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Abstract. The coverability and boundedness problems are well-known
exponential-space complete problems for vector addition systems with
states (or Petri nets). The boundedness problem asks if the reachabi-
lity set (for a given initial configuration) is finite. Here we consider a
dual problem, the co-finiteness problem that asks if the complement of
the reachability set is finite; by restricting the question we get the co-
emptiness (or universality) problem that asks if all configurations are
reachable.

‘We show that both the co-finiteness problem and the co-emptiness prob-
lem are complete for exponential space. While the lower bounds are
obtained by a straightforward reduction from coverability, getting the
upper bounds is more involved; in particular we use the bounds derived
for reversible reachability by Leroux in 2013.

The studied problems have been motivated by a recent result for struc-
tural liveness of Petri nets; this problem has been shown decidable by
Jancar in 2017 but its complexity has not been clarified. The problem
is tightly related to a generalization of the co-emptiness problem for
non-singleton sets of initial markings, in particular for downward closed
sets. We formulate the problems generally for semilinear sets of initial
markings, and in this case we show that the co-emptiness problem is
decidable (without giving an upper complexity bound) and we formulate
a conjecture under which the co-finiteness problem is also decidable.

1 Introduction

Context. Analysis of behavioural properties of (models of) systems is a natural
and wide area of study; the decidability and complexity questions for respective
properties are an important part of such research. As the most relevant for us
we recall the reachability and liveness problems for Petri nets.

A concrete source of motivation for us has been the recent paper [7] that
answered the decidability question for structural liveness in Petri nets positively;
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Agency ANR, project BraVAS (J. Leroux and G. Sutre)



the open status of this question was previously recalled, e.g., in [2]. It is natural
to continue with studying the computational complexity of this problem. Here
we contribute indirectly to this topic by studying some related naturally arising
problems concerning reachability sets.

The algorithm in [7] reduces the structural liveness problem to the question
if a Petri net with a downward closed set of initial markings is “universal”, in
the sense that every marking is reachable from the initial ones. This question
has been solved by using the involved result proved in [8], namely that there
is an algorithm that halts with a Presburger description of the reachability set
when this set is semilinear. Since this approach is not constructive, it does not
provide any complexity upper bound. This led us to consider the universality
problem, which we call the co-emptiness problem, on its own. There is also a
naturally related co-finiteness problem asking if a set of initial markings allows
to reach all but finitely many markings; this problem can be thus seen as dual
to the well-known boundedness problem that asks if the reachability set is finite.

Contributions. We formulate the co-emptiness and co-finiteness problem gener-
ally for semilinear sets of initial markings. We show that the co-emptiness prob-
lem is decidable using a reduction to [8] that is similar to the above-mentioned
approach used in [7] to decide the structural liveness problem. As before, no
complexity upper bound can be derived from that approach. In the case of the
co-finiteness problem we are even not sure with decidability, but we formulate a
conjecture under which the problem is decidable.

We then consider restrictions to the case with finite sets of initial markings
and then in particular to the case with singleton sets of initial markings.

In the case of finite initial sets we show that the co-emptiness problem re-
duces in logarithmic space to the reachability problem. The converse reduction
(reachability to co-emptiness) is left open.

In the case of singleton initial sets we show EXPSPACE-completeness for
both co-emptiness and co-finiteness. This is the main technical result of the pa-
per. While the lower bound is obtained by an easy reduction from the coverabil-
ity problem (a well known EXPSPACE-complete problem, similarly as bound-
edness), getting the upper bound is more involved. Using the bound obtained
for reversible reachability by Leroux in [9], we reduce the co-emptiness problem
(with a single initial marking) to a large number of coverability questions in a
large Petri net. The latter is bounded in such a way that the questions can be
still answered in exponential space, using Rackoff’s technique [13].

Though our results do not improve our knowledge about the complexity of
structural liveness directly, we show that a related problem, namely the struc-
tural deadlock-freedom problem is tightly related (interreducible in polynomial
time) with the co-emptiness problem in the case of downward closed sets of
initial markings.

We have found more convenient to present our results on the model of vector
addition systems with states, or shortly VASSs. This model is equivalent to Petri
nets and all our results, while proved for VASSs, also hold for Petri nets.



QOutline. In Section 2 we recall some preliminary notions, such as vector addition
systems with states and semilinear sets. Section 3 defines the co-emptiness prob-
lem and the co-finiteness problem, and presents our partial decidability results
for the general case and for the restriction to finite sets of initial configura-
tions. The main result is contained in Section 4 where we show the EXPSPACE-
completeness of co-emptiness and co-finiteness in the case with singleton sets
of initial configurations. Section 5 presents two applications of the co-emptiness
problem: we recall the structural liveness, and show the tight relation of struc-
tural deadlock-freedom to the co-emptiness problem with downward closed sets
of initial configurations. We conclude the paper by Section 6.

2 Preliminaries

By Z we denote the set of integers, and by N the set {0, 1,2, ...} of nonnegative
integers. By [i,j], where i,j € Z, we denote the set {i,i+1,...,5} (which is
empty when i > j).

For a vector v € Z% (d € N), by v(i) we denote the i-th component of v. On
7% we define the operations +, — and the relations >, < componentwise. For
v1,v2 € Z% we thus have v + vy = w where w(i) = vy (i) + vo(i) for all i € [1,d];
we have vy < vy iff v1(i) < va(i) for all i € [1,d]. For k € N and v € Z¢ we put
k-v=(k-v(1),k-v(2), - ,k-v(d)); we also write kv instead of k - v.

Slightly abusing notation, by (v1,vs, . ..,v,,) where v; € Z% for i € [1,m] we
do not denote an m-tuple of vectors but the corresponding vector of dimension
d= Zie[l,m] dl

The norm ||v|| of a vector v € Z¢ is max{|v(i)|;i € [1,d]}, and the norm ||V||
of a finite set V C Z% is max{||v||; v € V'}; here we stipulate max @ = 0.

When the dimension d is clear from context, by 0 we denote the zero vector
(0(i) = 0 for all 4 € [1,d]), and by e; (i € [1,d]) the vector satisfying e;(i) = 1
and e;(j) =0 for all j € [1,d] \ {i}.

For a set A, by A* we denote the set of finite sequences of elements of A,
and by ¢ we denote the empty sequence. For w € A*, |w| denotes its length.

Vector addition systems with states (VASSs). A wvector addition system
with states (a VASS) is a tuple V = (d,Q, A, T) where d € N is the dimension,
Q is the finite set of (control) states, A C Z% is the finite set of actions, and
T C Q@ x A xQ is the finite set of transitions. We often present ¢ € T" where
t=(ga,¢)asqg>q ort:q>q.

The set of configurations of V = (d,Q,A,T) is the set Q x N¢; we rather
present a configuration (g,v) as q(v) (where ¢ € Q, v € N9). For actions a € A
we define relations 2y, on the set Q x N? of configurations by putting

a

q(v) By ¢ (V) if ¢ 2 ¢ is a transition in T and v’ = v + a.

Hence for a transition ¢ 2 ¢’ and v € N we have q(v) 2 ¢/(v+a) iff v+a > 0.



Relations 25y are naturally extended to relations —sy for a € A*; we write
just % instead of <y, when V is clear from context. The extension is defined
inductively: we put ¢(v) = q(v); if g(v) 2 ¢ (v') and ¢'(v') = ¢”(v"), then
q(v) 2% ¢"(v""). We note that q(v) = ¢'(v') where o = ajay - - - a,,, implies that
vV=v+ Zie[l,m] a;. We also note the monotonicity:

if g(v) = ¢/(v"), then for any 7 > v we have ¢(7) = ¢’(v' + 7 — v).

Reachability sets. Given a VASS V = (d,Q, A, T), by q(v) =y ¢ (v'), or by
q(v) = ¢'(v') when V is clear from context, we denote that ¢(v') is reachable
from q(v), i.e., that q(v) = ¢/(v') for some a € A*. The reachability set for an
(initial) configuration q(v) is the set

[9(v))y, = {d' (V) | a(v) =v ¢’ (V')}.
For a set C C Q x N9 of (initial) configurations we put
[O>v = Uq(v)eC [Q(U)>v'

We also write just [q(v)> and [C> when V is clear from context.
We write q(v) = C if there is ¢/(v') € C such that g(v) = ¢/ (v'); similarly
C % q(v) if there is ¢/(v') € C such that ¢/ (v/) = q(v).

Semilinear sets of configurations. A set C C Q x N¢ is linear if
C={qb+nip1 + - +nkpr) | n1,...,n% € N}

for some ¢ € Q, k € N, and b,py,...,pr € N° A set C C @Q x N? is semilinear
ifC=LiULyU---U Ly, for some m € N and linear sets L;, j € [1,m].

We recall that semilinear sets correspond to the sets definable in Presburger
arithmetic [4].

Vector addition systems (VASs). A vector addition system (VAS) is a VASS
(d,Q, A, T) where @ is a singleton. In this case the single control state plays no
role, in fact; it is thus natural to view a VAS as a pair U = (d,.A) for a finite set
A C Z%. The configurations are here simply v € N¢, and for a € A we have

v & v iff o = v +a (for any v,v’ € N%).

We write [v>u, or just [v>, for the reachability set of v. For a VAS the terms
“action” and “transition” are identified.

Binary and unary presentations. Instances of the problems that we will
consider comprise VASSs and (presentations of semilinear sets of ) configurations.
We implicitly assume that the numbers in the respective vectors are presented
in binary. When giving a complexity lower bound, we will explicitly refer to a
unary presentation to stress the substance of the lower bound.



3 Co-Finiteness and Co-Emptiness of Reachability Sets

Now we introduce the two main problems considered in this paper.

Co-finiteness. The co-finiteness problem:

Instance: a VASS V = (d,Q, A, T) and
a (presentation of a) semilinear set C' C Q x N¢.
Question: is [C> co-finite, i.e., is the set (Q x N%) [C’> finite ?

Co-emptiness (or universality). By narrowing the co-finiteness question we
get the co-emptiness problem:

Instance: a VASS V = (d,Q, A, T) and
a (presentation of a) semilinear set C' C @ x N
Question: is [C’> co-empty, i.e., is [C’> =Q xN??

We note that co-emptiness can be also naturally called universality.

3.1 Decidability of the General Problems
We recall the classical reachability problem, defined as follows:

Instance: a VASS V and two configurations ¢(v), ¢'(v').
Question: is q(v) =y ¢'(v') ?

The problem is decidable [12] but its complexity remains elusive; the problem
is known to be EXPSPACE-hard [11], and the best known upper bound is non-
primitive recursive [10].

By adding the acceleration techniques in [8], and decidability of Presburger
arithmetic, it is straightforward to derive decidability of the co-emptiness prob-
lem. We first recall a crucial fact.

Theorem 1 (reformulation of Lemma XI.1 of [8]). Given a VASSV =
(d,Q, A, T) and a semilinear set C of configurations, for every semilinear set
D C [C>V there is a sequence aq,...,qax of words in A* such that for every
q(v) € D we have

for somenq,...,nE € N.

We thus deduce that the co-emptiness problem can be decided by the follow-
ing two procedures that are executed concurrently:

— One procedure systematically searches for some configuration ¢(v) such
that q(v) ¢ [C) which is verified by using an algorithm deciding
(non)reachability; this search succeeds iff [C’> is not co-empty.



— The other procedure systematically searches for some words ag,...,ax

such that for every configuration g(v) there are ni,...,n; in N such that
’V'Ll n
[N g(v). This property (of aq,...,ax) can be formulated in Pres-

burger arithmetic and is thus decidable. The search succeeds iff [C> is co-
empty.

However, the complexity of the co-emptiness problem is still open. In fact, we
even have no reduction from or to the reachability problem.

The decidability status of the co-finiteness problem is not clear. We show
how to solve the problem under a conjecture. Let us first introduce the notion of
inductive set. A set of configurations D of a VASS V = (d,Q, A, T) is inductive
if for every configuration ¢(v) in D and every transition t : ¢ 2 ¢/ in T such
that v + a > 0, we have ¢’(v + a) € D. We observe that if an inductive set
D contains a set of initial configurations C then [C> C D. Moreover, we can
effectively decide if a semilinear set D is inductive. We introduce the following
conjecture.

Conjecture 2. Given a VASS V and a semilinear set C' of configurations, if [C’ >V
is co-infinite (i.e., not co-finite), then there is an inductive semilinear set D such
that C C D (hence also [C>v C D) and D is co-infinite.

Under that conjecture, the co-finiteness problem can be also decided by two
algorithmic procedures executed concurrently:

— One procedure systematically searches for some inductive co-infinite semi-
linear set D that contains C'; this search succeeds iff [C’ > is co-infinite (under
the conjecture).

— The other procedure systematically searches for some words a;, ..., ax and a
natural number n, such that for every configuration ¢(v) with ||v]| > n there

n g
are ny,...,ni in N satisfying C R B q(v). This property (of g, ..., ax
and n) can be formulated in Presburger arithmetic, and is thus decidable.
The search succeeds iff [C> is co-finite thanks to Theorem 1. Indeed, when
the reachability set [C> is co-finite then it is semilinear, and we can apply

Theorem 1 with D = [C>
Hence we have derived:

Theorem 3. The co-emptiness problem is decidable.
The co-finiteness problem is decidable when assuming validity of Conjecture 2.

3.2 Finitely Many Initial Configurations

As already mentioned, we have no complexity upper bound for the (decidable)
co-emptiness problem in our general form. In the rest of this section we focus
on the FMIC' co-emptiness problem, and the FMIC co-finiteness problem, where
“FMIC” refers to “Finitely Many Initial Configurations”. We give the result
captured by Theorem 5.



Lemma 4. Given a VASSV = (d,Q, A, T) and any set C C Q x N¢, we have
[C) =Q x N iff [C) 2 D1 U D,
where D1 = {q(v+e;) | q(v) € C,i € [1,d]} and D2 = {q(0) | q € Q}.

Proof. If [C> = @Q x N?, then we trivially have [C’> DO Dy UDs.
Let us now assume [C> D D;. We show that

q(v) € [C) implies q(v+e;) € [C) (1)

(for all ¢ € Q, v € N% i € [1,d]). Indeed, if go(vo) = q(v) for some go(vo) € C,

then [C') 3 go(vo+e;) since [C) 2 Dy and go(vo+e;) = g(v+e;) by monotoni-
city; hence g(v+e;) € [C).

If, moreover, [C') 2 D, then by (1) we get g(v) € [C) for all ¢ € Q, v € N%.

O

Theorem 5. The FMIC co-emptiness problem is logspace reducible to the reach-
ability problem.

Proof. Given a VASS V = (d,Q,.A,T) and a finite set C C Q x N?, deciding if
[C’> = @Q x N? boils down to verifying if each configuration in the finite set

Dl U D2 = {q1(vl)a AR Qk(vk)}

defined in Lemma 4 is reachable from (a configuration in) C.

Let V' arise from V by adding a fresh control state gy and transitions gy — ¢
for all ¢(v) € C. Hence

[C>V D D1 U Dy iff qO(O) i)vl qj'(Uj) for all 5 € [1,/{1]

Let us now consider a VASS V" of dimension kd comprising k disjoint copies
of V' (each copy works on its own counters); let (g,j) denote the control state g
of V' in the j-th copy (j € [1, k]).

Finally, we let V" arise from V" by adding transitions (g;, j) LN (go,j+1),
for j € [1,k—1]. We observe that

qo(O) i)vl qj(vj) for all ] S [1,](1] iff (q07 1)(0) i)vm (qk,k‘)(vl, e ,’Uk).

We have thus shown the claimed logspace reduction. ad

We leave open the question if the FMIC co-finiteness problem can be similarly
reduced to the reachability problem. Another open question is if reachability can
be reduced to FMIC co-finiteness or FMIC co-emptiness. In the next section,
we characterize the complexity of both problems for the case of single initial
configurations.



4 Single Initial Configurations

In this section we restrict our attention to the SIC co-emptiness problem and
the SIC co-finiteness problem where SIC refers to “Single Initial Configuration”;
the problem instances are thus restricted so that the given sets C are singletons
(C ={go(vo)}). In the rest of this section we prove the following theorem.

Theorem 6. Both the SIC co-finiteness problem and the SIC co-emptiness prob-
lem are EXPSPACE-complete.

We recall that the integers in the problem instances are presented in binary.
Nevertheless the lower bound will be shown already for unary VASs (hence with
no control states and with a unary presentation of integers).

We first recall two well-known EXPSPACE-complete problems for VASSs
where the lower bound also holds for unary VASs.

Coverability. The coverability problem:

Instance: a VASS V = (d,Q, A, T), qv,q1 € Q, vo,v1 € N
Question: is qo(vo) S aq (v1) for some 7 > vy ?

Boundedness. The boundedness problem:

Instance: a VASS V = (d,Q, A, T), qo € Q, vg € N%;
Question: is [qo(v0)> finite ?

The EXPSPACE-hardness results follow from [11] (see also, e.g. [3]), the upper
bounds follow from [13]. A generalization of [13], extending a class of problems
known to be in EXPSPACE, was given in [14], which was later corrected in [1].

4.1 EXPSPACE-hardness

Showing the hardness part of Theorem 6 is relatively straightforward; we reduce
coverability in unary VASs (which we recalled as an EXPSPACE-complete prob-
lem) to both SIC co-finiteness and SIC co-emptiness by the following lemma.

Lemma 7. Given a unary VASU = (d, A) and vy,v, € N%, there is a logspace
construction yielding a unary VASU' = (d+1, A") and v} € N1 such that:

a) if vo =y U1 for some vy > vy, then [v(’)>u/ = Nd+1.

b) otherwise (when vy —y w implies w # v1) the set N1 [v6>u, is infinite.

Proof. Let us assume a unary VAS U = (d,.A) and vectors vg,v; € N4 We
consider U’ = (d+1, A’) and vj = (v, 0) where

A'={(a,0)[ac A} U{by, by} U{c; |j €[l d]} U{—e;|j€[ld]}



for b1 = (—01,2), b2 = (Uo, —1), Cj =€;—€441.
It suffices to verify that the points a) and b) are satisfied (for U’ and v{)):

a) Suppose vy —y; Uy for some T, > vy and a = ajay - - - a,,.
For o/ = (a1,0)(az,0) -+ (am,,0), in U’ we then have

(v0,0) 25 (51,0) 25 (5—v1,2) 22 (voti1—v1, 1).
By monotonicity, for any k£ € N we have

(O/blbz)k
STy

vy = (vg,0) wg = (vo+k(v1—v1), k);

hence wy(d+1) = k. For any w € N%*! and the sum k = Pieiar W)

we have wy, — w; indeed, in wj, we can first empty (i.e., set to zero) all
components j € [1,d] by using actions —e; (j € [1,d]), and then distribute
the k tokens from component d+1 by the actions c; so that w is reached.
Hence [vf),, = N4t

b) Suppose there is no v; > v; such that vy in,{ v1. Then for any w € [v6>u, we
have w # (v1,0) and w(d+1) = 0, since the actions by, be, ¢; are dead (they
cannot get enabled from vy); indeed, by monotonicity the actions —e; cannot
help to cover (v1,0) from vy. Hence the set N4t [vg),, is infinite. O

4.2 EXPSPACE-membership.

We now prove the EXPSPACE-membership claimed by Theorem 6. This is more
involved; besides a closer look at the results in [13], we will also use the following
result from [9], from which we derive Lemma 9.

Theorem 8 ([9]). Given a VASS V = (d,Q,A,T) and two configurations
qo(vo) and q1(v1) reachable one from the other (i.e., qo(vo) = q1(v1) = qo(vo)),
there is a word oo € A* such that

a) qo(vo) = qi(v1), and s
b) la] <6-(d+3)% a® DT where x = 1+ 2|Q + 2/l A|l + 2[|voll + [|va -

Proof. Theorem 10.1 of [9] states that for every pair (v}, v}) of configurations of
a VAS (p, A’) that are reachable one from the other there is a word o/ € (A')*
such that: )
oy 25 0] and o] < 17p2ytP

where y = (1 + 2[|A"[|)(1 + [[vg|| + ||v] — vpl]). We extend this result to a VASS
(d,Q,A,T) by encoding it as a VAS (p, A’) using [6, Lemma 2.1]. With this
encoding, p = d+3, || A'|| < max{||A|,|Q]-(]Q|—1)} and the encodings of go(vp)
and ¢;(v1) provide vectors v(, v] satisfying |[vg|| < |lvoll + |Q| and ||v] — vi|| =
lvr — ol < [Jui]| + |lvo]|- It follows that (1 + 2|.A’[|) < 22 and (1 + |Jvj]| + [|Jv} —
v}||) < 2. Thus y is bounded by 23. Finally, since the effect of an action of the
VASS is simulated by three actions of the simulating VAS, we deduce that there
exists a word a € A* such that go(vo) = ¢1(v1) and such that || < %|a/|. We
derive the bound on |a| by observing that 7 < 6. O



Pumpability of components. Given a VASS V = (d,Q, A, T), we say that
component i € [1,d] is pumpable in q(v) if g(v) = q(v+ke;) for some k > 1.

Lemma 9. For any VASSV = (d,Q, A, T) and any q € Q, v € N, i € [1,d]
where component i is pumpable in q(v) there is a € A* such that

a) q(v) = q(v+ke;) for some k> 1, and
b) la| <6-(d+3)2 gD b ere 1 — 9 & 2|Q| + 2|| Al + 3]jv]|.

The trivial fact k < |a| - ||A|l thus also yields a double-exponential bound on k.

Proof. We consider a VASS V = (d,Q, A, T) and assume q(v) =y gq(v+ke;)
where k£ > 1. For the VASS V' arising from V by adding (action —e; and) the

transition ¢ 4 q we get,
q(v) 5 q(vtke) —5 - =25 glvte;) —=5 gq(v);

hence ¢(v) and ¢(v+e;) are reachable one from the other (they are in the
reversible-reachability relation) in V. Using Theorem 8, we derive that

q(v) =y q(v-te;) (2)
for some o € (AU {—e;})* that is bounded as in the point b) of the claim.
If @ in (2) is ajag - - - &y, then there are states q1,¢a, ..., ¢m—1 such that
q(v) = q1(v1) = q2(vz2) = “ qm—1(Um—1) 2 q(v+e;) (3)

for the corresponding v; (j € [1,m—1]). We can view (3) as a sequence of tran-

sitions; let £ > 0 be the number of occurrences of the transition ¢ —= ¢ in (3).
Due to monotonicity, we can omit these occurrences and keep performability: we
get
Qiq Rig iy,
q(v) ——— =y q(v+(l+1)e;) (4)
for the sequence a;, a;, - - - a;,, , arising from a;as - - - a,, by omitting the respec-
tive £ occurrences of —e;. The proof is thus finished. ad

We derive the following important corollary:

Corollary 10. There is an exponential-space algorithm that, given a VASSV =
(d,Q,A,T) and q(v), decides if all components i € [1,d] are pumpable in q(v),
and in the positive case provides an (at most double-exponential) number n > 1
such that q(v) = q(v+ne;) for each i € [1,d].

Proof. Tt suffices to consider a nondeterministic algorithm trying to find, for
each i € [1,d] separately, a; with length bounded as in Lemma 9 such that
q(v) 25 q(v+kie;) for some k; > 1. The algorithm just traverses along (a
guessed bounded) «;, keeping only the current configuration in memory; hence
exponential space is sufficient.

By monotonicity, ¢(v) = q(v+k;e;) implies that ¢(v) = q(v+zkse;) for all
x > 1. Hence if k; > 1 for all ¢ € [1, d] are found, then the least common multiple
(or even simply the product) of all k;, ¢ € [1,d], can be taken as the claimed
number n. O



Before giving the algorithm deciding SIC co-emptiness we introduce some
useful natural notions, namely a notion of “reversing a VASS” (letting its com-
putations run backwards), and a notion of “transforming a VASS modulo n”
(where the component-values are divided by n while the remainders are kept in
the control states).

Reversed VASS. To a VASS V = (d,Q, A, T) we associate its reversed VASS
V< =(d,Q,—-AT)

where —A={-alac A} and T ={¢ —>q|q¢ > ¢ isin T}.
The next proposition can be easily verified by induction on m.

Proposition 11. For any VASS V and m > 1, we have

q0(v0) =5 q1(v1) =2 g2 (v2) 25 - @1 (Vim—1) == @ (vm) 0V
iff
—am—1

Gm(Vm) —2% Grm—1(Vm—1) —— - q1(v1) —= qo(vo) in V<.

Modulo-n VASS. Given a VASSV = (d,Q, A,T) and n > 1, we put
V(n) = (da Q X {07 1,... 7n71}daAlaT(n))

where T(,, arises as follows:
each transition ¢ 2 ¢/ in T and each u € {0,1,...,n—1}¢ determines

the transition (¢, u) 2> (¢, ') in T(,)

where v’ and a’ are the unique vectors such that v +a = v + na’ and v’ €

{0,1,...,n—1}%. The set A’ is simply {a’ | ((g, ) LN (¢',u")) € Tiny }-
The next proposition is again easily verifiable by induction on m.

Proposition 12. For any VASSV, n> 1, and m > 1, we have

as

q0(v0) == q1(v1) =2 ¢2(v2) =5 -+ Q1 (Vm—1) == G (Vi) 0V
iff

(90, u0) (vh) 2 (qr,ur) (V) =2 -+ 2% (G wm) (V) i Vi

@here uj +nvji = v; for every j € [0,m] (and u;_1 + a; = u; + nal; for every
j€1,m])

Algorithm deciding SIC co-emptiness. We define the following algorithm.
Algorithm ArLc-Co-EMPT
Input: a VASS V = (d,Q, A, T) and a configuration go(vp).
Output: YES if [qo(vo)> = Q x N?, and NO otherwise.



1. Check if each component ¢ € [1,d] is pumpable in go(vp), and in the positive
case compute an (at most double-exponential) number n as described in
Corollary 10 (hence go(vo) — qo(vo+ne;) for each i € [1,d]).

In the negative case (when some component is not pumpable) return NO.

2. Let V' be the VASS V' = (V7)) = (d,Q x {0,1,...,n—1}4, A", T") {i.e.,
the reversed VASS modulo n, where n is computed in the point 1}.

Create the configuration (qo, ug)(vj) of V' corresponding to the configuration
go(vo) of V (hence vy = ug + nvy).

3. For each control state (q,u) of V' check if (g, u)(0) covers (qo,uo)(vg) (in
V'), ie., if (q,u)(0) Sy (go, uo)(T) for some 7 > v}).

If the answer is negative for some (g, u), then return NO, otherwise (when
all (¢, u)(0) cover (qo, ug)(v()) return YES.

Correctness and exponential-space complexity of Alg-Co-Empt.

Lemma 13. Algorithm ALG-CO-EMPT satisfies its specification
(i.e., returns YES if [qo(vo)) = Q x N%, and NO otherwise).

Proof. If ALG-Co-EMPT, when given V = (d,Q, A, T) and ¢o(vp), returns NO
in the point 1, then for some i € [1, d] we have qo(vo) 7 qo(vo+xe;) for all z > 1;
therefore the set (Q x N7) ~ [qo(v0)>v is nonempty and even infinite.

Suppose now that the test in the point 1 has been positive, and a respective
number n has been computed.

Assume first that [qo(v0)>v = @ x N% and let us show that the algorithm
returns YES. Let (¢,u) be a control state of V' = (V). Since [qo(vo)>v =
Q x N%, we have qo(vg) —y q(u). It follows that (q,u)(0) = (qo,u0)(vh),
which also entails that (g,u)(0) covers (qo, uo)(vg) in V'. We have proved that
the algorithm returns YES.

Conversely, we assume that the algorithm returns YES and we prove that
[qo(vo)>v = @ x N Let q(v) be a configuration of V and let (q,u)(v') be
the corresponding configuration in V', i.e., v = u + nv’. Since (q,u)(0) covers
(qo, o) (vh), there exists o) > v} such that (g,u)(0) =y (qo,uo)(Th). It follows
that qo(uo 4+ 1)) —y g(u). By monotonicity, we derive that

qo(uo + nvh + nv') Sy qu +nv') = q(v).
By the definition of n, we get
qo(v0) =v qo(ve + n(T) — vh) +nv') = qo(ug + nvly + nv').
We have proved that go(vg) —y ¢(v), and thus [qo(v0)>v =(Q x N%. O

We still need to show that ALG-CO-EMPT works in exponential space
(Lemma 15). We first give a straightforward extension to VASSs of a result
formulated in [13] for VASs.



Proposition 14. For any VASSV = (d,Q, A,T) and any configurations qo(vo)
and qi(v1), if qo(vo) = qu(v1) then qo(vo) < qi(v1) for some vy > vy and
a € A* such that |a| < (D' where x = |Q| - (1 + [JA| + [lv1]]).-

Proof. The bounds given in [13] for VASs are easily extended to VASSs. Instead
of giving a full proof, we only explain how to adapt the proof of [13] to deal with
control states.

The notions of paths, of i-bounded sequences and of i-covering sequences
from [13, pages 224-225] are extended with control states in the obvious way.
For each ¢ € Q and v € Z%, define m(i,q,v) to be the length of the shortest
i-bounded, i-covering path in V starting from ¢(v), with the convention that
m(i,q,v) = 0 if there is none.

Now define f(i) = max{m(i,q,v) | ¢ € Q,v € Z?}. With the same reasoning
as in [13, Lemma 3.4], we get that

£(0) < 1Q| and f(i+1) < |Q - (max{|[All, o]} - £(0))* + f(0).

It follows that f(i+1) < (xf(i))**!. An immediate induction on i yields that
f(i) < 20D In particular, we get that m(d,qo,vo) < f(d) < 2¢*D'. Now,
if qo(vo) - (v1) then 0 < m(d,qo,vo). This entails that go(ve) < q1(v1) for
some 71 > v; and a € A* such that |a| = m(d, qo,v9) — 1 < z(¢+D*, O

Lemma 15. Algorithm ALG-CO-EMPT works (i.e., can be implemented to
work) in exponential space.

Proof. The point 1 of ALG-CoO-EMPT, including the binary presentation of the
computed number n, can be performed in exponential space, w.r.t. the size of
the binary presentation of the input V = (d, @, .A,T) and go(vp); this follows by
Corollary 10.

The VASS V' = (V7)) in the point 2 is not needed to be constructed
explicitly. The algorithm creates the configuration (qg, ug)(v}) and then stepwise
generates the control states (¢,u) (¢ € Q, u € {0,1,...,n—1}%) of V' and checks
if (q,u)(0) covers (go,ug)(vy) in V'.

It thus suffices to show that checking if (¢, u)(0) covers (qo,uo)(vy) (ie., if
(q,u)(0) v (qo,uo)(7) for some & > wvj)) can be done in exponential space
(w.r.t. the binary presentation of V = (d,Q,A,T) and go(vg)). By Prop. 14,
it is enough to search for witnesses of coverability (q,u)(0) = (qo,u0)(?) of
length || < 2@tD' where z = |Q[n? - (1 + || A|| + ||vp]). Since n is at most
double-exponential, (D" is also at most double-exponential. As in the proof of
Corollary 10, the algorithm just traverses along (a guessed bounded) «, keeping
only the current configuration in memory; so exponential space is sufficient. O

Algorithm deciding SIC co-finiteness. We will adjust the algorithm ALG-
Co-EMPT so that, given ¥V = (d,Q, A, T) and qo(vg), it answers YES iff the
set (Q x N9) ~ [qo(v0)> is finite; this can happen even if some (g, u)(0) does not
cover (qo, ug)(v() in V’'. Informally speaking, it suffices to check if (¢, u)(0) covers



(go, up)(v}) whenever we “ignore” one-component of 0, making it “arbitrarily
large”.

By w we denote an “infinite amount”, satisfying z < w and 24w = w+2z = w
for all z € Z. Given V = (d,Q, A, T), by the set of extended configurations we
mean the set Q x (NU{w})?; the relations g(v) 2 ¢/ (v'), g(v) = ¢'(v') (a € A*),
and g(v) = ¢/(v') are then naturally extended to the relations on Q x (NU{w})%.
(Hence, e.g., if ¢(v) = ¢'(v) then v(i) = w iff v/ (i) = w, for any i € [1,d].)

Let us now consider the following algorithm.

Algorithm Avrg-Co-FINIT

Input: a VASS V = (d,Q, A, T) and a configuration go(vo).

Output: YES if (Q x N%) < [qo(v0)> is finite, and NO otherwise.

. As in ALG-Co-EMPT.
. As in ALG-Co-EMPT.
3. For each control state (¢,u) of V' and each i € [1,d]
check if (g, u)(we;) covers (qo, uo)(vy) (in V'), ie., if

N —

(q,u)(we;) =y (qo,uo)(v) for some v > vj;
by we; we denote the d-dimensional vector where the i-th component is w
and the other components are zero.

If the answer is negative for some (q,u) and i € [1,d], then return NO,
otherwise (when all (¢, u)(we;) cover (qo,uo)(v()) return YES.

Correctness and exponential-space complexity of Alg-Co-Finit.

Lemma 16. Algorithm ALG-CO-FINIT satisfies its specification
(i.e., returns YES if (Q x N%) X [qo(vo)) is finite, and NO otherwise).

Proof. We reason analogously as in the proof of Lemma 13. We have already
noted that if NO is returned in the point 1, then (Q x N%) \ [go(vo)) is infinite.

Assume first that [qo(v0)>v is co-finite and let us show that the algorithm
returns YES. Let (¢, u) be a control state of V' and let ¢ € [1,d]. Since [qo(vo)>v is
co-finite, there is a number > 1 such that go(vo) —y q(u+nwze;). It follows that
(q,u)(ze;) =y (qo,uo)(v)), which also entails that (¢, u)(we;) covers (qo, uo)(vh)
in V'. We have proved that the algorithm returns YES.

Assume now that the algorithm returns YES and let us prove that [qo(v0)>v
is co-finite. Since (q,u)(we;) covers (qo,uo)(vy) in V' for every control state
(g,u) of V" and for every i € [1,d], there is a (large enough) number x such that
(q,u)(ze;) covers (qo,ug)(v)) for every control state (¢,u) and every i € [1,d].
Below we prove that every configuration g(v) of V such that ||v|| > nx is reachable
from qo(vo); this will entail that [go(vo)),, is co-finite (i.e., (Q x N%) \ [go(vo))

% %

is finite).
We thus fix an arbitrary ¢(v) and ¢ € [1,d] such that v(7) > nz. Let (g, u)(v')
be the configuration of V' corresponding to ¢(v); hence v = u + nv’. Since

4 ; AR Y -
) 3 ) b i
(q,u)(ze;) covers (qo,ug)(v)) in V', there is 9, > v, such that



(q,u)(we;) =y (qo,uo)(T}h); this entails qo(uo+nth) >y q(ut+nze;).

Since v(i) > nz, we have v — xe; > 0. By monotonicity we derive
qo(up+nvy+n(v' —xe;)) N q(utnze;+n(v'—ze;)) = q(v).
By the definition of n, we get
qo(v0) =y qo(vo+n(Th—vh)+n(v' —ze;)) = qo(uo+nvy+n(v' —ze;)).
Hence we indeed have go(vg) —y q(v). O

Lemma 17. Algorithm ALG-CO-FINIT works (i.e., can be implemented to
work) in exponential space.

Proof. This is analogous to the proof of Lemma 15. We just note that deciding
if (q,u)(we;) covers (qo,up)(v() is even easier than deciding if (¢, u)(0) covers
(qo, up)(v}), since the i-th component can be simply ignored. O

5 Applications of the Co-Emptiness Problem

A motivation for the study in this paper has been the decidability proof for struc-
tural liveness in [7], which is based on a particular version of the co-emptiness
problem. We now give more details (in the framework of VASSs, which is equiv-
alent to the framework of Petri nets used in [7]), and some partial complexity
results. The main aim is to attract a further research effort on this topic, since
the complexity of various related problems has not been answered. In particu-
lar, we have no nontrivial complexity bounds for the structural liveness problem
(besides its decidability).

Assuming a VASS V = (d,Q, A, T), we are now particularly interested in the
co-emptiness of [D)V for downward closed sets D C @ x N?, which constitute a
subclass of semilinear sets. We use the notation

1 C = {q(v) | v < for some ¢q(v') € C}

for the downward closure of a set C C Q x N (of configurations of V). We say
that C C Q x N? is downward closed if | C = C.

We write just | ¢(v) instead of | {q(v)}.

Downward closed sets are semilinear since each such set can be presented as

L (1)UL ga(02) U+ U L gm(0m)
for some m € N and 9; € (NU {w})? (i € [1,m]), where we put

1 q(®) = {q(v) | v < v,v € N4}.



(Recall that k < w for each k € N.)

Later we use another natural presentation of downward closed sets: for each
q € Q we provide a constraint in the form of a (finite) conjunction of disjunctions
of atomic constraints of the form v(i) < ¢ where i € [1,d] and ¢ € N (then
q(v) € Q x N? is in the set iff v satisfies the constraint associated with g).

The DCIS co-emptiness problem where “DCIS” stands for “Downward Closed
Initial Sets of configurations” (i.e., given V = (d, @, A, T) and a downward closed
set D C Q x N?, is [D>v = @ x N? ?) is decidable by Theorem 3 (and the
fact that D is semilinear). The complexity is open, even the reductions to/from
the reachability problem are unclear. Now we explain the previously mentioned
motivation for such studies.

Liveness of transitions and configurations. We recall some standard defi-
nitions and facts. Given a VASS V = (d,Q, A, T),

— a transition ¢ € T is enabled in a configuration ¢(v) if ¢ is of the form
t:q3 ¢ and v+a>0;

— a transition ¢ is live in q(v) if for every g(v) € [¢(v)) there is ¢'(v') € [g(v))
such that ¢ is enabled in ¢/(v');

— a transition ¢ is dead in g(v) if there is no ¢/(v') € [g(v)) such that ¢ is
enabled in ¢'(v').

We note that ¢ is not live in q(v) iff ¢ is dead in some ¢'(v') € [q(v)).
The next proposition (which also defines D,y and Dy) is obvious, due to
monotonicity.

Proposition 18. Given a VASSV = (d,Q, A, T), for each t € T the set
Diy ={q(v) | t is dead in q(v)}
1s downward closed. Hence also the set
Dy = {q(v) | somet € T is dead in q(v)} = U,cr D,y

is downward closed.

Given a VASS V = (d,Q, A, T), a configuration q(v) is live if each t € T is

live in q(v), i.e., if ¢(v) Ay Dy. A VASS V is structurally live if it has a live
configuration, hence if the set

Ly = {q(v) | g(v) is a live configuration of V}

is nonempty. While the membership problem for (D, or) Dy is essentially
a version of the (non)coverability problem, which also allows to construct a
natural presentation of the (downward closed) sets Dy, and Dy, the membership
problem for Ly, is close to the reachability problem as was already noted by
Hack [5] long time ago.



The set Ly is indeed more involved than Dy; it is obviously not downward
closed but it is not upward closed either (in general), and it can be even non-
semilinear; we can refer to [7] for a concrete example, as well as for the following
idea of decidability.

The structural liveness can be decided as follows. We recall the reversed
VASS V, and note that V is not structurally live iff [DV> is co-empty:

Proposition 19. For any VASSV = (d,Q, A, T) we have

[Dv),. = (@ x N\ Ly.

Ve

Hence V is not structurally live iff [D\;>VF =Q x N,

Proof. We recall that g(v) is not live iff [q(v)>v NDy # 0 (i.e., iff g(v) Sy ¢ (V)

where some ¢ € T is dead in ¢'(v")). Hence ¢(v) is not live iff ¢'(v') =y ¢(v)
for some ¢'(v’) € Dy (using Proposition 11).
Therefore [DV>V& = (Q x N\ Ly. O

Proposition 19 allows us to decide structural liveness of a given VASS
V = (d,Q,A,T) by a reduction to the co-emptiness problem, using the above-
mentioned constructability of Dy,.

Structural deadlock-freedom and DCIS co-emptiness. We have shown
that the complementary problem of the structural liveness problem (hence “non
structural liveness”) can be reduced to the DCIS co-emptiness problem (with
downward closed sets of initial configurations). However, we have no reduction
from the latter problem to the former.

We now show that a special form of structural liveness, namely structural
deadlock-freedom, is closely related to the DCIS co-emptiness problem. We use
the previously mentioned presentation of downward closed sets by conjunctions
of disjunctions of atomic constraints of the form v(i) < ¢ (for each ¢ € Q).

Given a VASS V = (d,Q, A, T), a configuration ¢(v) is deadlock-free if ev-
ery configuration in [q(v)> enables some transition. A VASS V is structurally
deadlock-free if it has a deadlock-free configuration. The structural deadlock-
freedom problem asks, given a VASS V), if V is structurally deadlock-free.

In the rest of this section we prove the following theorem.

Theorem 20. The complementary problem of the structural deadlock-freedom
problem is polynomially interreducible with the DCIS co-emptiness problem.
This entails that the structural deadlock-freedom problem is decidable.

We have already noted that the DCIS co-emptiness problem is decidable.
The interreducibility claimed in Theorem 20 is proven in the rest of this section.
We first define the set

Sy ={q(v) | not € T is enabled in ¢(v)}



of “sink configurations” or “deadlocks” (hence Sy = (),c Ds,v). It is obvious
that Sy is the downward closed set described so that to each ¢ € QQ we attach

the constraint
N \V/  w(i) < -a) 1.
(¢=q)eT  i€[l,d]

a(i)<0

This presentation of Sy can be clearly constructed in polynomial time, when
given a VASS V. Hence Proposition 21 entails the “left-to-right” reduction in
Theorem 20 (recall that V¢ denotes the reversed VASS of V). The other reduc-
tion is shown by Proposition 22.

Proposition 21. A VASS V is not structurally deadlock-free iff [5V>VF 18 co-
empty.

Proof. We consider a VASS V = (d,Q,A,T), and observe that ¢(v) is not
deadlock-free iff [q(v)>v NSy # 0. Hence q(v) is not deadlock-free iff q(v) €

[SV>VH (using Proposition 11). It follows that V is not structurally deadlock-
free iff [SV>V& =(Q x N?, ad

Proposition 22. Given a VASS V and a downward-closed set D of configu-
rations, we can construct, in polynomial time, a VASS V' such that [D>v i
co-empty iff V' is not structurally deadlock-free.

Proof. Let us assume a VASS V = (d,Q, A,T) and a downward-closed set D of
configurations given, for each ¢ € @, by conjunctions of disjunctions of atomic
constraints of the form v(i) < c¢. By negating these formulas, we derive, in
polynomial time, a collection (B,)4eq of finite subsets of N¢ such that

(Q x N4\ D = {q(v) | v > b for some b € B,}.

(Hence (Bg)qeq represents the upward closed complement of D.)
We now define the VASS V = (d,Q, A, T) as follows:

a) Q=QU{(g,b) | g€ Q,be€ By}

b) T consists of the following transitions:

i. g =4 (g,b) and (q,b) LN g forall ¢ € Q, b€ By, and
a+b

ii. (q,0) 2% ¢ forall (¢ = ¢') €T and b € B,.
c) fl:{é|qiq’ef’forsomeq,q’eé}}.
It is obvious that for all configurations ¢(v) and ¢’(v’) of V we have that
q(v) = ¢ (v') implies ¢(v) =y ¢ (v')
but the converse does not hold in general. We will show that

[D>vH = Q x N% iff V is not structurally deadlock-free.



The proof will be finished, by taking V' = V< (and noting that (V<)< = V).

(=) Assume [D),, = QxN?. Observe that (q,b)(v) 5 q(v+b) in V for every
(g,b) € Q and v E N¢. We now show that no configuration ¢(v) with ¢ € @ is
deadlock-free in V, which clearly entails that V is not structurally deadlock-free.

Let us fix some ¢(v) € @ x N%. Since q(v) € [D) there are aj,...,a,, € A
and qo(v0), - -+, gm(vm) € (Q x N?) such that

Ve

Q(U) = qO(’UO) a_1> Q1(U1) a—2> o 'mel(vmfl) i) Qm('vm) €eDinV

(recall Proposition 11). Moreover, we may assume w.l.o.g. that ¢;(v;) € D for
all i € [0, m—1]. So for each ¢ € [0, m—1] there is b; € By, such that v; > b;. We
derive that

)% ’

qi(v;) by (i, bi)(vi—b; ¢it1(vig1) in V

for all i € [0, m—1]. It follows that g(v) = @m (V) in V. Since Gm (vm) € D then
Uy, Z b for all b € B, ; hence no transition of V is enabled in gy, (v,,), and ¢(v)
is thus not deadlock-free in V.

(<) Assume that V is not structurally deadlock-free. We fix a configuration
q(v) of V and prove that g(v) € [D>VF' Since ¢(v) is also a configuration of
V, it is not deadlock-free in V. So there is a configuration ¢’(v’) of V such that
q(v) =y ¢'(v') and no transition ¢ € T is enabled in ¢/(v'). Since V contains
the transition (g, b) LN q for every ¢ € Q and b € By, we get that ¢ € Q. No
transition ¢’ LN (¢',b) of T is enabled in ¢ (v'), so v' 2 b for every b € By.
It follows that ¢'(v') € D. Since q(v) <, ¢'(v') implies g(v) v ¢'(v'), we get
q(v) Sy D, ie., q(v) € [D)w_. O

6 Conclusion

Motivated by the structural liveness problem for VASS, whose computational
complexity is still open, we have introduced and studied in this paper the co-
emptiness problem and the co-finiteness problem for VASS. The complexity of
the co-emptiness and co-finiteness problems in the case of single initial con-
figurations has been clarified, but the complexity of general versions has been
left open, even w.r.t. reductions to/from the reachability problem. This requires
further work, in particular with an eye to the applications aiming to clarify
structural liveness properties of VASSs, or equivalently of Petri nets.
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