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Existence of Moffatt vortices at a moving contact line between two fluids

Mijail Febres and Dominique Legendre*
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(Received 2 June 2017; published 27 November 2017)

According to Kirkinis and Davis [J. Fluid Mech. 746, R3 (2014)], the motion of a contact

line can produce a sequence of moving eddies, commonly known as Moffatt vortices. In

this work, we extend the formulation given in Kirkinis and Davis for the moving contact

line between two viscous fluids and a nonzero static contact angle, and we consider the

flow structure in the corner between the interface and the wall. In particular, we discuss

the condition for observing Moffatt vortices and we demonstrate that an infinite series of

Moffatt vortices cannot be observed considering a Navier-slip boundary condition.

DOI: 10.1103/PhysRevFluids.2.114002

I. INTRODUCTION

Nonconventional Stokes flow in corners formed by combinations of rigid and free surfaces was

first studied theoretically by Moffatt [1]. In that work, the flow in the corner was due to the motion

of the fluid far from it, giving rise to a sequence of eddies known as Moffatt vortices. This subject

has been addressed since then for many configurations, i.e., Davis and O’Neill [2], Anderson and

Davis [3], and, more recently, Malhotra et al. [4], Escudier et al. [5], Scoot [6], and Shtern [7]. The

works of Anderson and Davis [3] and Shtern [7] have already shown the presence of Moffatt vortices

on the corner formed by a rigid and a two-fluid static free surface, although they considered the

no-slip boundary condition on the solid surface. On the other hand, Kirkinis and Davis [8], using a

novel slippage model [9], demonstrated the existence of such vortices for a perfectly wetting liquid

(αs = 0) in the vicinity of a moving contact line using Navier-slip law with a slip length of the

form λ = ℓn/rn−1 − b(α,n)r , where ℓ is a macroscopic scale, b(α,n) is a dimensionless quantity

determined by the boundary conditions, n is a complex number part of the stream function solution,

and α is the dynamic angle made by the interface and the wall. Neglecting the outer fluid influence

and considering a static contact angle αs = 0, the unbalanced Young stress is used to provide a

relation between n, b, and the capillary number Ca = µU/γ where U , µ, and γ are the contact line

speed, the dynamic viscosity of the advancing fluid, and the surface tension, respectively. Here, we

derive a partial local solution based on the slip description given in Kirkinis and Davis [9] in order

to consider the flow structure in the corner made by the moving contact line. Given that Moffatt

vortices in the corner made between a moving contact line and a wall have not been observed so far

in experiments, we discuss their existence on both sides of the interface and the physical relevance

of the slip law proposed in Kirkinis and Davis [9]. The work is organized as follows. We derive the

local partial solution in Sec. II and the reader is referred to the Appendices to find more details on

the derivation. Section III is dedicated to describe the flow structure as a function of the parameters

considered in this work. In Sec. IV we analyze and discuss the results and their implications.

II. LOCAL ANALYSIS

We consider a moving contact line formed by two viscous fluids and a horizontal solid surface

(see Fig. 1). The contact line velocity is U and the angle made by the advancing fluid is α. A

“partial local analysis” can be conducted considering that the flow matches with the outer flow at

a large distance from the corner [1] (typically, the bulk recirculation for a sliding drop). Partial

*Corresponding author: legendre@imft.fr
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FIG. 1. Schematic representation of a moving contact line between the advancing fluid (k = 1) and the

receding fluid (k = 2) (the interface between the two fluids is shown in red) in the reference frame attached to

it for a positive value of the contact line speed U in a polar system of coordinates.

local solutions describe situations in which all the local boundary conditions are satisfied with the

exception of the normal-stress condition [3]. In practice, this assumption is valid for an interface in

the limit of zero capillary number.

In the reference frame of the moving contact line, the Stokes approximation is valid as we

approach its origin (r → 0). Also, if radial and azimuthal components (uk , vk) of velocity are

expressed in terms of the stream function ψk for fluid k (k = 1 is for the advancing fluid and k = 2

for the displaced one), Stokes equations yield the biharmonic equation

∇4ψk = 0, (1)

which has separable solutions of the form

ψk = rn+1fk(n,φ), (2)

where the function fk has the form:

fk(n,φ) = Ak cos[(n + 1)φ]+ Bk sin[(n + 1)φ]+ Ck cos[(n − 1)φ]+ Dk sin[(n − 1)φ]. (3)

In general, n can be a complex number n = nR + inI and the real part of ψk is then considered

[1,6]. In expression (3), Ak , Bk , Ck , and Dk are constants obtained from the following boundary

conditions:

(i) At φ = 0, Navier slip and vanishing azimuthal component of velocity

u1 − U =
λ1

r

∂u1

∂φ
; v1 = 0. (4)

(ii) At φ = π , Navier slip and vanishing azimuthal component of velocity

u2 + U = −
λ2

r

∂u2

∂φ
; v2 = 0. (5)

(iii) At φ = α, continuity of radial velocity, vanishing azimuthal component of velocity, and

balance of shear stress

u1 = u2; v1 = v2 = 0; τ1 = τ2. (6)

Following Kirkinis and Davis [8], the slip model proposed by Kirkinis and Davis [9] is considered

here in both fluids:

λk = ℓn/rn−1 − bk(α,n) r for r 6 r∗
k , (7)

λk = 0 for r > r∗
k . (8)
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(b)(a)

FIG. 2. Stream function for α = 1 rad, Ca = 0.01, Ŵ = 1× 10−6. (a) Solution obtained following Kirkinis

and Davis [8]: n = 6.999193+ 1.278230i, (b) our corrected derivation: n = 6.799117+ 1.648136i.

By definition, this slip length vanishes at r = r∗
k = ℓ/b

1/n

k if n is a real number (nI = 0). Considering

a characteristic velocity U ∼ 1 mm/s, Kirkinis and Davis [9] reported r∗ ∼ 0.68 mm for glycerine,

and r∗ ∼ 1 µm for water. Note that when n is a complex number (nI 6= 0), it follows that both

quantities λk and ℓ/b
1/n

k are complex numbers.

The combination of the boundary conditions for the velocity at φ = 0 and π and for the azimuthal

velocity at the interface makes possible the expressions of constantsAk ,Bk ,Ck , andDk as a function

of n, bk , and α (see Appendix A). The value of n and bk are then determined by solving the system

of equations formed with the tangential conditions at the interface:

f ′
1 − f ′

2 = 0; f ′′
1 − Ŵf ′′

2 = 0, (9)

and with the noncompensated Young force (see Appendix B)

cosαs − cosα =
Ca

n

(
Ŵr∗n

2 + r∗n
1

)
, (10)

where Ca = µ1U/γ is the capillary number based on the viscosity of the advancing fluid and

Ŵ = µ2/µ1 the viscosity ratio. A value of Ŵ → 0 indicates that a fluid is pushing another fluid

of much smaller viscosity (typically a drop spreading in a gas) while the opposite limit, Ŵ → ∞,

corresponds to a fluid pushing another fluid ofmuch larger viscosity (for example, a bubble spreading

in a liquid). Note that in Kirkinis and Davis [8], the radial position r∗
1 (a real number) has been

replaced by ℓ/b
1/n

1 in Eq. (10) which is not correct because if n is complex then it follows that ℓ/b1/n

is complex. The effect of this correction is shown in Fig. 2.

Figure 2 reports the streamlines in the limit Ŵ → 0, for αs = 0 and α = 1 rad corresponding

to the case reported in Kirkinis and Davis [8]. The solution shown in Fig. 2(a) is obtained with

the derivation proposed by Kirkinis and Davis [8] while the streamlines shown in Fig. 2(b) are

obtained with our corrected solution. Following the Kirkinis and Davis [8] derivation, we obtain

n = 6.999190+ 1.278228i in perfect agreement with their solution. Note that considering Ŵ =

1× 10−6 instead of Ŵ = 0 [this is the case shown in Fig. 2(a)] gives the same streamlines and a very

close value for n, n = 6.999193+ 1.278230i. Despite noticeable changes in the streamlines shape,

the flow structure in the receding fluid (not considered in Kirkinis and Davis [8]) also reveals the

development of Moffatt vortices of similar shape on both sides of the interface.

III. RESULTS

Equation (9) is solved numerically using “fsolve” inside MATLAB which uses the Levenberg-

Marquardt and trust-region-reflective methods [10] with default parameters. We can select the solu-

tion with the smallest positive nR because it determines the asymptotic flow pattern at leading order

[7], but the solution may also be imposed by the flow far from the contact line [8]. Multiple solutions

for n can be obtained for each set of parameters (Ŵ, α, αs , Ca) that can be varied independently. The

flow structure is significantly changed depending if n is a real or a complex number.
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FIG. 3. Map of real solutions for Ca = 0.01 and (a) Ŵ = 0.01, (b) Ŵ = 0.1, (c) Ŵ = 1, (d) Ŵ = 2, (e)

Ŵ = 10, (f) Ŵ = 100.

A. Regular corner flows (real solutions for n)

The solution with real values for n are reported in Fig. 3 as a function of α for Ca = 0.01 and for

viscosity ratio from Ŵ = 0.01 to 100 in order to cover both gas-liquid and liquid-liquid interfaces.

Both the density of solutions and the appropriate angle for having a solution are clearly depending

on α and Ŵ. It seems that available solutions can be found for any angle. The density of the solution

increases withŴ. Note that the map of solutions is different between large and smallŴ. Indeed,Ŵ and

1/Ŵ do not play a symmetrical role in Eq. (10). Below the threshold nR = 1, shown using a dotted

red line, no valid description of the shear and pressure can be obtained as r → 0, as it is in the case

of the no-slip boundary condition, because shear and pressure are both varying as rn−1. Streamlines

are shown in Figs. 4 and in 5 where different values of Ŵ and α are considered, respectively. The flow

behaves like a classical flow in a corner. The main feature of the flow structure is that it can be split

depending on the conditions. For example, in Fig. 4 where the effect of Ŵ is reported for the imposed

dynamic contact angle α = 30◦, the flow only splits in fluid 2 while the flow can also be split in the

two fluids as shown in Fig. 5(b). Huh and Scriven [11] observed, with a no-slip boundary conditions

for the two fluids, that there is a tendency of this splitting to appear in the fluid with the lower

viscosity, while here we observe the opposite attributed to the imposed slip condition. We have also

to mention that larger numbers of flow splitting appear with the increase of n. This is, for example,

the case in Fig. 4(a) where two splits are present in fluid 2.

B. Moffatt vortices (complex solutions for n)

Moffatt vortices are observed for complex solution for n. Because of the continuity of the velocity

at the interface, each vortex in the advancing fluid is connected at the interface to its counterpart in

the receding fluid 2, so that a pair of vortices can be identified and infinite series of Moffatt vortices

are observed on both sides of the interface. In the following, we call vortices 1 and 2 the vortices in

the advancing fluid 1 and in the receding fluid 2, respectively.
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FIG. 4. Effect of Ŵ. Stream function for α = 30◦, αs = 0◦, and Ca = 0.01. (a) Ŵ = 0.1, n = 3.490212;

(b) Ŵ = 1, n = 1.253249; (c) Ŵ = 2, n = 1.202459; (d) Ŵ = 10, n = 1.246048.

Examples of streamlines are reported in Figs. 6 and in 7 where the effect of the dynamic contact

angle and the viscosity ratio are shown, respectively. Comparing the streamlines in these figures,

it is clear that their shapes are very sensitive to these two parameters. Different types of Moffatt

vortices can be identified: the “corner vortex” [see Fig. 6(b) in the advancing fluid], the “detached

corner vortex” [see Figs. 7(c) and 7(d) in the receding fluid], the “wall vortex” [see Fig. 6(a) in the

advancing fluid], and the “interface vortex” [see Fig. 6(b) for the receding fluid]. In addition, it is

also clear from these figures that the vortex size is different when comparing fluids 1 and 2. For

example, in Fig. 6(a), a zoom is necessary to visualize the vortex 2 that matches to its corresponding

vortex 1 at the interface: vortex 2 is here more than one order of magnitude smaller than vortex 1.

The velocity being continuous at the interface, a smaller vortex reveals a vortex of stronger vorticity.

In Fig. 7, we observe that vortex 1 becomes significantly much smaller than vortex 2 when Ŵ

increases. This is consistent with the consideration that the motion is facilitated in the less viscous

fluid than in the more viscous fluid. The inspection of the effect of both the capillary number Ca

and the static angle αs (not shown here) reveals that the fluid structure is preserved when varying

independently these two parameters. In fact, considering the system of Eqs. (9) and (10), Ca and

αs are both impacting the solution by relation (10) so that the relevant parameter to consider is

C̃a = Ca/(cosαs − cosα) which measures the ratio of viscous force to the noncompensated Young

force. The cases for α = 90◦, Ŵ = 1, and αs = 0 (not shown here) are characterized by a perfect

symmetry of the solution with respect to the interface.

IV. DISCUSSION

Moffatt vortices are observed for solutions where n is a complex number. As a consequence,

the slip length as proposed by Kirkinis and Davis [8] [see Eq. (7)] used in the derivation is then a

complex number. The solution of interest being given by the real part of the stream function, the

slip length, as defined by Eq. (7) is not the effective slip experienced by the two fluids at the wall.
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FIG. 5. Effect of α. Stream function for Ca = 0.01, Ŵ = 1, and αs = 0. (a) α = 25◦, n = 1.272566;

(b) α = 50◦, n = 3.556807; (c) α = 75◦, n = 2.613791; (d) α = 130◦, n = 3.560146.

The normalized effective slips at the wall for the advancing and receding fluids, λ1E and λ2E , are to

be deduced from the real part of the solution for φ = 0 and π , respectively, as (the normalization is

based on U and ℓ as introduced in Appendix A)

R(u1 − 1) = λ1ER

(
1

r

∂u1

∂φ

)
; R(u2 + 1) = λ2ER

(
−
1

r

∂u2

∂φ

)
. (11)

Here, R(z) and I (z) stand for the real and the imaginary parts of the complex number z. Considering

the advancing fluid (k = 1), the radial velocity at the wall is

R[u1(φ = 0)] = rnR {cos[nI ln(r)]R(f
′
1|φ=0)− sin[nI ln(r)]I (f

′
1|φ=0)}, (12)

while the velocity gradient at the wall is

R

(
1

r

∂u1

∂φ

∣∣∣∣
φ=0

)
= rnR−1{cos[nI ln(r)]R(f

′′
1 |φ=0)− sin[nI ln(r)]I (f

′′
1 |φ=0)}. (13)

From the boundary conditions at φ = 0, we get f ′
1|φ=0

= b1, f
′′
1 |

φ=0
= −1, and the effective slip

length experienced by the fluid on the wall is then

λ1E = −rR(b1)+ r tan[nI ln(r)]I (b1)+
1

rnR−1 cos[nI ln(r)]
. (14)

Note that the value of the radial position on the wall r = r∗
1 where the slip length cancel [and used

in Eq. (10)] comes from this relation. Following the same derivation for the receding fluid we can

show that for both fluids r∗
k is given by

r∗
k {cos[nI ln(r

∗
k )]R(bk)− sin[nI ln(r

∗
k )]I (bk)}

1/nR = 1. (15)

114002-6
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FIG. 6. Effect of α. Stream function for Ca = 0.01, Ŵ = 0.1, and αs = 0. (a) α = 30◦ (n = 2.049237+

0.242136 i); (b) α = 50◦ (n = 2.231697+ 0.319340 i); (c) α = 75◦ (n = 2.849756+ 1.033444 i); (d) α =

130◦ (n = 2.679453+ 0.383081 i); (e)α = 150◦ (n = 4.733359+ 0.381333 i); (f)α = 170◦ (n = 4.053887+

0.403130 i).

The evolution of the normalized effective slip λ1E with r is shown in Fig. 8 for two cases: the

case reported in Kirkinis and Davis [8] [see Fig. 2(b)] with n = 6.799117+ 1.648136i (α = 1 rad,

Ca = 0.01, Ŵ = 0) and the case shown in Fig. 6(b) with n = 2.231697+ 0.319340 i (α = 50◦,

Ca = 0.01, Ŵ = 0.1). The slip length evolution is plotted here up to r = r∗ given by Eq. (15) when

it cancels. For clarity, the absolute value of λ1E is reported with the use of a log/log scale, red

lines are showing negative values of the slip, while blue lines are showing positive values. For both
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FIG. 7. Effect of the viscosity ratio Ŵ. Stream function for α = 60◦, Ca = 0.01. (a) Ŵ = 0.01

(n = 2.587148+ 0.349960 i); (b) Ŵ = 0.1 (n = 2.620577+ 0.334090 i); (c) Ŵ = 0.25 (n = 2.675627+

0.265560 i); (d) Ŵ = 0.8 (n = 2.834106+ 0.400948 i); (e) Ŵ = 1 (n = 2.773461+ 0.210823 i); (f) Ŵ = 2

(n = 2.633405+ 0.209562 i).

cases, the effective slip clearly follows the general trend of the modulus of the “complex” slip λ1
shown in green but we observe periodical changes in the sign of the effective slip length λ1E . In

the limit of small r with nR > 1, the third term in Eq. (14) is dominant, and Eq. (14) simplifies

to λ1E ≈ 1/rnR−1 cos [nI ln(r)]. This expression is reported using a black line in Fig. 8. It clearly

shows that it provides a very good description of the evolution of the effective slip with r and it

reproduces the successive changes of sign. The normalized wave length 3 for the change of sign

can be deduced from this relation as 3 ≈ exp(π/nI ) and its magnitude is thus very sensitive to the

value of the complex part nI of the solution n. The sign of the effective slip is clearly understood

to come from the shear at the wall resulting from the direction of the vortex rotation. A perfect slip
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FIG. 8. Example of effective slip length for the advancing fluid. The absolute value |λ1E | is reported to make

possible the use of a log/log scale. The solid red line denotes the negative value of λ1E given by Eq. (14); the

solid blue line the positive value of λ1E given by Eq. (14); the solid black line λ1E ≈ ℓ/rnR−1 cos [nI ln(r/ℓ)];

and the solid green line the modulus of Eq. (14). (Left) For the case reported in Kirkinis and Davis [8] shown in

Fig. 2(b), n = 6.999190+ 1.278228 i (Ca = 0.01, Ŵ = 0, α = 1 rad). (Right) For the case shown in Fig. 6(b),

n = 2.231697+ 0.319340 i (Ca = 0.01, Ŵ = 0.1, α = 50◦).

(zero shear) is observed between two vortices. It is clear that such a slip behavior is questionable for

real surfaces where a positive slip is expected. As shown in Fig. 8(b), the slip has a positive value

before it cancels while it is negative in Fig. 8(a). The case with a positive slip may be consistent with

the existence of only one vortex in the corner. Following Moffatt [1], we can show that the ratio ρ

of the distance to the corner of two successive vortices is given in each fluid by ρ = exp(π/nI ). We

recover here the wavelength 3 observed for the change of sign. This relation indicates that small

values of nI induce a relative large distance between two successive vortices. An infinite vortex

observation being limited in real flows by the continuum limit, in some cases only one vortex may

be observed making consistent the proposed slip. Taking for instance a millimetric drop of water

moving on a plane surface in a more viscous oil, the selected solution for n has to satisfy nI ∼ 0.2,

corresponding for example to the solution found for α = 60◦, Ca = 0.01, and Ŵ = 2 and reported

in Fig. 7(f).

We end the discussion by considering a slip length of the general form λk(r) for both the

advancing and the receding fluids, with the imposed condition that λk(r) is positive and real.

Different slip models have been reported (see, for example, Dussan [12] and Sibley et al. [13])

to consider the singularity of the solution close to the contact line. Imposing a zero-slip condition

gets n = 0 and the solution has the form ψ = r(Aφ cosφ + Bφ sinφ + C cosφ + D sinφ) with

both stress and pressure diverging [11] as r−1. A constant slip imposes n = 1 and removes the

singularity at the contact line in the stress but not in the pressure. The stream function has then the

form [3] ψ = r2(A cos 2φ + B sin 2φ + Cφ + D). Nonconstant slip models with n > 1 solve both

singularities and the function f has then the shape considered in this work. Replacing the stream

function ψk = rn+1fk in relations (4) and (5), we get that the Navier-slip conditions are satisfied if

the slip lengths λk(r) have the form

λ1(r) = r
f ′
1

∣∣
φ=0

f ′′
1

∣∣
φ=0

−
1

rn−1

1

f ′′
1

∣∣
φ=0

; λ2(r) = −
1

rn−1

1

f ′′
2

∣∣
φ=π

− r
f ′
2

∣∣
φ=π

f ′′
2

∣∣
φ=π

. (16)
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With relation (16), we can recover the above-mentioned slip lengths and in particular the shape of

the slip law introduced by Kirkinis and Davis [9] and considered in our work. As a consequence,

this slip law provides the general shape for a Navier-slip length allowing Stokes flow description in

a corner. Relation (16) shows that a positive real slip can only be imposed on the wall if n is real,

but then the infinite series of Moffatt vortices is not observed. When n is a complex number, then

λk(r) is complex and induces a solution with an effective slip as discussed above.

V. CONCLUSIONS

In this work we have reconsidered the derivation proposed in Kirkinis and Davis [8] to study

the flow in the corner formed by a moving contact line between two viscous fluids. This extension

makes it possible to obtain a complete view of the flow structure for any fluid/fluid and contact angle

combination. Solutions for real values of n (the stream function has the form ψk = rn+1fk) provide

regular flows in the corner, and flow splitting is observed depending on the parameters. Increasing

the values for n increases the number of separations. Solutions for complex values for n result in an

infinite series of Moffatt vortices on both sides of the interface. The flow structure is significantly

dependent on both the dynamic contact angle and the viscosity ratio while it is weakly affected by

the capillary number and the static angle. Moffatt vortices can be located in the center of the wedge

(the classical representation of Moffatt vortices), but they can deform and drift to the interface or

to the wall. We named these structures as “corner vortices,” “detached corner vortices,” “interface

vortices,” and “wall vortices.”

A slip law of the form λ = ℓn/rn−1 − b(α,n) r , as proposed by Kirkinis and Davis [9], provides

the general shape for a Navier-slip length allowing Stokes flow description in a corner. A positive

slip, as observed on real surfaces, can only be imposed on the wall if n is real and then the infinite

series of Moffatt vortices cannot be observed. Indeed, a solution with a complex number for n

corresponds to an effective slip characterized by alternative changes of sign. However, the cutoff

imposed by the continuum limit may restrict the vortex series to only one vortex in the corner. Such

a situation with an imposed positive slip may then be selected by the flow. Vortices generated by

the motion of a moving contact line have yet to be observed. Well-controlled experiments or direct

numerical simulations are required to resolve this point. Note that the presence of internal vortices

is connected to a vortex organization in the receding fluid where the vortex detection may be more

accessible in experiments.

ACKNOWLEDGMENT

M. Febres gratefully acknowledges financial support from FINCyT under Contract No. 099-

FINCyT-BDE-2014.

APPENDIX A: DERIVATION OF THE SOLUTION

The Stokes solution is derived in the polar systemof coordinates (r,φ) with the following boundary

conditions. The Navier condition and a zero azimuthal velocity on the wall for fluid 1 (φ = 0) and

for fluid 2 (φ = π ) are

u1 − U =

(
ℓn

rn−1
− b1r

)
1

r

∂u1

∂φ
; v1 = 0, (A1)

u2 + U = −

(
ℓn

rn−1
− b2r

)
1

r

∂u2

∂φ
; v2 = 0. (A2)

The azimuthal velocity, the continuity of both the tangential velocity and the tangential shear writes

at the interface (φ = α)

v1 = v2 = 0; u1 = u2; τ1 = τ2. (A3)
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The system of equations is solved using the stream functions ψk (uk = 1
r

∂ψk

∂φk
and vk = −

∂ψk

∂r
):

∇4ψk = 0. (A4)

The adimensionalization is performed using U and ℓ, so

r̃ =
r

ℓ
; ψ̃k =

ψk

Uℓ
. (A5)

Dropping the notation of “tilde” for clarity, the boundary conditions leave at φ = 0

∂ψ1

∂r
= 0;

1

r

∂ψ1

∂φ
− 1 =

(
1

rn+1
−

b1

r

)
∂2ψ1

∂φ2
, (A6)

at φ = π

∂ψ2

∂r
= 0;

1

r

∂ψ2

∂φ
+ 1 =

(
b2

r
−

1

rn+1

)
∂2ψ2

∂φ2
, (A7)

and at φ = α

∂ψ1

∂r
= 0;

∂ψ2

∂r
= 0;

∂ψ1

∂φ
−

∂ψ2

∂φ
= 0;

∂2ψ1

∂φ2
− Ŵ

∂2ψ2

∂φ2
= 0. (A8)

The nondimensional stream functions are expressed as

ψk = rn+1fk, (A9)

where the function fk has the form

fk(n,φ) = Ak cos[(n + 1)φ]+ Bk sin[(n + 1)φ]+ Ck cos[(n − 1)φ]+ Dk sin[(n − 1)φ], (A10)

where Ak , Bk , Ck , and Dk are constants given by the boundary conditions.

Substitution of (A9) into boundary conditions (A6) and (A7) leaves at φ = 0

f1 = 0; rnf ′
1 − 1 = f ′′

1 − b1r
nf ′′
1 , (A11)

at φ = π

f2 = 0; rnf ′
2 + 1 = rnb2f

′′
2 − f ′′

2 , (A12)

and at φ = α

f1 = 0; f2 = 0; f ′
1 − f ′

2 = 0; f ′′
1 − Ŵf ′′

2 = 0. (A13)

The slip condition [second condition in (A11) and (A12)] is satisfied in fluid 1 (resp. fluid 2) for any

r if f ′
1 = −b1f

′′
1 and f ′′

1 = −1 (resp. f ′
2 = b2f

′′
2 and f ′′

2 = −1).

The first eight equations from (A11) to (A13) are used to determine Ak , Bk , Ck , andDk . We find

the following relations for coefficients A1, B1, C1, and D1:

A1 =
1

4 n
, (A14)

B1 =
sin(nα) sin(α)+ n (2 b1 sin[α (n − 1)]− sin(nα) sin(α))

4 n sin(nα) cos(α)− 4 n2 cos(nα) sin(α)
, (A15)

C1 = −
1

4 n
, (A16)

D1 =
sin(nα) sin(α)− n (2 b1 sin[α (n + 1)]− sin(nα) sin(α))

4 n sin(nα) cos(α)− 4 n2 cos(nα) sin(α)
, (A17)
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and the relations for constants A2, B2, C2, and D2 are

A2 =
O

W
, (A18)

B2 =
Q

W
, (A19)

C2 =
S

W
, (A20)

D2 =
−T

W
, (A21)

with

O = sin[α − n (α − 2π )]− sin[α (n + 1)]+ 2 n cos(nα) sin(α)+ 2 b2 n (cos[α (n − 1)]

− cos[α − n (α − 2π )]), (A22)

Q = cos[α (n + 1)]− cos[α − n (α − 2π )]+ 2 n sin(nα) sin(α)+ 2 b2 n (sin[α (n − 1)]

− sin[α − n (α − 2π )]), (A23)

S = sin[α (n − 1)]+ sin[α + n (α − 2π )]− 2 n cos(nα) sin(α)− 2 b2 n (cos[α (n + 1)]

− cos[α + n (α − 2π )]), (A24)

T = cos[α (n − 1)]− cos[α + n (α − 2π )]+ 2 b2 n (sin[α (n + 1)]+ sin[α + n (α − 2π )])

+ 2 n sin(nα) sin(α), (A25)

W = 8 n (sin[n (α − π )] cos(α)− n cos[n (α − π )] sin(α)). (A26)

Substitution of these constants into Eq. (A10) provides functions fk and their derivatives as a function

of n and bk .

APPENDIX B: NONCOMPENSATED/UNBALANCED YOUNG FORCE

The contact line velocity is expressed here considering the unbalanced Young force following

Kirkinis and Davis [9]. The force Fγ that drives this motion is then called “noncompensated Young

Force” [14]:

Fγ = γ (cosαs − cosα). (B1)

This force must overcome friction forces caused by the motion of the contact line. The shear stress

at the wall, for fluids 1 and 2 (with dimensions), is given by

τ1|φ=0 = µ1
1

r2

∂2ψ1

∂φ2

∣∣∣∣
φ=0

, (B2)

τ2|φ=π = µ2
1

r2

∂2ψ2

∂φ2

∣∣∣∣
φ=π

. (B3)

Introducing functions f1 and f2 for the stream function [Eq. (2) in the paper],

τ1|φ=0 = µ1
Urn−1

ℓn
1

f ′′
1

∣∣
φ=0

, (B4)

τ2|φ=π = µ2
Urn−1

ℓn
1

f ′′
2

∣∣
φ=π

. (B5)
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The total viscous force Fµ at the wall exerted by the two fluids is obtained by the integration of the

shear in the slip region:

Fµ =

∫ r∗
2

0

τ2
∣∣
φ=π

dr +

∫ r∗
1

0

τ1
∣∣
φ=0

dr. (B6)

Substitution of the shear yields

Fµ = −
1

n

(
Ŵr∗n

2 + r∗n
1

)
. (B7)

The resulting force balance Fγ + Fµ = 0 raises to the relation between the dynamic angle, the static

angle, and the capillary number:

cosαs − cosα =
Ca

n

(
Ŵr∗n

2 + r∗n
1

)
, (B8)

where Ca = µ1U/γ is the capillary number based on the viscosity of the advancing fluid. As

discussed in Kirkinis and Davis [9], this relation can be compared to similar relations between the

capillary number and the dynamic contact angle [14–16]. The logarithm of the ratio between the

macroscopic and molecular length scales that multiplies the capillary number in these relations can

be identified here with the exponent n.
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