
�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/19878

http://dx.doi.org/10.1109/DISTRA.2017.8167667

Deschamps, Henrick and Cappello, Gerlando and Cardoso, Janette and Siron, Pierre Toward a formalism to study

the scheduling of cyber-physical systems simulations. (2017) In: 2017 IEEE/ACM 21st International Symposium on

Distributed Simulation and Real Time Applications (DS-RT), 18 October 2017 - 20 October 2017 (Roma, Italy).



Toward a Formalism to Study the Scheduling of
Cyber-Physical Systems Simulations

Henrick Deschamps and Gerlando Cappello
Modelling and Simulation department

Airbus Operation SAS, Toulouse, France
Email: {firstname.name}@airbus.fr

Janette Cardoso and Pierre Siron
Complex systems engineering department

ISAE-SUPAERO, University of Toulouse, France
Email: {firstname.name}@isae.fr

Abstract—This paper presents ongoing work on the formalism
of Cyber-Physical Systems (CPS) simulations. These systems are
distributed real-time systems, and their simulations might be
distributed or not.

In this paper, we propose a model to describe the modular
components forming a simulation of a CPS. The main goal is to
introduce a model of generic simulation distributed architecture,
on which we are able to execute a logical architecture of
simulation. This architecture of simulation allows the expression
of structural and behavioral constraints on the simulation,
abstracting its execution.

We will propose two implementations of the execution archi-
tecture based on generic architectures of distributed simulation:
• The High Level Architecture (HLA), an IEEE standard for

distributed simulation, and one of its open-source imple-
mentation of RunTime Infrastructure (RTI): CERTI.

• The Distributed Simulation Scheduler (DSS), an Airbus
framework scheduling predefined models.

Finally, we present the initial results obtained applying our
formalism to the open-source case study from the ROSACE case
study.

Index Terms—Aeronautics, CPS, Modelling, Simulation,
Scheduling, HLA, DSS, CERTI.

I. INTRODUCTION

Aircraft are systems including control loops to stabilize a
vehicle in a physical environment, and are good examples of
Cyber-Physical Systems (CPSs) [1].

In a CPS, computational resources are tightly interacting
with physical elements through conversion subsystems, such
as sensors and actuators.

The increasing CPS complexity has an impact on the
complexity of their simulations. Aircraft simulations might
integrate hundred models, and hundreds of thousands of com-
munication channels between the models. In order to receive
the full benefit of a test executed in a simulated environment,
one must prove that the simulated system is sufficiently valid,
regarding the given needs.

Moreover, some simulation usages impose a reproducibility
guarantee on the tests done on simulated aircraft. However, it
must be pointed that the real aircraft has non-reproducible be-
haviors. Thus, fidelity and reproducibility may appear contra-
dictory, but they are not necessarily incompatible, depending
on the type of tests that need to be done, and the assumptions
made.

In addition, some uses of simulation for training purpose
and validation, respectively involving human and machine
in the loop, add to the simulation soft and hard real-time
constraints.

“Scheduling” is a solution to a scheduling problem [2]. A
scheduling describes, through a given formalism, the execution
of tasks, and the resources allocation over time, in order to be
compliant with objectives, while respecting constraints. Gen-
erally, in computer architecture, tasks are threads or processes
and the goals of scheduling is to minimize latency, maximize
throughput or minimize response time.

In this paper, we propose a definition for simulation schedul-
ing in the context, as well as the method we use to formalize
this scheduling. The method formalisms are developed in § IV
and V, and their usage in § VI. Finally, in § VII, we illustrate
this method with a case study.

II. CONTEXT

We call the cyber and physical models in CPS simulation
components. We call scheduling of CPS simulation the
assembly of simulation components, namely the temporal
organisation of component execution and the synchronisation
of their interactions. Currently, a scheduling of simulation of
CPS is obtained experimentally. Obtaining a scheduling does
not allow to estimate the validity of this scheduling regarding
the targeted tests a priori, and the iterations between simulation
and real world are expensive.

In order to analyse the impact of the integration of modular
components while reducing the costs, we need a formalism of
the execution of a simulation of the CPS.

Our objective consists in defining a formal method to
determine a priori the validity of CPS simulation scheduling,
for a distributed simulation of a cyber-physical system. The
goal is to prove by analytic methods that depending on the
objectives of a given test on a given platform, an assembly of
models will be sufficiently representative.

The components and their interactions form the simulation
logical architecture (SLA). The SLA allows the expression
of logical structures with requirements for the targeted sim-
ulation, but not the simulation execution. The simulation
execution architecture (SEA) is a generic execution platform
allowing the execution of any SLA. Thus, the SEA allows
the verification of execution properties, independently of the



SLA. The binding of the SLA with an instance of SEA is the
simulation.

III. RELATED WORK

The Discrete Event System Specification (DEVS) formalism
by Bernard P. Ziegler [3] is a modular and hierarchical
formalism for modeling and analyzing general systems that
can be discrete event systems or continuous state systems.
Discrete event systems might be described by state transition
tables, and continuous state systems which can be described
by differential equations. A priori, DEVS seems adapted for
CPS simulation modelling. However, our experiments with
analysing CPS simulation scheduling with DEVS and its
parallel extension shows us that this formalism is not adapted
to this situation. For example, in order to analyse the delay
on a data path, using the period of models execution is more
simple than the time advancement function in parallel-DEVS.
This point is detailed in § IV.

Our goal is to model a CPS simulation in order to analyse
its scheduling. The simulated CPS is tightly linked to the
execution platform. In order to capitalize on the scheduling
analysis, this analysis must be the most independent possible
from the implementation of the execution platform. Trying to
define a scheduling of tasks without a scheduler is not possible,
thus an abstract version of the execution platform must be
defined. Other formalisms than DEVS are most suitable to
describe the execution platform, for instance Architecture
Description Languages (ADLs).

One of the ADLs is the Architecture Analysis & Design
Language (AADL), coming from the avionics domain. An
AADL model comprises software and hardware components
The software components regroup the data, thread, process
and subprogram, while the execution platform components
regroup the memory, bus, processor and devices. Recent works
proved the worthiness of AADL for prototyping distributed
systems [4] through an extension: REAL (Requirement En-
forcement Analysis Language), and there are some efforts
from the industry to use AADL in order to describe an
execution platform of simulation [5].

In this paper, we propose a simple ADL has a support to
describe the SEA. In further works, we might try to bring our
formalism closer to the AADL.

IV. ATOMIC MODEL OF A SIMULATION COMPONENT

CPS simulations are composed of two kinds of components,
the physical components, and the cyber components.

A. Characterizing cyber components

The cyber systems modelled in CPS simulations are, for
instance, Flight Control Systems (FCS), Human Machine
Interface (HMI) or network devices (routers, switches. . . ).
These are processes executed by computers.

A process is a computational entity, often referred to as a
task. Today, most Operating Systems (OS) do not allow direct
communication between processes, in particular, this is the

case of avionics [6]. In these systems, the different processes
are segregated in space and time.

The partitioning in time exists because of the scheduling of
process, and the partitioning of space because two processes
do not use the same memory without using OS mechanisms.

These notions of partitions are important for our compon-
ents, they allow defining subsystem models which are totally
isolated, apart from explicit communication.

In terms of formalism, this allows us to use a notion of
bus for communication between our components, while the
scheduling of tasks can be modelled by a periodical execution
of models.

Finally, some models require a set of “previous” states to
compute a new one. Considering our components as periodical
processes with total time and space partition, we can use the
common definition of discrete system modelling, such as the
state advancement, and output: xk+1 = F (xk ,uk , tk ), yk =

G(xk ,uk ).
With these characteristics, we can propose a formalism to

express the cyber components:

cyber_component =< I,O,S,S0,∆in ,∆out , f >

The set of inputs I are the data consumed by a component.
For instance for an altitude controller, the first input could
be the current altitude, while the second input could be the
altitude reference. It should be noted that these two inputs
are not necessarily consumed together, we can imagine a
component using the reference less regularly than the current
altitude. Thus, inputs might be consumed by a component in
our formalism with different frequencies.

The set of outputs O are data produced by a component.
For instance for an altitude controller, it could be commands
for propulsion and elevator.

The states S and initial states S0 of a component are different
depending on the nature of the cyber components. For a
controller, this is straightforward, but in general, its state is
the vector of variables it manipulates, and the initial condition,
their initializations.

The transition functions ∆in are used to calculate new state
based on previous ones, at the component frequency f . The
output functions ∆out use a set of recent states to compute the
data to produce.

Certain processes do not use memory, the sets of states,
initial states, and transition functions are empty, so their output
functions only depend on the inputs.

B. Characterizing physical components

According to their characteristics, continuous-time mod-
els are described by ordinary differential equations (ODEs),
partial differential equations (PDEs), differential algebraic
equations (DAEs) or partial differential algebraic equations
(PDAEs). In the following, we will focus on ODEs, because
of their simplicity, but the methodology is the same for the
other class of continuous-time models. ODEs are described
by: ẋ = f (x,u, t).



The ODE characterization for distributed simulation with
real-time constraints is addressed in [7]. In this paper, we do
not distribute the solving of ODE between multiple compon-
ents, and we address the problem of an algebraic loop in the
SEA.

Since our simulations of CPS are subjected to real-time
constraints, we will only focus on numerical methods that can
adapt to the limitation of the computing resources (in space
and time).

We consider time discretization of continuous dynamic
system. With a constant discretization interval of ∆t, we have
the following approximation: xk+1 ≈ xk + ∆t × F (xk ,uk , tk ),
yk = G(xk ,uk ).

Those characteristics allow us to define the following form-
alism:

physical_component =< I,O,S,S0, δin , δout , f >

The elements of a physical component are the same as
defined for the controller in the cyber components. The differ-
ences are that the physical components consume and produce
all their data at their own specific frequency f , with f = 1

∆t ,
and they only need one transition function δin and output
function δout .

C. Extension to generic atomic model

We propose a generic atomic model of component, from
the characteristics of cyber and physical components, with the
perhaps naive propositions of formalisms, and the limitations
of inputs/outputs. In order to simplify this generic atomic
model of component, we do not address the problem of
intercompatibility yet, and consider a syntactical level of in-
tercompatibility, as described in [8]. The following formalism
is largely inspired from DEVS, however, we introduced the
component frequency, and adapt the DEVS concepts to our
context. As, we want to introduce requirements depending on
the simulated CPS, for instance the minimum and maximum
latencies on data paths, the expression of periods simplify
the estimation of time taken by a set of components in order
to produce a data. Moreover, the definition of component in
the early phases of simulation design can evolve quickly, and
modifying the frequency of a component is faster than redefin-
ing the time advancement function. Furthermore, the coupling
of component has to be flexible. At the component scale,
input and output event are not considered, but ports. Two ports
connected on a channel are producing and consuming data at
frequencies defined by the connected component frequencies.
Finally, components of simulation can interact differently, with
different set of other components, at different rates. In contrary
to DEVS considering one internal and one external function,
we introduce sets of transition functions, and output function.
We express the generic model of components c illustrated with
some simplifications in fig. 1 as the following tuples:

c =< Pin ,Pout ,S0,S,∆in ,∆out > (1)

where:
Pin is the set of input ports, a port being data produced (or

consumed) at a given frequency.
Pout is the set of output ports.

S0 is a set of initial states.
S is a set of states, depending on the definition of the

component.
∆in is the set of transition functions, with a transition func-

tion δin defined as how a set of data extracted from input
ports changes the state of the component, at a given
frequency:

δin =< I,Sin , sout , δ, f > (2)

where:
I is the set of inputs of the function.

Sin is the set of current and previous states.
sout is the computed state.

δ is the main function, taking n inputs and m pre-
vious states in order to compute a new state:
In × Sm → S.

f is the frequency of the transition function.
∆out is the set of output functions, with an output function

δout defined as how a value for an output port pout is
calculated from the current states and a set of data from
input ports:

δout =< o, I,S, δ > (3)

where:
δout is the output function.

o is the calculated output.
I is the set of inputs of the function.
S is the set of current and previous states.
δ is the main function, taking n inputs and m states

to compute an output: In × Sm → o.

Figure 1: Simplified view of a component.

The component model defined is used in the SLA. In this
section we introduce new elements in the SLA, the channel
and the requirements. The channel allows connecting an output
port of a component to an input port of another one.

We propose to model an SLA as the set of its components,
the channels between its components, and requirements, as the
following:

SLA =< C,Λ,R > (4)



Where:
C is the set of simulation components c.
R is the set of requirements.
Λ is the set of channels λ used by components to exchange

data, defined as:

λ =< pin ,pout , lmin, lmax,R > (5)

where:
pin is the channel input port.

pout is the channel output port.
lmin is the minimum latency in the channel.
lmax is the maximum latency in the channel.

R is the set of requirements.
At this point, the requirements that have to be taken into

account in the SLA and the channels are not fully identified.
We can verify some properties, for instance every input

port needed by components is supplied, or requirements are
consistent. Nevertheless, the SLA does not allow verifying
properties on the CPS simulation scheduling, we must now
model the execution architecture able to run instances of the
logical architecture of simulation.

V. MODELLING AN EXECUTION ARCHITECTURE OF
SIMULATION

A. The simulation execution architecture

In this section, we want to define a model of SEA. This SEA
can be implemented in several ways from a simple program
with a single thread to a complex distributed architecture, thus
our model must be abstract enough to represent this diversity.

An execution architecture of simulation can be viewed as
a non-empty set of logical processors, with logical processors
being able to execute the components defined in § IV-C, as
periodic tasks.

Multiple models can be executed by a single logical pro-
cessor, nevertheless, the logical processors respect the notion
of time and space partition mentioned in § IV-A. In this work,
we will call the process of binding multiple components to a
logical processor a clustering. Running the SEA implies the
distribution and clustering of components.

B. Introducing scheduler and communications

The tasks in a logical processor exist in a sequential
domain, while logical processors exist in a concurrent domain.
Moreover, depending on the implementation of the architec-
ture, the concurrent domain might be a parallel domain, where
logical processors can run totally simultaneously1.

The components in logical processors must be able to
communicate:
• Intraprocessor communications, direct between compon-

ents.
• Interprocessor communications, occurring during logical

processors synchronisation phases.

1We borrowed those notions of sequential and concurrent domain from the
VHDL [9].

The different kinds of communication can have different
natures, e.g. shared memory or network communication, im-
plying a difference of performances.

The distribution/clustering of components on logical pro-
cessors, and the communications create the notion of resources
needed to express a scheduling, and the components are the
schedulable tasks.

We are able to express the SEA as a two-level scheduler:

• A global scheduler: scheduling local schedulers.
• Local schedulers: scheduling tasks.

The global scheduler has no view on local schedulers tasks.
There is no direct synchronisation between two tasks when
they are on two different logical processors.

More specifically, we define a simple ADL considering lo-
gical processors and tasks, depicted in fig. 2, as the following:

SEA =< P,gs,c > (6)

Where:

P is the set of logical processors, with a logical processor
p defined as the following:

p =< T, ls,c > (7)

where:
T is the set of periodical tasks.
ls is the local scheduler.
c is the type of intraprocessor communication

between tasks in the same logical processor.
gs is the global scheduler.

c is the type of interprocessor communication between
tasks in different logical processors.

Figure 2: The SEA with its double level of scheduling.



VI. FROM SLA AND SEA TO SIMULATION
IMPLEMENTATION

The distributing and clustering of schedulable components
from an SLA on an SEA implementation is done in two stages:
partitioning and mapping.

In this section, we discuss about the impact of partitioning
the SLA, and mapping this partition on an SEA, and we will
illustrate the implementation of the execution architecture with
two general purpose architectures for distributed computer
simulation systems, HLA/CERTI and DSS.

A. SLA partitioning and SEA mapping

In § IV-C we stated that our components have ports connec-
ted through channels. We want to divide our set of components
into subsets, allocating a logical processor for each subset, and
each one of the channels will be an interprocessor or intrapro-
cessor communication when ported in an SEA, depending on
partition and mapping.

In [10], the notions of partitioning and mapping on modular
parallel literature are treated in order to reduce the number of
switching elements and to minimize communication times.

We reuse these notions in this paper, with different con-
straints and objectives. For instance, due to the minimum
and maximum latencies on channels, we are not looking for
methods to reduce communication times, but for ensuring
the consistency between latency constraints and partition-
ing/mapping.

The partitioning of SLA consists in splitting the set of SLA
components into unordered subsets. From this partitioning, we
are able to identify the type of channels that will be instantiated
between components.

During this step, if we already have information about the
SEA implementation, we can eliminate some partitions.

Fig. 3 illustrates some possible partitions for a single set of
components. Ultimately, we can use set notation in order to
represent the partitions. Regarding fig. 3, the partitions are:

• partition 1: {{a,b,c,d}};
• partition 2: {{a,b}, {c}, {d}};
• partition 3: {{a}, {b}, {c}, {d}}.

Nevertheless, these partitions are not yet linked to an
execution. This occurs during the mapping to SEA step.

As stated in § V-A, the set of tasks in a logical processor
is ordered. Mapping components from a partition to tasks
from a logical processor implies the definition of a sequence.
Considering partition 2, the ordering of set {c} and {d} are
straightforward, but there are multiple solution for {a,b}: {a,b}
or {b,a}. This is where the problem of the algebraic loop
discussed in § IV-B is treated.

The ordered sets of tasks are sequentially executed by the
local schedulers of logical processors, while the unordered set
of logical processors is executed by the global scheduler.

To be more formal, we can describe the partitioning and
mapping as the following function definitions:

• Let C be the set of SLA components.

Figure 3: Example of partitions from a single set of compon-
ents

• Let S be the set of C powerset cartesian squares ℘(C)2,
such that, for any S element s, the junction of s elements
is C, and the superposition of s elements is empty.

• Let O be an ordered set of tasks.
• Let P be an unordered set of O.

partitioning : C → S (8)
mapping : S → P (9)

Depending on the SEA implementation, we are now able
to verify requirements, such as the channel latencies require-
ments, and to adapt our partitioning and mapping.

Specifically, the decision of clustering components in a
same subset are indirectly driven by the SEA implementation
limitations, and component implementations, since the SLA
does not consider execution. The mapping of partitions in the
SEA implementation might lead to identification of partitions
that are impossible to execute.

For instance, different components will have different Worst
Case Execution Times (WCETs). Depending on these WCETs,
and the SEA logical processor capabilities, we are able to
check that a given partition is executable or not. Another
example is that interprocessor and intraprocessor communic-
ations have different costs. Once the SEA implementation is
identified, we know the cost of these communications, we can
then verify the latency requirements.

If the mapping is theoretically possible, but technically
impossible, then we have to reiterate at the partitioning step.

B. SEA implementation

1) Implementation with HLA: High Level Architecture
(HLA) is a standard from the IEEE, for software architec-
ture [11]. This standard defines methods and a framework
to build global simulations comprised of smaller simula-
tions, the federates. The HLA federates communicate through
a RunTime Infrastructure (RTI) [12], and using publica-
tion/subscription mechanisms to exchange data. In this paper,
we consider the CERTI implementation [13] for the RTI.



Model instances in the same federate run sequentially.
Model instances in different federates run concurrently.
• The models are components of simulation hardcoded or

imported into a federate from a library.
• The logical processors and local schedulers are the fed-

erates.
• The global scheduler is composed of the RTI Gateway

(RTIG) and RTI Ambassadors (RTIAs).
• The intraprocessor communication is shared memory.
• The interprocessor communication is network communic-

ation through RTIG and RTIA.
Fig. 4 illustrates the implementation of the execution archi-

tecture of simulation with HLA/CERTI, with the partition 2
of fig. 3, considering the use of one computer for the two first
logical processors, and one computer for the third one.

Figure 4: Illustration of the HLA/CERTI execution architec-
ture.

2) Implementation with DSS: Distributed Simulation
Scheduler (DSS) is an Airbus framework, scheduling AP2633
models: Airbus simulation model containing entry points, state
machine, and variable needed for scheduling.

The major component of a DSS simulation is its configur-
ation file. This file contains the AP2633 models used, with
their location and execution frequency.

DSS implements two kinds of actors:
• a Central controller (CC) computing short cycles and long

cycles from information given by the local schedulers,
choosing the synchronization period, and managing the
local scheduler executions.

• Local controllers (LCs) driven by the global scheduler,
executing sequentially each AP2633 model provided de-
pending on the configuration.

AP2633 models in a same LC are executed sequentially,
and LCs are running concurrently.

The LCs periodically rerun the models, depending on the
model periods. This execution leads to two concepts:
• The concept of short cycles (or minor frames), the max-

imum period needed to ensure each models can be run
when needed.

• The concept of long cycles (or major frames), the min-
imum period needed for a model execution pattern.

Depending on the given configuration, the CC of DSS will
compute the synchronization periods (eq. 12).

To be more specific, we have:

short cycle(LC) =
GCD(model .period |∀model ∈ LC.models) (10)

long cycle(LC) =
LCM (model .period |∀model ∈ LC.models) (11)

syncro period(CC) =
LCM (long cycle(LC) |∀LC ∈ CC.LCs) (12)

Where GCD is the Greatest Common Divisor and LCM is
the Least Common Multiple.

Thus, a DSS distributed simulation with poor model dis-
tribution can lead to a long synchronization period, and
potentially degraded results.

The implementation of an SEA with DSS is straightforward.
• The models are the AP2633 models, embedding imple-

mentations of components of simulation.
• The logical processors and local schedulers are the LCs.
• The global scheduler is the CC.
• The intraprocessor communication is shared memory.
• The interprocessor communication is P2P network com-

munication and shared memory, on synchronization
period defined by eq. 12.

Fig. 5 illustrates this implementation with the partition 2 of
fig. 3, considering the use of one computer for the two first
logical processors, and one computer for the third one.

Figure 5: Illustration of the DSS execution architecture.

Table I summarize DSS and HLA/CERTI implementations
of SEA.

SEA HLA/CERTI DSS

Sched. Global RTI CC

Local Federate LC

Comm. Interproc. Publication/Subscription P2P on synchro period

Intraproc. Shared memory Shared memory

Table I: DSS and HLA/CERTI SEA implementations compar-
ison



VII. ILLUSTRATION WITH A CASE STUDY: R-ROSACE

A. Introducing the case study

Research Open-Source Avionics and Control Engineering
(ROSACE) is a case study covering different steps from the
conception to the implementation of a longitudinal flight con-
troller [14][15]. A major challenge on designing the ROSACE
controller is the need of interactions between control and
software engineers.

This case study was extended in order to add redundancy
on the controller, and the possibility to inject errors to test
the redundancy, we named this case study R-ROSACE, for
Redundant-ROSACE [15].

1) The SLA of R-ROSACE: In this case study, multiple
aircraft functions are divided into components. For readability,
we will use FCC for Flight Control Computer, and FCU for
Flight Control Unit. We also directly use h for inertial altitude,
Vz for inertial vertical speed, Va for true air speed, q for pitch
rate and az for body vertical acceleration.

We depict the full R-ROSACE SLA in table II, beside
the ∆in and ∆out functions in details, that are too large
for this paper. In this first case study, we do not consider
requirements on the SLA or channels yet. Moreover, channels
can be deduced from component ports (by homonymy), and
latencies are 0s for minimum, and +∞ time for maximum.

These components are then implemented into a library of
models, following the Object Oriented Programming (OOP)
paradigm.

B. R-ROSACE implementation with DSS

DSS schedules AP2633 models, thus we bind the models
from the models library with AP2633 models as illustrated in
fig. 6.

Figure 6: Structure of the binding of a model from the library
with AP2633 model.

In run mode, AP2633 models receive and send data with
global variables, the binding is straightforward.

1) The inputs have been updated by the local scheduler, we
pass them to the model step function.

2) We write the model step function output in the outputs.
3) The scheduler retrieves our outputs and provides them

to other AP2633 models, or other local controllers.

C. R-ROSACE implementation with HLA/CERTI

The mechanisms are divided into two levels: The Common-
Federate, and the SpecializedFederate inheriting the Common-
Federate.

The CommonFederate holds lists of subscribable and pub-
lishable objects, bound to a list of attributes, following re-
commendations from [16]. The CommonFederate advances

Component Pin Pout f

Flight dynamics δe , T h, Vz , Va , q, az 200Hz

Engine δthc T

Wiring

partial_δ1
ec ,

partial_δ2
ec ,

relay_δ1
ec ,

relay_δ2
ec ,

partial_δ1
thc

,
partial_δ2

thc
,

relay_δ1
thc

,
relay_δ2

thc
,

δec , δthc

Elevator δec δe

FCC1A
h f , Vz f

, Va f
,

q f , az f , hc ,
Vzc , Vac , mode

partial_δ1
ec ,

partial_δ1
thc

50Hz

FCC1B

partial_δ1
ec ,

partial_δ1
thc

, h f ,
Vz f

, Va f
, q f ,

az f , hc , Vzc ,
Vac , mode

relay_δ1
ec ,

relay_δ1
thc

FCC2A
h f , Vz f

, Va f
,

q f , az f , hc ,
Vzc , Vac , mode

partial_δ2
ec ,

partial_δ2
thc

FCC2B

partial_δ2
ec ,

partial_δ2
thc

, h f ,
Vz f

, Va f
, q f ,

az f , hc , Vzc ,
Vac , mode

relay_δ2
ec ,

relay_δ2
thc

FCU — hc , Vzc , Vac

Flight mode — mode

h filter h h f 100Hz

Vz filter Vz Vz f

Va filter Va Va f

q filter q q f

az filter az az f

Table II: R-ROSACE SLA components

its logical time depending on the minor frames through
HLA services, and executing library models depending on
their frequencies. SpecializedFederates, inheriting from Com-
monFederate, initialize the minor frame and the previous
list, depending on the ports in and out linked to extrapro-
cessor communications. The intraprocessor communication is
a simple shared memory, instantiated with SpecializedFederate
attributes.

Fig. 7 depicts the structural bindings of models in Special-
izedFederates.

Figure 7: Structure of the binding of models from the library
with HLA/CERTI federates.



D. R-ROSACE mapped partitions and executions

With both DSS and HLA/CERTI, we were able to run mul-
tiple mapped partitions (partially ordered sets), specifically:
• All components in a single logical processor, in arbitrary

order: { Elevator, Engine, Flight dynamics, h filter, Vz

filter, Va filter, q filter, az filter, FCU, Flight mode,
FCC1A, FCC1B, FCC2A, FCC2B, Wiring }

• All components in a single logical processor, in re-
verse order: { Wiring, FCC2B, FCC2A, FCC1B, FCC1A,
Flight mode, FCU, az filter, q filter, Va filter, Vz filter, h
filter, Flight dynamics, Engine, Elevator }

• One component per logical processor: { {Elevator}, {En-
gine}, {Flight dynamics}, {h filter}, {Vz filter}, {Va

filter}, {q filter}, {az filter}, {FCU}, {Flight mode},
{FCC1A}, {FCC1B}, {FCC2A}, {FCC2B}, {Wiring} }

• One logical processor for physical components, and one
for cyber ones: { {Elevator, Engine, Flight dynamics}, {
h filter, Vz filter, Va filter, q filter, az filter, FCU, Flight
mode, FCC1A, FCC1B, FCC2A, FCC2B, Wiring } }

All these mapped partitions gave similar results without er-
rors with DSS and HLA/CERTI, as expected, especially since
we use this case study with a negligible set of requirements.

Nevertheless, even with quasi-nonexistent requirements, we
found partitions that are not schedulable when interprocessor
and intraprocessor communication have different cost, or when
the mapping adds different latencies on similar data paths.
More precisely, these mapped partitions are executable, but
lead to visible errors in simulation. This situation happens
when the FCC1 and FCC2 have different latencies between
A and B. For instance, mapped partitions with the following
partially ordered sets:
• . . . {FCC1A,FCC1B,FCC2A},{FCC2B}. . .
• . . . {FCC2B,FCC1A,FCC1B,FCC2A}. . .

Similar errors also occur when pairs of FCCs and wiring have
different latencies. We identify here a coincidence constraint.

VIII. CONCLUSION

In this paper, we proposed a method to model CPS sim-
ulation components, in order to analyze the CPS simulation
scheduling. We proposed a method based on two formalisms,
the SLA, and the SEA, and functions between them. We prove
that we can apply our early formalism to a case study, with an
implementation on two distributed architectures. Using these
early formalisms, we can express a CPS simulation scheduling
as a partially ordered set of components, partitioned and
mapped on logical processors, and deterministically estimate
the time used in data paths for a given logical on a given
execution architecture. With these formalisms, we noticed that
some partitioning and mappings can lead to different delays on
different data paths, independently of the execution platform
implementation.

The R-ROSACE case study helped us to understand the
impact of those delays, and we were able to identify some
structures that do not allow different latencies on multiple
data paths (for instance, the FCCs), resulting in untruthful

simulations. We have to clearly identify how this phenomenum
can happen, and to express it as requirements in our formalism.

Lastly, we will work on the identification of the require-
ments that can apply to the different level of our formalism,
with more sophisticated case study.

In the long term, we will try to bring our formalism closer
to the AADL or similar formalisms that can help us to
integrate tools for static check. We expect to generate code
and configuration, and being able to quickly iterate through
schedulings of CPS simulation in order to find efficient ones,
such as in [5], but with an abstract execution platform.

ACKNOWLEDGEMENT

The work described in this paper is supported through an
Industrial Agreement for Research Training — CIFRE —
financed by the National Association for Research in Tech-
nology (ANRT). This work is also financed and supervised by
Airbus, and supervised by the ISAE-SUPAERO, University of
Toulouse.

REFERENCES

[1] C. Landauer, “Flight Systems are Cyber-Physical Systems,” Nov. 2012.
[2] E. L. Lawler, J. Karel Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys,

“Sequencing and scheduling: algorithms and complexity,” in Handbooks
in OR & MS. Elsevier Science, vol. 4, pp. 445–521.

[3] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of modeling and
simulation: integrating discrete event and continuous complex dynamic
systems, 2nd ed. San Diego: Academic Press, 2000.

[4] M. Y. Chkouri and M. Bozga, “Prototyping of distributed embedded
systems using aadl,” ACESMB 2009, p. 65, 2009.

[5] J. Casteres and T. Ramaherirariny, “Aircraft integration real-time sim-
ulator modeling with AADL for architecture tradeoffs,” in Automation
Test in Europe Conference Exhibition 2009 Design, Apr. 2009, pp. 346–
351.

[6] S. Han and H.-W. Jin, “Kernel-level ARINC 653 Partitioning for
Linux,” in Proceedings of the 27th Annual ACM Symposium on Applied
Computing, ser. SAC ’12. New York, NY, USA: ACM, pp. 1632–1637.

[7] J.-B. Chaudron, D. Saussié, P. Siron, and M. Adelantado, “How to solve
ODEs in real-time HLA distributed simulation,” in SISO (Simulation
Interoperability Standards Organization), 2016.

[8] A. Tolk and J. A. Muguira, “The levels of conceptual interoperability
model,” in Proceedings of the 2003 fall simulation interoperability
workshop, vol. 7. Citeseer, 2003, pp. 1–11.

[9] J.-M. Bergé, A. Fonkoua, S. Maginot, and J. Rouillard, VHDL De-
signer’s Reference. Springer Science & Business Media, Dec. 2012.

[10] V. David, C. Fraboul, J. Y. Rousselot, and P. Siron, “Partitioning and
mapping communication graphs on a modular reconfigurable parallel
architecture,” Parallel Processing: CONPAR 92—VAPP V, pp. 43–48.

[11] Institute of Electrical and Electronics Engineers and IEEE-SA Standards
Board, IEEE standard for modeling and simulation (M & S) high level
architecture (HLA): object model template (OMT) specification. New
York: Institute of Electrical and Electronics Engineers, 2010.

[12] C. Gervais, J.-B. Chaudron, P. Siron, R. Leconte, and D. Saussié,
“Real-time distributed aircraft simulation through HLA,” in Proceedings
of the 2012 IEEE/ACM 16th International Symposium on Distributed
Simulation and Real Time Applications. IEEE Computer Society, 2012,
pp. 251–254.

[13] B. Bréholée and P. Siron, “Certi: Evolutions of the onera rti prototype,”
in Fall Simulation Interoperability Workshop, 2002.

[14] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The
ROSACE case study: from Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.

[15] SchedMCore | Easy MultiCore Scheduling Analysis and Simulation.
[Online]. Available: http://sites.onera.fr/schedmcore/

[16] F. Kuhl, J. Dahmann, and R. Weatherly, Creating computer simulation
systems: an introduction to the high level architecture. Upper Saddle
River, NJ: Prentice Hall PTR, 2000.


