribution 1 flit L ≤ B B ≤ L

[2] x x x x x
Scheduling Theory [4] x x x

[5] x x x x

CPA [6] x - x x
[7] x x x x x

[8] x x x x x
Network Calculus [9] x x x x

our approach x x x x x x x x

TABLE I
SUMMARY OF THE ASSUMPTIONS OF THE MAIN EXISTING APPROACHES

III. TIMING ANALYSIS METHODOLOGY

To conduct our proposed timing analysis of wormhole NoCs
using Network Calculus, we first present the main concepts of
Network Calculus that will be used in the paper. Afterwards,
we detail the system assumptions and model. Finally, we give
an overview of the main followed steps to compute the end-
to-end delay bounds. The main notations used in this paper
are in Table II, where upper indices indicate a node or a set
of nodes and lower indices indicate flows.

A. Network Calculus Background

Network Calculus describes data flows by means of cumula-
tive functions, defined as the number of transmitted bits during
the time interval [0, t]. Consider a system S receiving input
data flow with a Cumulative Arrival Function (CAF), A(t), and
putting out the same data flow with a Cumulative Departure
Function (CDF), D(t). To compute upper bounds on the worst-
case delay and backlog, we need to introduce the maximum
arrival curve, which provides an upper bound on the number
of events, e.g., bits or packets, observed during any interval
of time.

Definition 1. (Arrival Curve) [12] A function α is an arrival
curve for a data flow with the CAF A, iff:

∀t, s ≥ 0, s ≤ t, A(t)−A(s) ≤ α(t− s)

A widely used curve is the leaky bucket curve, which
guarantees a maximum burst σ and a maximum rate ρ, i.e., the
traffic flow is (σ, ρ)-constrained. In this case, the arrival curve
is defined as γσ,ρ(t) = σ + ρ · t for t > 0. Furthermore, we
need to guarantee a minimum offered service within crossed
nodes through the concept of minimum service curve.

Definition 2. (Simple Minimum Service Curve) [12] The
function β is the simple service curve for a data flow with
the CAF A and the CDF D, iff:

∀t ≥ 0, D(t) ≥ inf
s≤t

(A(s) + β(t− s))

A very useful and common model of service curve is the
rate-latency curve βR,T , with R the minimum guaranteed rate
and T the maximum latency before starting the service. This
rate-latency function is defined as βR,T (t) = [R · (t − T)]+,
where [x]

+ is the maximum between x and 0. Knowing the
arrival and service curves, one can compute the upper bounds

on performance metrics for a data flow, according to the
following theorem.

Theorem 1. (Performance Bounds) Consider a flow con-
strained by an arrival curve α crossing a system S that offers
a service curve β, then:
Delay 3: ∀ t : d(t) ≤ h(α, β)
Backlog 4: ∀ t : q(t) ≤ v(α, β)
Output arrival curve 5: α∗(t) = α� β(t)

The calculus of these bounds is greatly simplified in the
case of a leaky bucket arrival curve and a rate-latency service
curve. In this case, the delay and backlog are bounded by
σ
R +T and σ+ρ ·T , respectively; and the output arrival curve
is σ + ρ · (T + t).

Finally, we will extend the following results concerning
the end-to-end service curve of a f.o.i. accounting for flows
serialization effects in feed-forward networks, based on the
PMOO principle [13], under non-preemptive Fixed Priority
(FP) multiplexing.

Theorem 2. The service curve offered to a flow of interest
f along its path Pf , in a network under non-preemptive FP
multiplexing with strict service curve nodes of the rate-latency
type βR,T and leaky bucket constrained arrival curves ασ,ρ,
is a rate-latency curve, with a rate RPf and a latency T Pf ,
as follows :

RPf = min
k∈Pf

[Rk −
∑

i3k,i∈shp(f)

ρi] (1a)

T Pf =
∑
k∈Pf

T k +

max
i3k,i∈slp(f)

Li

Rk

+
∑

i∈DBf∩shp(f)

σ
cv(i,f)
i + ρi ·

∑
k∈Pf∩Pi

(
T k +

max
i3k,i∈slp(f)

Li

Rk

)
RPf

(1b)

, where slp(f) (resp. shp(f)) denotes all flows with a priority
lower (resp. higher) or equal than f and Lf the maximal
packet size of flow f .

3h(f, g): the maximum horizontal distance between f and g
4v(f, g): the maximum vertical distance between f and g
5f � g(t) = sup∀u≥0{f(t+ u)− g(u)}

Notation Definition

F the set of flows on the NoC

Sflit The size of one flit

B The buffer size of a VC in a router

Pf The list of nodes crossed by f from source to destination

Pf [k] The k + 1th node of f path

subpath(l, k) The subpath of flow l relatively to flow k just after dv(k,l)

Last(l, k) The index of dv(k, l) in Pl

cv(i, j) The convergence node of i and j

dv(i, j) The divergence node of i and j

f 3 r Flow f crosses node r

F ⊃ r There is a flow f ∈ F such that f 3 r
1{cdt} equals 1 if cdt is true and zero otherwise

Lf The maximal packet length of f

Jf The release jitter of f

Pf The period of f

αf (t) The initial arrival curve of f

αr
f (t) The arrival curve of f at node r

σr
f The burst of αr

f

ρrf The rate of αr
f

βf (t) The end-to-end service curve of f

β
Pf [i:j]

f (t) The service curve granted to f on the path from Pf [i] to Pf [j]

R
Pf [i:j]

f The rate of β
Pf [i:j]

f

T
Pf [i:j]

f The latency of β
Pf [i:j]

f

β̃subP
k (t) The VC-service curve of f on subP

R̃subP
f The rate of β̃subP

k

T̃ subP
f The latency of β̃subP

k

DBf set of all flows directly interfering with f

DB
|path
f Flows i ∈ DBf such that Pi ∩ path 6= ∅

hp(f) Flows mapped to a VC of strict higher priority than f

sp(f) Flows mapped to the same VC as f

lp(f) Flows mapped to a VC of strict lower priority than f

slp(f) All flows with a priority lower or equal than f , f excluded

shp(f) All flows with a priority higher or equal than f , f excluded

IBf Indirect blocking set of flow f

Nf The spread index for f , i.e., number of buffers to store f

D
Pf
f The end-to-end delay bound of f

TABLE II
SUMMARY OF NOTATIONS

B. System Model And Assumptions

Our model can apply to an arbitrary NoC topology as
long as the flows are routed in a deterministic, deadlock-
free way (see [1]). Nonetheless, we consider the commonly
used 2D-mesh topology with input-buffered routers and XY-
routing, due to their simplicity and high scalability. The
considered wormhole NoC routers, illustrated in Fig. 1 (left),
implement a priority-based arbitration of VCs and enable flit-
level preemption through VCs. The latter can happen if a
flow from a higher priority VC asks for an output that is
being used by the f.o.i.. Hence, when the flit being transmitted
finishes its transmission, the higher priority flow is granted the
use of the output while the f.o.i. waits. Moreover, each VC

.

inputs outputs

1

2

k

1

2

k

VCs

VC 1

VC 2

VC 3

. . .

. . .

. . .

. . .

output

FP multiplexing

blind multiplexing

Fig. 1. Architecture of an input-buffered router (left) and output multiplexing
(right) with the arbitration modeling choices

higher priority flit can move

buffer is now full, packet 1 is blocked

packet 2 can move while 1 is blocked

1
2

Fig. 2. Bypass mechanism

has a specific input buffer and supports many traffic classes,
i.e., VCs sharing, and many traffic flows may be mapped
on the same priority-level, i.e., priority sharing. Finally, the
implemented VCs enable the bypass mechanism, illustrated in
Fig. 2. If the f.o.i gets blocked at some point (for instance, flow
1 in Fig. 2), flows from lower priority VCs sharing upstream
outputs with the f.o.i (for instance, flow 2 in Fig. 2) can bypass
it, but they will be preempted again when the downstream
blocking of the f.o.i. disappears.

We consider an arbitrary service policy to serve flows
belonging to the same VC within the router, i.e., these flows
can be from the same traffic class or from different traffic
classes mapped on the same VC. This assumption allows us
to cover the worst-case behaviors of different service policies,
such as FIFO and Round Robin (RR) policies.

Hence, we model such a wormhole NoC router as a set
of independent hierarchical multiplexers, where each one
represents an output port as shown in Fig. 1 (right). The first
arbitration level is based on a blind (arbitrary) service policy to
serve all the flows mapped on the same VC level and coming
from different geographical inputs; whereas the second level
implements a preemptive Fixed Priority (FP) policy to serve
the flows mapped on different VCs levels and going out from
the same output port. It is worth noticing that the independency
of the different output ports is guaranteed in our model, due to
the integration of the flows serialization phenomena. The latter
infers ignoring the interference between the flows entering a
router through the same input and exiting through different
outputs, since these flows have necessarily arrived through the
same output of the previous router, where we have already
taken into account their interference.

Each router-output pair r (that we will refer to as a node
from now on) has a processing capacity that we model using

a rate-latency service curve.

βr(t) = Rr(t− T r)+

Rr represents the minimal processing rate of the router for
this output (which is typically expressed in flits per cycle)
and T r the maximal experienced delay by any flit crossing
the router before being processed (which is commonly called
routing delay and takes one or few cycles).

On the other hand, the characteristics of each traffic flow
f ∈ F are modeled with the following leaky bucket arrival
curve, which covers a lot of different traffic arrival events,
such as periodic and sporadic with or without jitter.

αf (t) = σf + ρf · t

This arrival curve integrates the maximal packet length Lf
(payload and header in flits), the period or minimal inter-arrival
time Pf (in cycles), and the release jitter Jf (in cycles) in the
following way :

ρf =
Lf
Pf

σf = Lf + Jf · ρf

For each flow f , its path Pf is the list of nodes (router-
outputs) crossed by f from source to destination. Moreover,
for any k in appropriate range, Pf [k] denotes the k+1th node
of flow f path (starting at index 0). Therefore, for any r ∈ Pf ,
the propagated arrival curve of flow f from its initial source
until the node r, computed based on Th. 1, will be denoted:

αrf (t) = σrf + ρrf · t

The end-to-end service curve granted to flow f on its whole
path will be denoted:

βf (t) = Rf (t− Tf)
+

And similarly, the service curve granted to f on a partial path
from node Pf [i] to node Pf [j] is as follows:

β
Pf [i:j]
f (t) = R

Pf [i:j]
f

(
t− T Pf [i:j]

f

)+
C. Main Steps of the Delay Bounds Computation

To compute an upper bound on the end-to-end latency for
the f.o.i f , we need to define its granted end-to-end service
curve:

βf (t) = Rf (t− Tf)
+

The rate Rf represents the bottleneck rate along the flow path,
accounting for directly interfering flows of same and higher
priority than f . The latency Tf consists of several parts :

Tf = Thp + Tsp + Tlp + TIB + TPf
(2)

• TPf
is the “base latency”, that any flit of f experiences

along its path due only to the technological latencies of
the crossed routers;
• Thp is part of the maximum direct blocking latency, due

to flows of higher priority sharing resources with f , which
are part of the direct blocking set DBf ;

• Tsp is part of the maximum direct blocking latency, due
to same priority flows sharing resources with f , and also
part of DBf set;

• Tlp is part of the maximum direct blocking latency, due
to flows of lower priority sharing resources with f , and
also part of DBf set;

• TIB is the maximum indirect blocking latency, due to
flows that can indirectly block f through the buffer
backpressure phenomenon, and these flows are denoted
indirect blocking set IBf .

The direct blocking set DBf and indirect blocking set IBf
will be detailed in Section IV. We illustrate symbolically these
influences on Figure 3. The f.o.i undergoes direct blocking
along its path, while indirect blocking occurs on “branches”
and backpropagates to the f.o.i.

f

IB

IB IB

DB DB DB DB DB

Fig. 3. Symbolic representation of contributions to latency Tf of flow f

Hence, our delay bounds computation for a f.o.i f is based
on three main steps:

1) First, we will refine the indirect blocking set of flows,
IBf , which are involved in the indirect interference
of the f.o.i f , as well as the section of their path on
which they induce this blocking. This step will take into
account the impact of the limited buffer size on the way
a packet can spread on the NoC; thus on IBf , and it
will be detailed in Section IV;

2) Second, we will compute the end-to-end service curve
of flow f taking direct blocking and indirect blocking
delays into account. This step integrates the flows
serialization effects using the PMOO principle [13],
and it will be detailed in Section V. We will start by
analyzing the impact of the direct blocking set, DBf ,
on the end-to-end service curve, i.e. Thp, Tsp and Tlp.
Afterwards, we will compute the impact of the indirect
blocking set computed in the first step on such a curve,
i.e TIB ;

3) Finally, once the end-to-end service curve for the f.o.i f
is known, we use Theorem 1 to get an upper bound on
the end-to-end delay of f , DPf

f , as follows:

D
Pf

f =
σPf [0]

Rf
+ Thp + Tsp + Tlp + TIB + TPf

(3)

IV. BUFFER-AWARE ANALYSIS OF INDIRECT BLOCKING
SETS

Indirect blocking set consists of flows that do not physically
share any resource with the f.o.i, but can delay it because they
impact flows that directly impact the f.o.i. It is worth noticing
that this definition is slightly different from the one used in
the Scheduling Theory approaches [4] [5], where there is a
distinction between the indirect blocking, i.e., due to same-
priority flows blocking one another and eventually impacting
the f.o.i, and indirect interference, i.e., due to higher priority
flows. In our approach, we only consider flows belonging to
the same class as the f.o.i to compute the indirect blocking set,
since the impact of higher priority flows is already integrated
in our model as follows:

• if a higher priority flow blocking our f.o.i gets blocked,
the f.o.i can bypass it. In this case, we take into account
the extra processing delay needed to allocate the shared
resource to the f.o.i. On the other hand, the buffer
backpressure will only propagate among flows from the
same class, as illustrated in Fig. 2;
• the influence of higher priority flows on the same priority

flows than the f.o.i, which are inducing the indirect
blocking, is modeled through the granted end-to-end
service curve of each one of these flows at the rate and
latency levels, as explained in Section III-C

To better understand the impact of the buffer size on the
packet spreading, and consequently the indirect blocking set,
we consider the example of Figure 4 under the following
assumptions: (i) each buffer can store only one flit; (ii) all
flows have 3-flit-long packets; (iii) all flows are mapped to
the same VC; (iv) the f.o.i is flow 1.

In the upper configuration, a packet of flow 3 occupies
buffers (7, 8, 9). Consequently, a packet of flow 2, waiting for
buffer 7, is blocked and occupies buffers (4, 5, 6). In turns,
a packet of the f.o.i flow 1 is blocked, since it needs buffer
4 to move forward. Hence, flow 3 is included in the indirect
blocking set of the f.o.i flow 1.

In the bottom configuration, a packet of flow 4 occupying
buffers (12, 13, 14) leads to a direct blocking of a packet
of flow 2, waiting in buffers (7, 8, 11). However, this packet
of flow 2 is too far away from the last node flows 1 and 2
have in common (buffer 4). Hence, flow 4 is not part of the
indirect blocking set of the f.o.i flow 1, even though there is
an intermediate flow that shares resources with both flows 1
and 4.

It is worth noticing that the indirect blocking set analysis
without taking into account the buffer size will include flows
3 and 4 in IB1 (the indirect blocking set of the f.o.i flow 1).
However, as illustrated in the Figure 4, there is actually only
flow 3 in the indirect blocking set of the f.o.i flow 1, due to
the impact of the buffer size on the packet spreading.

Hence, the limited buffer size reduces the section of the
path on which a blocked packet can in its turn block another

1 2

3

4

source

destination

1 2 3 4 5 6 7

10

8

9

11 12 13

14

15

1 2

3

41 2 3 4 5 6 7

10

8

9

11 12 13

14

15

Fig. 4. Impact of packet size and buffer size on indirect blocking

one. Consider two flows k and l that are directly interfering
with one another and let dv(k, l) be the last node they share :

dv(k, l) = Pk[max{i, l 3 Pk[i]}]

Suppose the path of l continues after this node. Even if the
head flit of l is not stored in a router of Pk ∩ Pl, the limited
buffer size available in each router can lead to storing the tail
flit of l in a router of Pk ∩ Pl under contention. In that case,
l blocks k. Therefore, we need to quantify the way a packet
of flow f spreads into the network when it is blocked and
stored in buffers. We do so by computing Nf , the number of
buffers needed to store one packet of flow f . We call Nf the
“spread index for flow f”. Given the maximum packet length
of flow f , Lf flits, and the buffer size of a VC in routers B
flits (supposed to be identical for all routers), Nf verifies :

Nf =

⌈
Lf
B

⌉
Using the previous example, we call the section of the path

of flow l from dv(k, l) to Nl nodes (at most) after dv(k, l)
“subpath of flow l relatively to f.o.i k” :

subpath(l, k) = [Pl[Last(l, k) + 1], . . . ,Pl[Last(l, k) +Nl]]

, where Last(l, k) = max{n, Pl[n] ∈ Pk} is the index of the
last node shared by k and l along Pl, i.e Pl[Last(l, k)] =
dv(k, l). It is worth noticing that if Pl ends before reaching
the Nl-th node after dv(k, l), then we ignore the out-of-range
indexes. The notion of subpath is illustrated in Fig. 5 for the
f.o.i k and a spread index for the interfering flow l equal to
3, i.e., Nl = 3.

k

l

div(k, l)

subpathkl

conv(k, l) pathl[Last
k
l + 1]

Fig. 5. Subpath illustration for the f.o.i k

The computation of the indirect blocking set IBf is detailed
in Algorithm 1.

To explain such an algorithm, we need the following defi-
nitions:
• sp(f): all flows belonging to the same VC as f , f

excluded ;
• hp(f): all flows mapped to a VC of strict higher priority

than the VC, to which f belongs;
• lp(f): all flows mapped to a VC of strict lower priority

than the VC, to which f belongs;
• DBf : set of all flows directly interfering with flow f ,

regardless of their priority, i.e., DBf = {i ∈ F , Pi ∩
Pf 6= ∅};
• DB|pathf : set of flows of DBf with paths having a non-

null intersection with path ⊂ Pf , i.e. DB|pathf = {i ∈
DBf , Pi ∩ path 6= ∅}.

The main steps of this algorithm when considering a f.o.i
f are as follows:

1) determine all subpaths of flows in DB
|Pf

f ∩ sp(f) rela-
tively to flow f (lines 3-5);

2) for each of these subpaths, check if they intersect with
other flows. If yes, determine the subpath of these other
flows relatively to the subpath they intersect (lines 10-19);

3) reiterate until no new subpath is found (lines 7-21).
Notice that DBf ∩ sp(f) and IBf are disjoint sets, since the
influence of directly-interfering, same-priority flows is already
integrated through the computation of the direct blocking
latency, which will be detailed in Section V-A. Moreover,
Algorithm 1 can be used to compute the subset of IBf
containing only flows that can cause indirect blocking on
a subpath subP ⊂ Pf . In that case, we need to consider
DB

|subP
f instead of DBf , and we will note the result ”partial

indirect blocking set” IB|subPf . We can also choose to ignore
a subset of the flows in F during the algorithm (hence the
optional parameter toIgnore). We can put in this subset the
flows that we have already taken into account before. For
instance, when we compute the impact of a flow i on the f.o.i
f , we must exclude flow f from the flows impacting flow i.
In fact, if not doing so, it would be equivalent to consider that
flow f impacts itself, which is quite pessimistic.

The computational complexity of Algorithm 1, when con-
sidering a flow set F on the NoC, is denoted as C(|F|) and
is defined in the following property.

Property 1. Consider a flow set F , the computational com-
plexity of Algorithm 1 is as follows:

C(|F|) = O
(
|F| ·

(
K ·max

f∈F
|Pf |

))
(4)

, where K is a constant time to find the subpath of a flow
relatively to the flow of interest,.

Proof. Consider f as the f.oi, we derive a computational
complexity bound independent from f . We denote Ek the state
of an arbitrary variable or set E after k iterations of the while
loop (Line 7).

Algorithm 1 Determining IBf and the associated subpaths
Input: f , the flow of interest, Pf the associated path, toIgnore

a list of flows to ignore (optional)
Output: IBf , a set containing flow indexes and associated

subpath involved in indirect interference on Pf
1: IBf is initially empty
2: init set← DB

|Pf

f ∩ sp(f)
// initialize S

3: for i ∈ init set\toIgnore do
4: Append {i, i.subpath(f)} to S
5: end for
6: processedFlows← ∅ // Initialize processedFlows
7: while S 6= ∅ do
8: Pop a pair {j, subj} from S

// Compute subpaths relatively to j on subj :
9: currentDB← computeDBset(j, subj)

10: for (k, subk) in (currentDB ∩ sp(j)) do
11: if k ∈ processedFlows ∪ init set ∪ toIgnore then
12: Move directly to the next iteration of the loop
13: end if
14: if k has no entry in IBf then
15: Add {k, subk} to IBf and S
16: else // there is an entry for k in IBf
17: Merge subk with the existing one in IBf and S
18: end if
19: end for
20: Append j to processedFlows
21: end while
22: return IBf

Moreover, for any flow fi 6= f , kfi denotes the iteration
at the end of which fi is added to processedFlows for the
first time, i.e. kfi = min{k, fi ∈ processedFlowsk}, with the
convention kfi = ∞ if fi is never added to processedFlows.
Let us show that fi will be added to processedFlows at most
once.

If kfi < ∞, there exists an iteration k < kfi such that
fi ∈ currentDBk and is added to S and IBf for the first
time (Line 15). If there exists kfi > k′ > k such that
fi ∈ currentDBk′ , the corresponding subpath will be merged
with the one already in S and IBf (Line 17). This way,
there will be only one entry for fi in S and IBf between
iterations k and kfi . At iteration kfi , fi is popped out of S and
currentDBkfi ⊂ DBfi , thus does not contain fi. Therefore,
S does not contain fi during the whole iteration. At the end of
iteration kfi , processedFlows contains fi. Consequently, from
iteration kfi + 1 and forward, fi cannot be added to S again
(Line 11), thus neither to processedFlows. Hence, for any fi,
either kfi =∞ or fi is added only once to processedFlows.

Consider the sequence defined as uk = |processedFlowsk|.
It is strictly increasing and upper-bounded by the number of
flows in our configuration. This fact proves that there are
at most |F| iterations of the while loop, after which S is
necessarily empty. Hence the following holds :

C(|F|) = O (|F| · C(computeDBset))

Let us now evaluate the complexity of computeDBset for a
flow f .

Applied to a flow f , this function computes the subpaths
of the flows in DBf relatively to f . Assuming we have a
preprocessed dictionary listing, for every node, the indexes of
flows using this node,6 we only have to run our algorithm
through the path of f and check if there are contending flows
at this node. Comparing the indexes of the current node with
those of the previous node, we can find divergence nodes
of contending flows relatively to the flow of interest. We
assume that, knowing the divergence point of a contending
flow relatively to the flow of interest, it takes a constant time
K to find its subpath (we only need to compute the spread
index). We finally have :

C(|F|) = O
(
|F| ·

(
K ·max

f∈F
|Pf |

))

An application of Alg. 1 to compute IBf is illustrated in
Fig. 6, when considering the flow f as the f.o.i and four more
flows with the same priority as f and a spread index of 3.

First, Algorithm 1 will initialize the set S with flow indexes
and subpaths from DBf :

S = {{1, S1}, {2, S2}}

Then, we enter the while loop :
1) we pop {1, S1} and see it does not intersect any other

flow (line ??, currentDB = ∅). We add 1 to processed-
Flows. S now contains {2, S2}.

2) we pop {2, S2} and compute currentDB = { 3, S3}. We
add {3, S3} to IBf and to S. We add 2 to processed-
Flows. S now contains {3, S3}.

3) we pop {3, S3} and compute currentDB = { 4, S4}. We
add {4, S4} to IBf and S We add 3 to processedFlows.
S now contains {4, S4};

4) we pop {4, S4} and compute currentDB = ∅. We add
4 to processedFlows. S is now empty, the loop is over.

Thus we finally have :

IBf = {{3, S3}, {4, S4}}

V. END-TO-END SERVICE CURVES COMPUTATIONS

In this section, we will detail the second step of our
computation methodology, which consists in defining the end-
to-end service curve of each f.o.i taking into account the
direct and indirect blocking impacts. First, we explain the
computation of the direct blocking latency of the service curve,
through extending the PMOO principle to wormhole NoCs.
Then, we explain the computation of the indirect blocking
latency of such a curve, based on the indirect blocking set
defined in Section IV.

6We do run such a preprocessing on the configuration.

f1

2

3

4

flow of interest

interfering flow (direct or indirect)

subpath initially in S

S1

S2

S3 S4

subpath added to IBf

1 2 3 4 5 6

7 8 9 10 11

13 1412

Fig. 6. Several contending flows and the subpaths with f as the flow of
interest. Green : subpaths included in IBf after the algorithm ; red : subpaths
of DBf .

A. Computing Direct Blocking Latency

The maximum direct blocking latency, part of the maximum
service latency defined in Eq. (2), is defined in the following
Theorem.

Theorem 3. (Maximum Direct Blocking Latency)
The maximum direct blocking latency for a f.o.i f along its
path Pf , in a NoC under flit-level preemptive FP multiplexing
with strict service curve nodes of the rate-latency type βR,T
and leaky bucket constrained arrival curves ασ,ρ is equal to:

TPf
+ Thp + Tsp + Tlp

with:

TPf
=
∑
r∈Pf

T r (5a)

Thp =
∑

i∈DBf∩hp(f)

σ
cv(i,f)
i + ρi ·

∑
r∈Pf∩Pi

(
T r +

Lr
slp(f)

Rr

)
Rf

(5b)

Tsp =
∑

i∈DBf∩sp(f)

σ
cv(i,f)
i + ρi ·

∑
r∈Pf∩Pi

(
T r +

Lr
slp(f)

Rr

)
Rf

(5c)

Tlp =
∑
r∈Pf

Lrslp(f)

Rr
(5d)

where:

Lrslp(f) = max

(
max
j∈sp(f)

(
Lj · 1{sp(f)⊃r}

)
, Sflit · 1{lp(f)⊃r}

)

Rf = min
r∈Pf

Rr − ∑
j3r,j∈shp(f)

ρj

Proof. The main idea is to integrate the impact of the flow
serialization phenomena on the granted end-to-end service
curve for the f.o.i f along its path Pf . To achieve this aim,
we adapt the results of the existing Theorem 2, based on
the PMOO principle, to take into account the specificities of
wormhole NoCs, in comparison to classic switched networks.

The wormhole NoCs allow the flit-level preemption during
transmission, which modifies the lower priorities impact on
the f.o.i in comparison to the non-preemptive mode in classic
switched networks. Hence, a lower priority flow that is being
transmitted at any node can delay the f.o.i f by at most the
maximum transmission time of one flit. Consequently, the term
maxi3k,i∈slp(f) Li in Eq. (1b) must be modified for each node
on Pf as follows:
• if there is one or more same-VC contending flow(s),

this term becomes the maximum packet size of the
contending, same priority flow(s) ;

• if there is one or more lower-VC flow(s), it equals the
size of one flit Sflit ;

• if there is no same or lower-VC flow, it equals zero.
Therefore, the flit-level preemption property of NoCs infers

that a f.o.i f will suffer from lower priority flows within any
crossed node r ∈ Pf during the maximum transmission time
of Lrslp(f), which is defined as follows:

Lrslp(f) = max

(
max
j∈sp(f)

(
Lj · 1{sp(f)⊃r}

)
, Sflit · 1{lp(f)⊃r}

)
Afterwards, we apply Theorem 2 while taking into account

such modification (the impact of lower priority flows due to
flit-level preemption). In doing this, we obtain the end-to-end
service curve of flow f along its path Pf , which integrates only
the impact of the direct blocking set of f , DBf , as follows:

Rf = min
r∈Pf

Rr − ∑
j3r,j∈shp(f)

ρj

 (7a)

Tf =
∑
r∈Pf

(
T r +

Lrslp(f)

Rr

)

+
∑

i∈DBf∩shp(f)

σ
cv(i,f)
i + ρi ·

∑
r∈Pf∩Pi

(
T r +

Lr
slp(f)

Rr

)
Rf

(7b)

Hence, as we can notice, the computation of the different
parts of the direct blocking latency defined in Eq. (2) is
straightforward.

To illustrate this computation, we take the example config-
uration of Figure 6. As we noticed earlier, all flows have the
same priority and we furthermore assume they all have the
same initial arrival curves ασ,ρ. Thus we have Tlp = Thp = 0.
We assume that for any node r, Tr = T and Rr = R. We
immediately have TPf

= 6T
The sum at the numerator of Tsp equals 2T for flow 1 (resp.

4T for flow 2) as it shares 2 (resp. 4) node outputs with f .
The rate (ρi)i=1,2 is also constant. Thus Rf can be com-

puted at node 1 or 2, where f suffers from contention from
both flows 1 and 2, and we have Rf = R− 2ρ.

We now need the value of the burst for each flow of DBf
at the converging node with f . The converging node with f
is node 1 for both flows 1 and 2, We get σ1

1 and σ1
2 either

directly, if we assume flow 1 and 2 start at node 1, either by
computing with the same method the service curve for these
flows before node 1, and using the � deconvolution operator
to derive their arrival curve at node 1.

B. Computing Indirect Blocking Latency

The maximum indirect blocking latency, part of the max-
imum service latency defined in Eq. (2), is defined in the
following Theorem.

Theorem 4. (Maximum Indirect Blocking Latency)
The maximum indirect blocking latency for a f.o.i f along its
path Pf , in a NoC under flit-level preemptive FP multiplexing
with strict service curve nodes of the rate-latency type βR,T
and leaky bucket constrained arrival curves ασ,ρ, is as follows:

TIB =
∑

(k,subP)∈IBf

σ
subP [0]
k

R̃subPk

+ T̃ subPk (8)

where:

R̃subPk = min
r∈subP

Rr − ∑
j3r,j∈hp(f)

ρj

 (9a)

T̃ subPk =
∑

r∈subP

(
T r +

Sflit1{lp(k)⊃r}

Rr

)

+
∑

i∈DB|subP
k ∩hp(k)

σ
cv(i,k)
i + ρi

∑
r∈subP∩Pi

(
T r +

Sflit1{lp(k)⊃r}
Rr

)
R̃subPk

(9b)

Proof. The maximum indirect blocking latency for a f.o.i f
induced by the flows set IBf , computed in the previous section
using Algorithm 1.

Any flow j ∈ IBf will impact the f.o.i f during the
maximum time it occupies the associated subpath subPj ,
∆tmaxj . Hence, a safe upper bound on the indirect blocking
latency is as follows:

TIB ≤
∑
j∈IBf

∆tmaxj

On the other hand, for any flow j ∈ IBf , ∆tmaxj is upper
bounded by the end-to-end delay bound of flow j along its
associated subpath subPj , D

subPj

j , which infers the following:

TIB ≤
∑

(j,subPj)∈IBf

D
subPj

j (10)

Based on Theorem 1, the delay bound of flow j, DsubPj

j ,
is computed as the maximum horizontal distance between:
• the maximum arrival curve of flow j at the input of the

subpath subPj , α
subPj [0]
j , which takes into account the

impact of all the interferences suffered by flow j upstream
the node subPj [0], i.e., the propagated arrival curve of
flow j until the input of subPj [0] using Theorem 1;

• the granted service curve to flow j by its VC along
subPj , when ignoring the same-priority flows (which are

already included in IBf), β̃subPj

j . The latter condition is
due to the pipelined behavior of the network, where the
same-priority flows sharing subPj are served one after
another if they need shared resources. Hence, the impact
of the same-priority flows than flow j is already integrated
within the sum expressed in Eq. (10).

To compute the granted service curve β̃subPj

j for each flow
j ∈ IBf along subPj , we follow similar approach than in the
proof of Theorem 4 through applying the existing Theorem 2,
when:
• ignoring the same-priority flows in sp(j), thus all shp(j)

will become hp(j) and slp(j) will become lp(j) in Eqs.
(1 a) and (1 b);

• considering the flit-level preemption, thus the impact
of lower-priority flows in Eq. (1 a) is bounded by the
maximum transmission time of Sflit · 1{lp(k)⊃r} within
each crossed node r ∈ subPj ;

• considering only the direct blocking flows of j intersect-
ing Pj on subPj , thus considering DB|subPj

j ∩ hp(j) in
Eq. (1 b).

Hence, we obtain R̃subPj

j and T̃ subPj

j described in Eqs. (9a)
and (9b), respectively. Consequently, the maximum indirect
blocking latency in Eq. (10) can be re-written as follows:

TIB ≤
∑

(j,subPj)∈IBf

σ
subPj [0]
j

R̃
subPj

j

+ T̃
subPj

j (11)

Here again, we propose an application to the configuration
on Figure 6. Since all flows have the same priority, for all
j, subPj ∈ IBf , RsubPj

j and T subPj

j are immediately obtained.
What is left is to compute the burst of j at the first node of the
subpath subPj. Here, it is pretty straightforward because the
corresponding flows start at this node and we have σsubPj [0]

j =
σ. On a more complex situation, we can perform for each j
the same analysis on the section before subPj [0], but this time
ignoring the flow of interest f in all the analysis. This is due to
the fact that we are doing this computation to derive f worst-
case latency bound. Therefore we must not consider that f
can block a flow that will in turn block f .

VI. PERFORMANCE EVALUATION

In this section, we first analyse the derived delay bounds
using our proposal and conduct a comparative analysis with
the existing approaches, based on Scheduling Theory [3] [2] as
well as CPA [6]. Then, we perform experiments on a manycore
platform, to assess our delay bounds tightness with reference
to the experimental results.

A. Comparative Study

To compare our proposal to the most relevant approaches
relatively to our context (namely [2], [6]), we consider the
example used in [2], which is illustrated in Figure 7.

The parameters for the flows are gathered in Table III. Using
our approach, the end-to-end delay bound of flow 3 is 44

1

2

3

Fig. 7. A simple configuration from [2].

Flow index 1 2 3

Priority 1 2 3
Period 100 100 100
Deadline 100 100 40
Release jitter 0 0 0
Base latency (no contention) 21 24 14
Packet size 19 20 10
Cycle accurate scenario in [2] 21 43 43
Upper bound by [3] 21 45 38
Upper bound (our approach) 23 57 44

TABLE III
MINIMAL EXAMPLE

cycles. However, the delay bound predicted by the model in
[3] is only 38, and the computed bound in [2] is 43. This
result shows that our proposed timing analysis guarantees safe
bounds on a configuration known to be problematic with some
Scheduling Theory approaches. We would like to conduct
further comparaison with such approaches using large-scale
configuration, like the one used in [5], but unfortunately it is
almost impossible to reproduce the analyzed scenarios due to
the lack of information on the considered platform and flows
characteristics in [5].

The second performed comparison is based on the con-
figuration presented on Figure 8 taken from [6] using CPA
approach, where all flows have a packet length 4 flits. We have
reproduced different scenarios of [6] to compute the delay
bounds with our proposal with respect to the flow rate and
buffer size.

4

3

2

1

Fig. 8. A simple configuration from [6].

First, we vary the requested bandwidth per sender (i.e. the
rate of each flow relatively to the maximal rate). Since the
packet length is constant, we adjust the flow period to get
different values of rate. The full bandwidth corresponds to a
rate of one flit per cycle.

For each bandwidth value, we compute the corresponding
delay bound predicted by our model for all 4 flows for a buffer
size equal to 4 flits and the derived results are in Figure 9.
For each flow, we also plotted a vertical line representing the
saturation point of [6] CPA model : when the CPA-predicted
latency is greater than 103 cycles7, we consider that the model

7This value is similar in this case to infinity since it is very high in
comparison to the flows deadline

diverges.

Fig. 9. Predicted bounds for different values of bandwidth

We first notice that the curves of our predictions are
smoother than [6]. Moreover, for low bandwidths (below
10%), our predictions are similar to [6], or even tighter.
They also grow smoother for higher bandwidths and do
not present any saturation point like in [6]. Specifically, for
flow 1, which may suffer from buffer backpressure, the CPA
approach predicted upper bound reaches 103 cycles shortly
after 12.5% bandwidth. Our bound, on the other hand, is 54
cycles for 12.1% and 57 cycles for 16% bandwidth, very tight
in comparison to the simulation results in [6].

Next, we study the impact of buffer size with a constant
requested bandwidth per sender (12.5%) for flow 1. We
compute the predictions of our model for the same buffer sizes
in the experiment by [6] and for additional values, especially
for all buffer sizes lower than packet size which are not
handled in the CPA model [6]. The derived results of both
approaches are illustrated in Figure 10.

Fig. 10. Delay bounds of flow 1 vs buffer size under CPA and NC approaches

As we can notice, our approach allows much tighter delay
bounds for small buffer sizes. For buffer sizes lower than 12
flits (3 packets), we obtain a bound tightness improvement
of 45.5% with our model in comparison to the CPA one,
and it is more than 80% for the lowest buffer size (4 flits).
We also notice that increasing buffer size does not improve
the delay bound past a certain point under our approach. For
instance, the end-to-end delay upper bound remains constant
for buffer sizes above 4 flit (the size of one packet for any
flow in the configuration). This is due to the fact that the
spread index of a flow remains constant when the buffer size
exceeds the length of one packet. With a constant spread index,
the indirect blocking set analysis remains the same; thus the
indirect blocking latency (and the end-to-end delay bound).

B. Experiments on a Physical Platform

1) Setting Data Flow Configurations: We conducted ex-
periments on a TILE-Gx8036, a 36-core chip developed by
Tilera.8 Our aim was to determine whether our model could
actually be used to predict worst-case end-to-end latencies
on a physical manycore platform. The platform features a
NoC (also called “UDN”, User Dynamic Network) with no
virtual channels. It uses X-Y routing and the buffers can
contain 3 flits. We have tested several configurations. Each
flow transmitted at least 20000 packets9 and we sampled 9999
of them after a warm-up time.

To create flows with arbitrary parameters, we wrote a code
running on the Tilera platform. The code assigns cores to a
specific task (sending or receiving packets), depending on the
parameters gathered in a configuration file that is loaded onto
the TILE-Gx before running the application. Each packet
producer sends arbitrary packets of fixed size with a minimal
inter-packet time.

2) Latency Measurements: To measure packet end-to-end
latency for each flow, we proceed as follows. Each TX (resp.
RX) process samples the cycle counter right before sending a
packet on the UDN (resp. right after receiving a packet from
the UDN) and stores the value in an array, at the position
corresponding to the packet number. We print and process
these values after the execution to get the measured end-to-
end latency for each packet. We consider the 99.99%-accurate
measured bound, i.e. the latency such that 99.99% of the flows
have a latency below this value.

However, the measured latency includes the time needed by
the application to access the UDN, at TX and RX ends. This
latency is not taken into account in our model. To determine
it, we measure end-to-end latency on a 15-flow configuration
where the UDN latency is known (no congestion). We ran the
experiment 100 times, and we found that the minimal UDN
access latency is a piecewise affine function of the packet
length, and that 99.99% of the packets are at most 5 cycles
above the minimal UDN access latency.

43

21

2

1

3 5

Fig. 11. Experiment configurations 1 (left) and 2 (right)

3) Experiments and Discussion: We test two configura-
tions, shown in Figure 11. The first configuration is a simple

8http://www.mellanox.com/related-docs/prod multi core/PB TILE-
Gx36.pdf

9The lowest-rate flow transmits 20000 packets, others transmit packets as
long as the lowest-rate flow is transmitting.

one with only 3 flows, with a period of 200 cycles and packets
of 8 flits. In this configuration, flow 1 can undergo indirect
blocking from flow 3. The second one has 5 flows. Flow 1
can experience indirect blocking from flow 4 via flow 3. Flow
3 can experience indirect blocking from flow 2 via flow 1. All
flows are 100-cycle-periodic and their packets are 8-flit-long.

For each flow, we compute the theoretical bound on end-
to-end latency and the 99.99%-accurate measured bound. The
derived results are in Fig. 12.

Fig. 12. Experiment results for configuration 1 (left) and 2 (right)

We notice that for the simple configuration of 3 flows,
our delay bounds are tight, in comparison to the measured
ones. For instance, the tightness bound for flow 1 is 97.6%.
However, for the more complex configuration (5 flows), our
analytical delay bounds are less tight, especially for flows 1
and 3, that are subject to more complex indirect blocking. This
fact is mainly due to the difficulty of catching the theoretical
worst-case scenario, which requires all interfering flows to be
synchronized in an unfavorable way along the shared paths.
Although this may seem counter-intuitive, the more flows are
involved in one congestion pattern, the more difficult it will
be to reach a proper synchronization between the interfering
flows at least once during the experiments.

VII. CONCLUSION AND FURTHER WORK

We have proposed an approach based on Network Calculus
to address main limitations of recent works in real-time NoC
analysis. Specifically, our model applies to a wide range of ar-
chitectures : it supports multiple VCs, priority sharing and VC-
sharing. Our modeling choices are also fine-grained. We take
into account buffer size influence by studying the way packets
can spread in the network, thus providing fine, safe bounds on
backpressure-due delays. We use recent contributions in Net-
work Calculus Theory to refine the analysis by accounting for
serialization effects, which to the best of our knowledge, has
not been done on NoCs yet. The result is a generic, scalable
model that provides safe bounds and noticeable improvements,
in comparison to existing approaches, e.g. Scheduling Theory
and CPA, and with reference to experimental results.

There are mainly three axes that we would like to explore.
First, we would like to perform a more thorough sensitivity
analysis of our model. Specifically, we would like to study
different types of traffic to get a grasp on the influence of
flow burstiness and rate, maximum network utilization rate
and buffer size on the predicted latency. There is also room
for refining the model even more, e.g. specifying arbitration
policies between classes within the same virtual channel and

between flows of the same class. We could also evaluate
the likelihood of indirect blocking scenarios to get a better
interpretation of experimental results. Finally, we want to
develop further the testing process on a manycore platform.
We need to design a better test bench that is less sensitive to
non-NoC-related influences during the application execution,
such as memory access latencies or interruptions.

ACKNOWLEDGEMENTS

We would like to thank Stephen Mallon (University of
Sydney) for his fantastic expertise on the Tilera platform we
used, as well as Guillaume Jourjon (Data61 – CSIRO, Sydney)
and Vincent Gramoli (University of Sydney) for their friendly
supervision and help on the experiments. Our gratitude also
goes to Emmanuel Lochin (ISAE – Université de Toulouse)
for setting up the collaboration with Data61 and University of
Sydney.

REFERENCES

[1] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, pp. 62–76, Feb 1993.

[2] Q. Xiong, F. Wu, Z. Lu, and C. Xie, “Extending real-time analysis
for wormhole nocs,” IEEE Transactions on Computers, vol. PP, no. 99,
pp. 1–1, 2017.

[3] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in Networks-on-Chip, 2008. NoCS
2008. Second ACM/IEEE International Symposium on, pp. 161–170,
April 2008.

[4] Z. Shi and A. Burns, “Real-time communication analysis with a priority
share policy in on-chip networks,” in 2009 21st Euromicro Conference
on Real-Time Systems, pp. 3–12, July 2009.

[5] M. Liu, M. Becker, M. Behnam, and T. Nolte, “Tighter time analysis
for real-time traffic in on-chip networks with shared priorities,” in
10th IEEE/ACM International Symposium on Networks-on-Chip, August
2016.

[6] S. Tobuschat and R. Ernst, “Real-time communication analysis for
networks-on-chip with backpressure,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, pp. 590–595, March 2017.

[7] E. A. Rambo and R. Ernst, “Worst-case communication time analysis
of networks-on-chip with shared virtual channels,” in Proceedings of
the 2015 Design, Automation & Test in Europe Conference &
Exhibition, DATE ’15, (San Jose, CA, USA), EDA Consortium, 2015.

[8] Y. Qian, Z. Lu, and W. Dou, “Analysis of worst-case delay bounds for
best-effort communication in wormhole networks on chip,” in Networks-
on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International Symposium on,
pp. 44–53, May 2009.

[9] F. Jafari, Z. Lu, and A. Jantsch, “Least upper delay bound for vbr flows
in networks-on-chip with virtual channels,” ACM Trans. Des. Autom.
Electron. Syst., vol. 20, pp. 35:1–35:33, June 2015.

[10] A. Mifdaoui and H. Ayed, “Buffer-aware worst case timing analysis of
wormhole network on chip,” arXiv, vol. abs/1602.01732, 2016.

[11] B. Nikolić, H. I. Ali, S. M. Petters, and L. M. Pinho, “Are virtual
channels the bottleneck of priority-aware wormhole-switched noc-based
many-cores?,” in Proceedings of the 21st International Conference on
Real-Time Networks and Systems, 2013.

[12] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Berlin, Heidelberg: Springer-
Verlag, 2001.

[13] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving performance
bounds in feed-forward networks by paying multiplexing only once,” in
14th GI/ITG Conference - Measurement, Modelling and Evalutation of
Computer and Communication Systems, pp. 1–15, March 2008.

