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Flood Frequency Analysis: the Bayesian choice

Eric GAUME∗

Article Type: Primer

Abstract

After an introduction to the traditional flood frequency analysis methods, this article
discusses their limits and the risks associated to their thoughtless use: overconfidence in
the estimated values of flood quantiles or return periods and systematic underestimation of
risks. The article then presents and illustrates the added value of modern Bayesian flood
frequency inference procedures that are statistically consistent, numerically accurate and
computationally now affordable. The implementation of such methods shows that estimated
flood frequencies, based on observed samples of limited size, are generally affected by large
uncertainties. This acknowledgement should be an incentive for increasing the size of the
analysed samples through a more systematic use of historic information as well as regional
approaches in flood frequency analyses. It also clearly points that margin of errors should
be considered when using inference results for design or risk assessment purposes. Several
pieces of software are now available to conduct Bayesian flood frequency analyses relatively
straightforwardly. There is no remaining obstacle to the implementation of these modern
approaches in operational hydrological studies.

∗IFSTTAR, GERS, F-44344 Bouguenais, France
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INTRODUCTION

Frequency analysis is a common engineering practice in many domains where risk assessment

or design is required and singularly in hydrology. It has also been an active field of research

and publication since the founding works of Fréchet (?, ?) and Fisher and Tippett (?, ?) on

the theory of extreme values in statistics. Numerous methods have been proposed to extract

samples of a variable of interest from observed data sets (sampling) and to fit statistical

distributions to these samples (i.e. to infer the statistical properties of the underlying un-

known natural random process). It is important to mention here that this paper is focussed

on data-driven (i.e. inference-based) flood frequency analyses. Other methods, specifically

developed to explore the tail of statistical distributions (?, ?) (i.e. provide reasonable values

for very high return periods) will not be presented: (a) Probable Maximum Flood approach

or (b) Derived flood frequency methods based on the coupling between a rainfall stochastic

model and a rainfall-runoff model. The traditional inference procedures for flood frequency

analysis and their background will be shortly presented and their respective merits discussed

in the second section of this article, but it is not its main focus.

In practice, inference methods are often implemented like recipes, with the objective

to provide an estimated quantile or return period value, corresponding to the statistical

distribution best suited to the sample - the definition of the terms quantile and return

period will be recalled hereafter. In fact, if limited to this optimisation objective, inference

has little to do with statistics. In a consistent statistical perspective, the estimates, based

on samples resulting from a random process, should also be considered as random variables.

In other words, these estimates are variable or affected by uncertainties, related to sampling

variability, that can and should also be evaluated and provided as part of the result of the

inference procedure. Hiding estimation uncertainties, on purpose or by ignorance, gives

a false impression of accuracy and rigorousness and proves Mark Twain right who stated

ironically: ‘there are three types of lies: lies, damned lies and statistics’. Worse, it leads to

biased decisions, to underrate the risks in fact, as will be illustrated herein.

This article therefore presents and clearly aims at promoting Bayesian frequency analysis

methods, that are theoretically consistent, have proven to be numerically accurate and are
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now computationally affordable. The title ‘Bayesian choice’ is a wink to the famous textbook

written by Christian P. Robert (?, ?). Engineers may not feel at ease with inference results

affected by large ‘posterior’ uncertainties (i.e. estimated values with large variances). They

may even be reluctant to reveal these uncertainties. But it is the simple state of facts that

estimated values based on limited samples are uncertain. Its acknowledgement should be

an incentive to increase the size of the analysed data samples, taking advantage of historic

information or of statistical homogeneities that may exist at a regional scale.

Many pieces of software are now available to conduct Bayesian flood frequency analyses.

The illustrations of this paper are based on the freely available R software library nsRFA

and more precisely on the BayesianMCMC command. There is no remaining obstacle for

the implementation of such approaches in operational hydrological studies. But the readers

must also be aware that even if Bayesian approaches constitute undoubtedly a progress in

flood frequency analyses, they have also limits and some strong hypotheses are needed to

conduct inferences such as the choice of a statistical distribution type. Bayesian approaches

should not be the new god to be worshipped. No model, no method compensate for a lack

of data. This essential idea is recalled in the conclusion of the paper: accuracy can only be

achieved in flood frequency analyses if they are based on good-quality but also rich datasets.

Data is the key factor, the crux of every statistical analysis.

The article is divided in two parts. The first part exposes the standard flood frequency in-

ference procedures. The second part is devoted to uncertainties related to sampling variabil-

ity and their consequences and presents the Bayesian inference method. A short conclusion

recalls the importance of data in statistical analyses.

PART 1: BASICS OF FLOOD FREQUENCY ANALYSES

Data critical analysis

In flood frequency analyses, discharge is generally preferred to river stages. Discharges

from different sites can be compared which enables cross-checking and regional frequency

analyses. Water levels are highly dependent on the local flow conditions that may even vary
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significantly over time, leading to non-stationary and inconsistent data series.

Discharge is nevertheless seldom directly measured but estimated based on measured

stages and calibrated stage-discharge relations. The largest discharge values in a series, that

are of crucial importance for flood frequency analyses, often correspond to the extrapolated

and hence less accurate part of the stage-discharge relation.

It is therefore highly recommended to proceed to a detailed critical analysis of the data

sets before any further computation. A particular attention must be given to:

• Data completeness: are the existing gaps not corresponding to possible large floods,

that may for instance have damaged the stream gauge ? This can be verified looking

at rainfall or nearby stream records.

• Data consistency: is the stage-discharge relation reliable ? Has the same relation been

used over the whole record period or, if not, are the modifications justified ? It is fre-

quent that hydrometric services recalibrate the stage-discharge relation to account for

new measured (gauged) discharges. This generally has little impact on the interpola-

tion range of this relation but may sometimes lead to major and unjustified evolutions

of its extrapolated part. Such procedures may lead to highly inconsistent discharge

series (see Figure ?? for an illustration).
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Figure 1: Plot of measured stages versus corresponding estimated discharges at the Montcel

gauge on the Morge river (France) according to the available data set (left panel). View

of the Morge river in the vicinity of the gauged cross-section (right panel). The stage-

discharge relation has obviously been modified in 2003 with little changes in its lower part

but tremendous evolutions of its upper, extrapolated, part.

Data sampling strategies

Flood frequency analyses aim at deciphering the natural random process driving the occur-

rence and magnitude of flood events. The objects of interest are flood events: i.e. periods

of temporary increase of the river discharge above its average value. An event descriptive

variable has to be selected to rate the magnitude of a flood. This variable may vary depend-

ing on the objective of each specific study. The peak discharge is often chosen. But other

variables may be considered, such as the flood volume over a given discharge threshold for

the design of dam volumes for instance.

Floods and their corresponding descriptive variable, once selected, have then to be sam-

pled from the measured sequential series. Two main sampling strategies exist, illustrated in

Figure ?? : (a) block maxima or (b) peaks over threshold (POT) sampling. The samples

resulting from the two methods may have the same size, the same largest values, but are

clearly different as illustrated in Figure ??.
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Figure 2: Illustration of the two classic flood peak dicharge sampling strategies applied to

a ten year series of discharges measured in Paris on the Seine river: annual block maxima

(left) and peaks over threshold (right). Red dots (sampled values), dotted vertical lines

(separation between hydrological years), red horizontal line (selected threshold).

The block maxima sampling method is straightforward. The largest values observed

during each available complete hydrological year (i.e. starting in October) have been for

instance selected in the example shown in figure ??.a. The POT method is probably at first

sight the most natural one: every event exceeding a threshold value is a flood event and should

be considered. It is the method recommended in some textbooks (?, ?). But it has also some

drawbacks. First, the selection of floods remains partly arbitrary. Two successive periods

of exceedance may be considered as belonging to the same event if they are not separated

by a sufficiently long period of time. A minimum delay between two successive peaks is

generally defined in POT sampling. Second, the threshold and hence the sampling strategy

is site dependent. This adds a source of variability in regional flood frequency analyses or

if quantiles computed at different sites are compared. For the simplicity and reproducibility

of its implementation, the author prefers the annual maxima sampling method.
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UNIVARIATE OR MULTIVARIATE STATISTICS

Some readers will be surprised that the manuscript is limited to univariate statistical

methods when multivariate approaches have been flourishing in the recent years in the

scientific literature, especially with the introduction of copulas in hydrology. But the

notions of frequency or return period is only simply defined in the univariate case.

Multivariate statistical models may be developed to describe the joint probability of two

or more flood descriptive variables (volume, duration, peak discharge...). Multiple

definitions of an event are then possible, based on combinations of these descriptive

variables or on their consequences (i.e. possible resulting water levels). Additional steps,

generally based on Monte Carlo random simulations are then needed to provide

estimates of return periods or exceedance probabilities of the defined events.

Multivariate approaches pertain to stochastic modelling rather than directly to

frequency analysis.

Selection of a distribution type

Next step, a family of mathematical function has to be selected as candidate for the cumu-

lative distribution of the sampled random variable X: Fθ(x) = P (X ≤ x). θ stands for

the set of parameters to be calibrated against the sample. Fθ can be any non-decreasing

and right-continuous function such as limx→−∞ = 0 and limx→∞ = 1. Some families, with

well-established mathematical formulations are popular in flood frequency analyses, such as

the 3-parameter gamma (also called Pearson III), log-normal and log-Pearson III (the loga-

rithm of X has a normal or Pearson III distribution), or one the three extreme value (EV)

distributions (Gumbel or EV I, Fréchet or EV II and Weibull or EV III) or even the synthetic

form of these three distributions, established by Gnedenko in 1943 (?, ?) and called General

Extreme Value (GEV) distribution:

Fθ(x) = exp

[
−
(
1− k(x− a)

b

)1/k
]
b>0

(1)

In equation ??, the parameter set θ stands for {a, b, k}, with a a position parameter, b a

scale parameter and k the shape parameter (k = 0 corresponds to the Gumbel , k > 0 to a

Weibull and k < 0 to a Fréchet distribution).
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It is time for some definitions. The so-called return period T (x) of the value x is equal

to : T (x) = 1/(1 − Fθ(x)). T is expressed directly in years if annual maxima have been

sampled. A quantile xT is the value of the random variable X corresponding to return

period T : xT = F−1
θ (T ). the probability density function fθ(x) is the partial derivative of F

with respect to x.

fθ(x) =
dFθ

dx
(x) (2)

DEFINITION OF THE RETURN PERIOD

Even if not appropriate, the term ’return period’ T has become popular among experts

as well as the general public. It is a source of misconception: the studied stochastic

processes are by no way periodic! Moreover, several definitions of T coexist, that are

nevertheless basically equivalent. T can be defined as the inverse of the annual

probability 1− F of exceeding a given quantile value xT . Observed series of maximum

discharges are generally supposed to be sequences of independent and identically

distributed variables. In that case, the sequence of exceedances (success) and

non-exceedances of xT is a Bernoulli process, with success probability 1− F . The

number of trials (number of years) N needed to get one success (exceedance) has a

geometric distribution with expectancy E[N ] = 1/(1− F ) = T . T is then likewise the

expected waiting time before the next occurrence of a value larger than xT . It does not

depend on the past, since the successive events are independent. T is therefore also the

expected duration between to successive exceedances. It as been shown that these

equivalences resist to some level of dependence (?, ?). Note that the median waiting

time is equal to −log(2)/log(F ) (i.e. 69 years for T =100 years). And, the number of

exceedances over a period of time M has a binomial distribution B(M, 1− F ). The

probability of observing at least one event equal or larger than the 100-year event over a

100-year period is equal to 63.4%...

Various tests have been proposed to evaluate the adequacy between a sample and a dis-

tribution type and to facilitate the choice of the distributions to be calibrated (?, ?). The

GEV distribution plays nevertheless a particular role in flood frequency analysis. The GEV
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distribution for the extreme value theory is an equivalent of the normal distribution for the

central limit theorem. It is the limit distribution of the maximum value of n identically

distributed random variables when n tends to infinity. This explains why, extreme value

distributions are often chosen as candidate distributions in flood frequency analyses. But,

it must be clear that the extreme value theory is an asymptotic theory. The distribution

of observed samples of limited size can differ significantly from the GEV distribution. This

is clearly acknowledged by Coles (?, ?) in the introduction of his famous textbook: ‘In

Lieu of an empirical or physical basis, asymptotic arguments is used to generate the extreme

value models. It is easy to be cynical about this strategy, arguing that extrapolation of models

to unseen levels requires a leap of faith, even if the models have an underlying asymptotic

rationale. There is no simple defense against this criticism, except to say that applications

demand extrapolation, and that it is better to use techniques that have a rationale of some

sort’.

Hereafter, we will be working with GEV distributions, not merely because it is related to

extreme value theory but mainly because it is a 3-parameter and hence flexible distribution

type, leaving more space for data driven results.

Inference procedures

The last step of the analysis consists in estimating (inferring) the parameter values of the

selected distribution or distributions best suited to the sample. Before proceeding to the in-

ference, it is recommended to verify, through statistical tests, that the sample can reasonably

be considered composed of independent and identically distributed values. Non-stationary

statistical models may be proposed if clear temporal trends in the sample mean or variance

are detected for instance. The presentation hereafter is limited to the standard stationary

case study.

Three inference methods are proposed in the literature:

1. Method of moments. The moments (expectancy µ, variance σ2, skewness s and

kurtosis k coefficients) and the parameters θ are related for a given distribution type:

θ = g(µ, σ2, s, k). The empirical moments of a sample can be considered as estimators
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of the moments of the underlying distribution (µ̂, σ̂2, ŝ, k̂). Hence the same relations

came be used to provide estimators of the parameters θ̂ = g(µ̂, σ̂2, ŝ, k̂).

2. L-moments method. The L-moments method is similar to the method of moments,

but is based on other types of moments, the L-moments, introduced by S. Hosking in

1990 (?, ?). L-moments are linear combinations of order statistics. L-moments have the

advantage to be less sensitive than moments to sampling variability and have therefore

become popular for flood frequency analyses, especially suited, at least theoretically,

for 3-parameter distributions and small sample size.

3. maximum likelihood. The distribution type being selected and the sample being

supposed to be composed of independent and identically distributed variables, the

likelihood of the sample can be computed as the product of the densities of each item

of the sample (standard definition, left side of equation ??) or the product of the

probability of each item (definition preferred by the author, right side of equation ??).

xh
i and xl

i represent respectively the expert-based high and low bounds of the confidence

intervals for the estimated discharges. The values of the parameter set θ maximizing

the likelhood L(X|θ) of the sample are selected as estimators.

L(X|θ) =
s∏

i=1

fθ(xi) or L(X|θ) =
s∏

i=1

[Fθ(x
h
i )− Fθ(x

l
i)] (3)

Once the parameters θ̂ estimated, any quantile value can be evaluated: x̂T = F−1

θ̂
(T ).
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Figure 3: Boxplots of the 100-year quantile estimation relative errors for the three standard

inference methods. 1000 series ofN values drawn from a parent GEV(10,10,-0.2) distribution.

N = 30 (left) and N = 100 (right).

Figure ?? illustrates the performance of these three inference methods when applied to

1000 samples, randomly drawn from a GEV (a, b, k) distribution: relative estimation error

for the 100-year quantile (x̂100 − x100)/x100. No general conclusion can be drawn from one

single example, but the maximum likelihood is known to be theoretically unbiased (i.e. with

expected estimation error equal to zero), but biases may nevertheless be introduced by the

numerical optimization method needed. It is also asymptotically optimal (i.e. with minimum

error variance). Without surprise, the estimator based on maximum likelihood appears

almost unbiased (median as well as mean error value close to zero), whereas estimators based

on moments are biased and have a tendency to under-estimate the 100-year quantile for this

specific distribution. The maximum likelihood estimator has the largest error variance for

the small sample size (30 values in Figure ?? left) but this variance decreases rapidly with

sample size. It is asymptotically the estimator with the lowest variance. More surprising, the

variance of the L-moments estimator is larger than the variance of the estimator based on

moments. L-moments are less sensitive to sampling variability, but parameters and quantiles

are related to the moments by non-linear functions. The advantage of the lower variance of
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the L-moments may be lost due to this non-linear transformation for this specific distribution.

Figure ?? also shows that quantile relative estimation errors may be large when the size

of the available data sets is limited: often 50% or more. These errors, mainly related to

sampling variability, will be the main focus of the next part of this paper.

PART 2: BAYESIAN INFERENCE

Sampling variability and uncertainties

The statistical distributions (xT = F−1
θ (T )) corresponding to one of the samples used to

build Figure ?? are drawn on the left side of Figure ??: the parent GEV(10,10,-0.2) as

well as the three adjusted distributions based on the moments, L-moments and maximum

likelihood. The sampled values with their corresponding empirical return periods (plotting

positions) are added on the figure. The empirical return period is computed here in the

following way. The sample of size M is ranked in descending order. The empirical return

period Ti of the rank i value is then set equal to Ti = (M + 1)/i. 1

1Note, that the empirical return periods are only used to enable a graphical comparison between the

sample and the adjusted distributions, but were not use in the inference process. Accurate and especially

unbiased plotting positions are not really needed. Several other formulas have been proposed for plotting

positions in the past (?, ?) when some statistical analyses were based on graphical interpolations of plotting

positions, an approach now abandoned.
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Figure 4: Impact of sampling variability. Inference results based on a sample of 30 values

(left) : Moments (continuous line), L-moments (dashed line), Maximum likelihood (dot-

ted line), sample plotting positions (dots), parent GEV(10,10,-0.2) distribution (bold line).

Scattering of the plotting positions for 100 samples of 30 values drawn from the parent

distribution (right).

It is clear from Figure ?? that the three calibrated distributions may be different, but

are firstly controlled by the sample. This sample may drive the calibration far from the

parent distribution (bold line on the figure). Of course, this example has been selected

for the sake of explanation. But Figure ?? in its right panel, illustrating the scattering of

plotting positions due to sampling variability, shows that this specific sample of 30 values is

not unusual for such a GEV parent distribution. Clearly, the choice of an inference method

is a problem of secondary importance in flood frequency analysis. The main problem is the

important effect of sampling variability. This being acknowledge, three main questions will

be discussed hereafter:

1. Is it possible to assess inference uncertainties due to sampling variability when only

one sample, the measured sample, is available and how ?

2. What are the possible solutions to increase the size of the studied samples in order to

reduce the effects of sampling variability ?
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3. How can inference uncertainties be accounted for in a design or risk assessment study

?

Estimation of inference uncertainties: bootstrap and Bayesian inference

The sample of M items entails information about the variability of the underlying random

process. To evaluate the effect of sampling variability on flood frequency analyses, a first idea

consists in re-sampling randomly, with replacement, from the available data set, numerous

samples of M values. A frequency analysis is conducted on each of these synthetic samples to

assess the resulting variability and distributions for the parameters θ̂ and the corresponding

quantiles x̂T . This empirical procedure is called bootstrap and is a standard method for

assessing the properties of estimators.

An alternative approach can be proposed to evaluate the possible distribution of the

parameters θ given the observations X. According to the Bayes theorem, the conditional

probability density function p(θ|X) is related to the previously calculated likelihood L(X|θ)

(equation ??):

p(θ|X) =
L(X|θ)p(θ)

p(X)
(4)

In equation ??, p(θ) is the called prior distribution of θ. It summarizes any prior or

alternative knowledge on θ. p(X) is the probability of the data sample X which is unknown

but fixed. When no prior information exists on θ (i.e. non-informative prior), p(θ) can be

taken equal to 1, one common choice among other alternatives. This implies that p(θ|X) is

proportional to L(X|θ).

Numerical methods combining Monte Carlo simulations and Markov Chain random walk

(MCMC) have been developed to explore the hyperspace of variables (θ in the present case)

according to their joint probability. They are a class of algorithms for sampling from multi-

variate random distributions whose density is known (?, ?, ?): i.e. draw samples of parameter

sets θ according to the density p(θ|X) in the present case. Typically, tends to hundreds thou-

sands sets are sampled to be able to accurately describe the posterior joint distribution of

the parameters and the corresponding distributions of quantiles. A proportionality constant
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does not influence the result: i.e., the computation of L(X|θ) or L(X|θ)p(θ) if a prior distri-

bution is selected, is sufficient to sample vectors θ from a distribution with density function

p(θ|X), without any knowledge of p(X).

The final result of the Bayesian-MCMC procedure is a set of sampled vectors θ, typically

some ten thousand vectors, with density p(θ|X) . The corresponding discharge quantiles can

then be computed and uncertainty bounds, credibility intervals using the Bayesian vocabu-

lary, estimated based on this large set of quantile values.

In the Bayesian perspective, the result of the inference is not an optimum vector of

parameters θ, but a density function p(θ|X) (conditional to the data set, i.e. ’posterior’). If

the inference problem is well-posed, the spread of this posterior distribution should diminish

as the information content of the sample X increases: i.e., this spread can be seen as a

measure of the information content of the sample.

1 5 10 50 500

0
50

10
0

15
0

T (years)

D
is

ch
ar

ge
 (

m
3/

s)

Sample plotting positions
Parent distribution
Maximum Likelihood
Bayesian 90% conf. interval
Bootstrap 90% conf. interval

Sample plotting positions
Parent distribution
Maximum Likelihood
Bayesian 90% conf. interval
Bootstrap 90% conf. interval

Figure 5: (Left) Comparison between the Bayesian-MCMC 90% credibility limits (black

dotted line) and the 90% bootstrap confidence interval (grey dotted line) for a sample of 30

values drawn from a GEV (10, 10,−0.2) distribution. Sample plotting positions (dots), par-

ent distribution (bold line) and maximum likelihood distribution (line). (Right) Uniformity

test for the confidence intervals computed with the Bayesian MCMC procedure.

Figure ?? compares, for one sample drawn from a GEV (10, 10,−0.2) distribution, the

15



two 90% confidence intervals for the inferred quantiles computed with bootstrap (dotted grey

line) and the Bayesian-MCMC approach (dotted black line). The two confidence intervals are

comparable even if not totally super-imposed. The right side of Figure ?? shows the result of

an accuracy test conducted on the posterior distributions of the x̂100 quantile computed with

the Bayesian-MCMC method (?, ?). It represents the distribution of the non-exceedance

probability of the real quantile value x100 according to the posterior distribution of x̂100. If

this posterior distribution is unbiased, the non-exceedance probability should be uniformly

distributed when computed over a large amount of generated samples. It seems to be the

case. This confirms that, even if the confidence intervals may appear large on figure ??, they

are accurate, provided that the studied random variable is distributed according to the tested

distribution. This is never sure in real case studies and the estimation uncertainties should

be considered as underrated, even if large, since they have been computed conditionally

to a distribution type. These large intervals reflect the limited information content of the

available data set.

Reducing estimation uncertainties

Two main possibilities exist to enrich a data set, i.e. increase its size: 1) increase the

observation time frame using existing information on historic floods and 2) take advantage

of statistical homogeneities at a regional scale to built regional samples. Both approaches

may also be combined (?, ?).

Valuation of historic information

Historic information has a particular format. Information, generally maximum water stages

or flood extent maps, is only available for the largest flood events, flood events that have

produced inundations and damages, which peak discharge value has exceeded a given per-

ception threshold yP . Historic information produces a censored data set Y . But censored

information can straightforwardly be introduced in likelihood formulations (?, ?) (equa-

tion ??) and the previously presented inference procedures can be implemented without any

further difficulties.

16



L(X,Y |θ) =

[
M∏
i=1

[Fθ(x
h
i )− Fθ(x

l
i)]

]
︸ ︷︷ ︸

(a)

·

[
h1∏
k=1

Fθ(y
h
k )− Fθ(y

l
k)

]
︸ ︷︷ ︸

(b)

·
[
(1− Fθ(yP ))

h2

]
︸ ︷︷ ︸

(c)

·
[
Fθ(yP )

h3
]︸ ︷︷ ︸

(d)

(5)

In equation ??, the term (a) is the same as in equation ?? and corresponds to the

continuous series of measured data. The term (b) is the likelihood corresponding to the

h1 historic floods for which a discharge estimate is available. The term (c) represents the

likelihood of the h2 historic floods for which no other information is available than a given

threshold yP has been exceeded. The last term (d) is essential and should not be forgotten,

it corresponds to all the h3 years in the historic period where no record is available because

the threshold yP has most probably not been exceeded. The likelihood formulation may even

account for successive historic periods with various perception threshold values if needed.
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Figure 6: Inference results based on a sample of 30 values (left) and on the same sample

complemented with historic information over 100 years (right). The two largest historic

peak discharges could be estimated with a large uncertainty range (distance between yhk

and ylk) indicated by the dotted lines. 90% credibility limits (black dotted line), maximum

likelihood distribution (continuous line), sample plotting positions (dots), GEV (10, 10,−0.2)

parent distribution (bold line), historic records (vertical dotted lines). Note that the plotting

positions have been recomputed in the right panel to account for the historic records.

Figure ?? gives an illustration of the possible added value of historic records. The two

largest discharges over a historic period of 100 years could be estimated with large uncertain-

ties, complementing a series of 30 years of continuous records. The threshold yP has been

set equal to the smallest yhk value: i.e. it is essential to be certain that the threshold has

not been exceeded during the remaining historic years; its value should not be set too low.

The same critical attention must be given to historic data as to measured records even if

discharge estimates are less accurate. Misuse of historic information can result in significant

flood frequency analysis biases. First, even if affected by large uncertainties, discharge esti-

mates in the historic periods must be consistent with recent records. Second, it is essential

that the historic inventory of events exceeding the perception threshold is exhaustive. If

a doubt exists, the threshold has to be increased to limit the risk of an unreported flood
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event exceeding it. Finally, the length of the historic period (h1 + h2 + h3) has to be wisely

selected based on all available information. It generally begins significantly before the first

reported large flood event. If this event has drawn attention, it is generally because it ap-

peared unusual if compared to previously observed events. Provided that this conditions are

met, historic information generally help reduce significantly inference uncertainties even if

historic discharges can only be roughly estimated. According to recent studies, the length

of the historic recording period is much more important for frequency analyses than the

accurate retrieval of historic peak discharges (?, ?).

Regional flood frequency analyses

Another possible option to increase the size of the data sets consists in merging observations

available at different sites to build statistically homogeneous regional data sets. Regional

frequency analyses is not a new idea. It is, for instance at the core of the work conducted

by Hershfield and Kohler in 1960 (?, ?) which aimed at testing the Gumbel distribution

against the daily rainfall series observed over the whole area of the United States. But it

has received a renewed attention since the publication of book of Hosking and Wallis in 1997

on the topic (?, ?). This manual is the origin of the nsRFA library. In the simplest version

of regional flood frequency analyses, it is hypothesized that in an homogeneous region, the

local distributions are the same provided that the local values are scaled by a local constant

factor µi called ’index flood’ : xi
T = µiχT where i is the index of site, xi

T the local and χT

the regional quantiles.

In the case of a GEV distribution, it implies in particular that the distributions share the

same shape parameter. Of course, the plausibility of this hypothesis should be statistically

tested before conducting any inference on the regional composite data set. The ’index flood’

is proportional to the expectancy of each local distribution. It is generally approximated by

the average or the median value of each local sample.

In most cases, regional frequency analyses are implemented to merge observed data sets

from different gauged sites. But the method has been recently successfully extended to ac-

count for discharges of extreme floods estimated at ungauged sites in a given region (?, ?).

This opens new perspectives for the exploration of the possible shape of discharge distribu-
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tions for return periods ranging from 100 to 1000 years.

Uncertainties and decision making

It is a common practice to take a margin of error for design purposes when computations

are affected by possible uncertainties. Is it then reasonable to select the T-year quantile

corresponding to the maximum likelihood for a T-year failure design and risk assessment

in hydrology, since its estimation is affected by large uncertainties? The general answer is

negative. The objectives set to the design have to be considered for the selection of the

proper design value zT based on the statistical inference result. If the risk of undersizing has

to be limited, for instance to 10%, the upper bound of the T-year quantile 80% credibility

interval has to be selected as design value. An other common objective is to select a design

value that has an expected probability of exceedance equal to 1/T according to the outcome

of the inference procedure including uncertainties. It may be surprising, but this design

value is not the T-year maximum likelihood quantile x̂T as already shown by Stedinger in

1983 (?, ?) and illustrated in figure ??.a.

In figure ??.a, as in the previous examples, 2000 samples of 30 values were drawn from a

GEV distribution. The 2000 corresponding 100-year maximum likelihood estimated quan-

tiles x̂100 have been computed. The distribution of the exceedance probabilities 1−F (x̂100) of

these estimated quantiles, according to the parent distribution, is plotted in the histogram.

The average probability of exceedance of the quantile x̂100 appears to close to 2% instead

of 1%. The expected probability of exceedance (i.e. probability of failure of the designed

structure) of the x̂T maximum likelihood estimated quantile is larger than 1/T . Its selection

as design value will lead, on average, to too frequent failures of the designed structures.
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Figure 7: (left) Distribution of exceedance probabilities (1 − F (x̂100)) of the 100-year esti-

mated quantiles x̂100 for 2000 samples of 30 values drawn from a GEV (10, 10,−0.2) distri-

bution: red vertical line (theoretical value: 1%), black vertical line (sample average). (right)

Illustration of the ’predictive’ distribution in red along with parent distribution (bold line),

maximum likelihood distribution (continuous line), 90% confidence interval (dotted lines),

sample plotting positions (dots).

The theoretical distribution of the design values zT with the expected annual probability

of failure 1− E[F (zT )] = 1/T (red line on the right panel of figure ??), is sometimes called

’predictive’ distribution (?, ?). The function E[F (z)] can be computed based on the output

of the Bayesian inference procedure and especially on the posterior distribution P (θ|X) for

the parameters θ: E[F (z)] =
∫
θ
Fθ(z)P (θ|X)dθ. Practically, this expectancy is estimated

by the average value resulting from a sample Θ of M parameter sets θ randomly drawn

in the posterior distribution P (θ|X): E[F (z)] ≈ 1
M

∑
Θ Fθ(z). Note that the ’predictive’

distribution is numerically estimated. Its type and the mathematical form of its density

function are unknown and probably differ from the GEV distribution type. This being said,

it may appear complex to compute the ’predictive’ distribution in operational applications.

Moreover, it should be kept in mind that uncertainties related to the fact that the real

distribution of the observed variables is unknown are not accounted for. The selection of
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a quantile value for design purposes thus often consists in selecting the upper bound of a

computed posterior confidence interval for the selected quantile - typically the 70% interval.

IMPORTANT CONCLUDING REMARK

The introduction of Bayesian inference methods in flood frequency analyses is undoubtedly a

major progress, but their users should also be aware of their limits. The numerical derivations

necessitate the selection of a theoretical mathematical function - a statistical distribution

- to be fitted to the data sets. The inference results are constrained by this a priori and

adhoc choice. But the natural processes seldom fit perfectly to theoretical mathematical

models. As recalled by the mathematician Steward, cited by Klemes (1988) (?, ?):‘We may

write down equations, and nature may - at some level - obey them, but nature is not obliged

to restrict herself to those solutions that our overgrown monkey intellects can write down

explicitly. And so mathematicians must pay attention to what really happens, rather than

assume that nature conspires to make human calculations easy ’.

Besides, recent research results suggest that natural distributions of flood peak discharges

may depart significantly from theoretical models and especially the asymptotic GEV model

(?, ?, ?). Trends for medium and large return periods may not be captured in short duration

observed series. Even if already large, the uncertainties affecting the inference results may

therefore be significantly under-estimated.

No model and no method can replace data in flood frequency analyses. As mentioned

in introduction, data is the key factor, the crux of every statistical analysis. Engineers and

researcher should therefore focus their attention in the future on the careful documentation

of extreme historic or regional events, even events that have occurred at ungauged sites.

Increasing information on large and extreme events is the only possible way to gain knowl-

edge about the tail of statistical distributions and reduce the uncertainties related to flood

frequency analyses.
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FURTHER READING

The nsRFA library of the free software R and its documentation provide helpful functions and

explanations for readers who want to rapidly be able to implement Bayesian flood frequency

inference methods.
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