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The self-propulsion of a spherical squirmer – a model swimming organism that
achieves locomotion via steady tangential movement of its surface – is quantified
across the transition from viscously to inertially dominated flow. Specifically, the flow
around a squirmer is computed for Reynolds numbers (Re) between 0.01 and 1000 by
numerical solution of the Navier–Stokes equations. A squirmer with a fixed swimming
stroke and fixed swimming direction is considered. We find that fluid inertia leads
to profound differences in the locomotion of pusher (propelled from the rear) versus
puller (propelled from the front) squirmers. Specifically, pushers have a swimming
speed that increases monotonically with Re, and efficient convection of vorticity past
their surface leads to steady axisymmetric flow that remains stable up to at least
Re = 1000. In contrast, pullers have a swimming speed that is non-monotonic with
Re. Moreover, they trap vorticity within their wake, which leads to flow instabilities
that cause a decrease in the time-averaged swimming speed at large Re. The power
expenditure and swimming efficiency are also computed. We show that pushers are
more efficient at large Re, mainly because the flow around them can remain stable to
much greater Re than is the case for pullers. Interestingly, if unstable axisymmetric
flows at large Re are considered, pullers are more efficient due to the development
of a Hill’s vortex-like wake structure.

Key words: biological fluid dynamics, propulsion, swimming/flying

1. Introduction

Swimming organisms span seven orders of magnitude in length (Gray 1968): a
motile bacterium may be only a few microns across whereas a large marine animal
may be several metres in length. Completely different fluid flow regimes are observed
at either end of this scale (Childress 1981). The underlying flow physics are dictated
by the relative strength of inertial to viscous forces within the fluid. The Reynolds
number, Re = ̺VL/µ, represents the ratio of these forces, where ̺ is the fluid density,
µ is the viscosity, V is a characteristic speed, and L is a characteristic length.

† Email address for correspondence: akhair@andrew.cmu.edu



Locomotion at macroscopic length scales is associated with large Re flows dominat-
ed by inertial forces. Roughly all swimmers between the size of a small fish (Re∼103)
and a blue whale (Re ∼ 108) fall into this Eulerian realm. Self-propulsion is primarily
generated by reactionary forces arising from the acceleration of fluid opposite the
swimming direction (Childress 1981). This is accomplished, for instance, by the
motion of a fish’s tail fin. The effects of viscosity are confined to thin boundary layers
so long as the swimmer is streamlined in shape (Vogel 1996). Thus, fluid-mechanical
analysis may be carried out using inviscid flow theory (Lighthill 1975).

In contrast, microscopic organisms fall into the Stokesian realm, where viscous
forces dominate and Re is small, ranging from 10−4 for bacteria to 10−2 for
mammalian spermatozoa (Brennen & Winnet 1977). Here, inertial mechanisms of
thrust generation are unavailable; the swimming mechanics of these organisms are
governed by resistive forces, where viscous thrust is balanced by viscous drag (Lauga
& Powers 2009).

Lighthill (1952) and Blake (1971) introduced the spherical squirmer as a simple
model for self-propulsion at small Re, intended to mimic the locomotion of organisms
possessing dense arrays of motile cilia. A squirmer of radius a achieves locomotion
through small, axisymmetric deformations of its surface, such that the radial and
tangential velocity components on its surface in a co-moving frame are

vr|r=a =
∞
∑

n=0

An(t)Pn(cos θ) and vθ |r=a =
∞
∑

n=1

−2

n(n + 1)
Bn(t)P

1
n(cos θ), (1.1a,b)

respectively. Here, r is the distance from the origin, located at the centre of the
squirmer’s body, θ is the polar coordinate measured from the direction of locomotion,
An and Bn are time-dependent amplitudes (with units of velocity) and Pn (P1

n) are
(associated) Legendre polynomials of order n. The direction of locomotion remains
constant (at small Re) due to the axisymmetry of the swimming ‘stroke’ represented
by (1.1a,b), and thus the swimming velocity is U = Uez, where ez is the unit vector
along the swimming direction. From the requirement that the net hydrodynamic force
must vanish on a steadily translating, neutrally buoyant body, the swimming speed of
a squirmer in Stokes flow is U = (2B1 − A1)/3 (Lighthill 1952). This depends only
upon the first mode of each surface velocity component in (1.1a,b) and is independent
of viscosity, since thrust and drag scale linearly with viscosity at Re = 0.

A reduced-order squirmer may be conceived by assuming that the surface deforms
steadily and only in the tangential direction (An = 0 and Bn = constant). Furthermore,
one may retain only the first two Bn coefficients, so that

vθ |r=a = vs(θ)= B1 sin θ + B2 sin θ cos θ. (1.2)

Equation (1.2) is a slip flow along the squirmer surface that vanishes at the poles
(θ = 0 and θ =π). The first term in (1.2) is solely responsible for propulsion, U|Re=0 =
2B1/3, and generates an irrotational velocity field decaying as 1/r3, characteristic of
a potential dipole. The second term is associated with the stresslet exerted by the
squirmer, S|Re=0 = 4πµa2B2(3ezez − I)/3, where I is the identity tensor (Batchelor
1970; Ishikawa, Simmonds & Pedley 2006). The flow field due to this term decays as
1/r2 in Stokes flow. There is no Stokeslet contribution to the velocity field because
the squirmer is force-free: there is no net hydrodynamic force; drag balances thrust.
Defining β = B2/B1 and with B1 > 0, squirmers are divided into pullers having β > 0
and pushers having β < 0 (Ishikawa, Simmonds & Pedley 2007) (figure 1). If |β|> 1,
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FIGURE 1. (Colour online) (a) Illustration of the flow pattern around a pusher and puller
squirmer in a co-moving frame. (b) Typical examples of pusher and puller squirmers.
Arrows represent the force exerted by the fluid on the swimmer body. Pullers generate
thrust from the front, e.g. by using a breast-stroke-like motion such as that performed by
Chlamydamonas (a green algae). Pushers generate thrust from the rear, e.g. by propelling
themselves by rearward facing flagella as in the case of Escherichia coli.

there exists an intermediate point within 0< θ < π at which vs(θ) vanishes, leading
to recirculating flow behind (in front of) a puller (pusher) (Magar, Goto & Pedley
2003). The magnitude of β determines the amount of vorticity generation. If β = 0,
the squirmer is ‘neutral’ and generates a potential flow, which, in fact, is a solution to
the Navier–Stokes equations (NSEs) at any Re. In this sense, β quantifies the amount
of fluid mixing by a squirmer. Importantly, the swimming speed is independent of
β at Re = 0; there is no coupling between vorticity generation and propulsion in
Stokes flow.

Clearly, this reduced-order squirmer is a simplistic model for the locomotion of
actual organisms. Nevertheless, it has been employed to examine various facets of self-
propulsion in Stokes flow, including swimming in non-Newtonian fluids (Zhu et al.
2011; Zhu, Lauga & Brandt 2012), mixing by swimmers (Thiffeault & Childress 2010;
Lin, Thiffeault & Childress 2011; Pushkin, Shum & Yeomans 2013), feeding and
nutrient transport (Magar et al. 2003; Magar & Pedley 2005; Michelin & Lauga 2011)
and hydrodynamic interactions of swimmers (Ishikawa et al. 2006; Drescher et al.
2009; Llopis & Pagonabarraga 2010). A detailed summary is provided by Pak &
Lauga (2016).

Recently, the locomotion of a squirmer with stroke (1.2) was studied at non-zero
Re. In particular, matched asymptotic expansions were used to compute U to O(Re)
by Wang & Ardekani (2012) and to O(Re2) by Khair & Chisholm (2014). It was
found that U depends on β at non-zero Re: pushers (β < 0) swim faster than
pullers (β > 0). Here, the Reynolds number is Re ≡ 2̺B1a/(3µ). This is a result of
vorticity generation, or mixing, being coupled to propulsion at finite Re. Note that
the vorticity distribution around a Stokesian squirmer evolves purely via diffusion
and is thus fore–aft antisymmetric. This antisymmetry precludes the generation of a
net force and hence propulsion. The antisymmetry is broken at finite Re as vorticity
is advected past the squirmer into a far-field inertial wake. Khair & Chisholm (2014)
demonstrate that the wake structure around a squirmer is consistent with previous
work on steady self-propelled bodies at non-zero Re (Afanasyev 2004; Subramanian
2010), underscoring the squirmer as a suitable reduced-order model for inertial
locomotion. Additionally, Khair & Chisholm (2014) and Li & Ardekani (2014) report
numerical results for the swimming speed of a squirmer for Re6 1, which show that
the asymptotic results are of practical value in the rather limited range of Re . 0.2.



The goal of the present article is to quantify the locomotion of a spherical squirmer
in the transition from viscously to inertially dominated flow. Self-propulsion in this
regime has not been fully explored, especially in comparison to the Stokesian and
Eulerian limits. Here, viscous and inertial forces may be simultaneously responsible
for thrust and drag on a swimmer, making analysis more difficult. Specifically, we
focus on intermediate values of Re that lie between 0.1 and 1000, thus bridging the
gap between viscous and inertial swimming. A multitude of aquatic organisms, such
as zooplankton that are on the millimetre to centimetre length scale, fall into this
range and utilize a wide variety of swimming motions. The majority of past work has
focused on the swimming of particular species of organisms (Jordan 1992; McHenry,
Azizi & Strother 2003; Kern & Koumoutsakos 2006; Tytell et al. 2010; Gazzola, Van
Rees & Koumoutsakos 2012). Such work undoubtedly provides valuable information
on the specific locomotive strategies of these organisms. However, in contrast to past
work, our objective is to quantify finite Re locomotion from a broad perspective
using the simple (reduced-order) squirmer model. Specifically, through the numerical
solution of the NSEs, we will determine the flow fields around pusher and puller
squirmers for 0.01< Re< 1000 and −5 6 β 6 5, along with their swimming speeds,
power expenditure and hydrodynamic efficiency. Furthermore, we will determine the
stability of the steady axisymmetric flow about a squirmer and compute the critical
values of Re at which transitions to three-dimensional (3-D) and transient flow occur.
A prime outcome of our work is to demonstrate that the fluid mechanics of pusher
and puller squirmers are dramatically distinct at intermediate Re, in contrast to their
similar locomotions at small Re.

It must be noted that the squirmer model is indeed simple in that it only considers
propulsion via generation of a surface velocity, and it may not well capture the
detailed flows arising from the complex geometries and locomotions of many
biological swimmers. Nonetheless, its simple geometry allows examination of the
essential fluid mechanics of a self-propelling body. Moreover, our results are easily
compared to the classic problems of flow past a no-slip sphere and flow past an
inviscid spherical bubble, which are well studied at all Re. Nonetheless, there also
exist certain biological swimmers that provide reasonably close realizations of a finite
Re squirmer. Paramecium, a ciliate 0.2 mm in size, can reach speeds of 10 mm s−1

while evading threats, corresponding to Re ≈ 2 (Hamel et al. 2011). Ctenophores,
the largest organisms known to use ciliary propulsion, are a few millimetres to a
few centimetres in size and swim approximately one body-length per second when
foraging (and faster when evading threats). Thus, the Re of the flow ranges from
roughly 100 to 6000 (Matsumoto 1991). Moreover, some species of Ctenophores,
such as Pleurobrachia bachei, have bodies that exhibit strong axial symmetry and
are approximately spherical in shape (Tamm 2014). Such examples provide additional
biological motivation for studying the squirmer model outside the small Re limit.

The remainder of this article is organized as follows. In § 2, we present the
governing equations for a self-propelled squirmer. In § 3 we detail two numerical
methods used for performing steady, axisymmetric and transient, 3-D simulation
of flows about a squirmer, respectively. The subsequent results are presented and
discussed in § 4. Finally, we conclude and suggest directions for future work in § 5.

2. Governing equations

Consider a single squirmer with a steady swimming stroke (1.2) in an unbounded
incompressible Newtonian fluid (figure 1a). We normalize length by the squirmer
radius a, velocity by the speed of a neutral squirmer in potential flow (2B1/3), time



by 3a/(2B1), and pressure and viscous stresses by 2B1µ/(3a). Thus, the Reynolds

number is defined as Re ≡ 2̺B1a/(3µ). Henceforth, all quantities are dimensionless 
unless indicated otherwise. The fluid motion is governed by the NSEs,

∇ · v = 0, and Re
Dv

Dt
= ∇2

v − ∇p, (2.1a,b)

where v is the velocity vector, p is the pressure, t is time and D/Dt represents the
material derivative.

We assume that the squirmer body has a constant mass density ̺b, equal to ̺, and
is thus neutrally buoyant. If the flow about the squirmer is axisymmetric, the net
hydrodynamic force perpendicular to the squirmer’s axis (taken as the z-axis of an
attached Cartesian frame) and the net hydrodynamic torque vanish. Thus, the squirmer
does not rotate and maintains a straight-line path. The remaining z-component of the
hydrodynamic force Fz is equal to the mass times acceleration of the squirmer body
in the z-direction,

Stk
dU

dt
= Fz =

∫

S

(n · σ · ez) dS, (2.2)

where U is the swimming speed, S represents the spherical squirmer surface with outer
unit normal n and σ = −pI + ∇v + (∇v)T is the stress tensor. The Stokes number,
Stk = Re̺b/̺, is equal to Re because ̺= ̺b. This force will vanish when the flow is
at steady state and the squirmer translates with a steady velocity. Therefore, a steady
squirmer in steady axisymmetric flow is force-free and torque-free.

However, the spherical squirmer is a bluff object; the steady axisymmetric flow
around it may become unstable beyond a critical value of Re, yielding to 3-D and/or
unsteady flow. This leads to the production of instantaneous lift forces perpendicular
to the squirmer’s axis and instantaneous hydrodynamic torques that result in lateral
motion and rotation of the squirmer’s body, respectively. Here, for simplicity, forces
and torques are externally applied to the squirmer to keep its direction and orientation
constant and along the z-axis during our computations, although the speed is allowed
to vary according to (2.2). Thus, the squirmer is not fully free-swimming but rather
constrained to follow a straight-line path. This is a logical first step before considering
the more complicated paths of motion that would arise if the squirmer trajectory were
to be unconstrained. For instance, the transitions in flow that occur for a freely rising
or sinking body, and the values of Re at which they occur, are closely related to those
that take place in the flow past an analogous fixed body (Horowitz & Williamson
2010; Ern et al. 2012). Thus, we expect that our study of a squirmer constrained to
a single direction of swimming will be relevant to a fully free-swimming squirmer.
Indeed, the two problems are identical in the regime of axisymmetric flow and only
differ when such flow destabilizes. Although it is not considered here, note that the
path of motion of a fully free squirmer could be computed via a force balance (in all
directions) and an angular momentum balance on the squirmer body, similar to the
computation of the paths of freely rising or falling bodies (Ern et al. 2012).

3. Numerical methods

Two numerical schemes were employed to compute the flow field around a squirmer
for −5 6 β 6 5 and 0.01 6 Re 6 1000. The first assumes steady axisymmetric flow
where the steady-state swimming speed U is that at which Fz in (2.2) vanishes.
The second considers fully 3-D, transient flow, in which case U = U(t) is given by
integrating (2.2) via a time-stepping procedure.



3.1. Computation of steady axisymmetric flow

We convert the NSEs into stream function–vorticity form. From (2.1a,b), the steady
vorticity transport equation is

Re[(v · ∇)ω − (ω · ∇)v] = ∇2
ω, (3.1)

where ω = ∇ × v is the vorticity vector. A stream function ψ is defined in cylindrical
coordinates, such that

vρ = −
1

ρ

∂ψ

∂z
, and vz =

1

ρ

∂ψ

∂ρ
, (3.2a,b)

where ρ is the distance from the z-axis and vρ and vz represent the fluid velocity
components.

Combining (3.2a,b) with (3.1) gives

Re

(
∣

∣

∣

∣

∂(ψ, ω)

∂(r, z)

∣

∣

∣

∣

+
ω

r2

∂ψ

∂z

)

= ∇2ω−
ω

r2
, (3.3)

where ω is the component of ω in the azimuthal direction ϕ about the z-axis; the
other (ρ and z) components of ω vanish by symmetry. Expressing ω in terms of ψ
gives

ωρ = −E2ψ, where E2 ≡ ρ
∂

∂ρ

(

1

ρ

∂

∂ρ

)

+
∂2

∂z2
. (3.4)

Equations (3.3) and (3.4) are coupled partial differential equations, with the former
being nonlinear. These may be simultaneously solved for the scalar quantities ψ and
ω to give the flow field given appropriate boundary conditions.

In a co-moving frame, the squirmer surface (r = 1) is a streamline with tangential
velocity given by (1.2). Thus, ψ |r=1 = 0 and [∇ψ · n]r=1 = vs sin θ = 3 sin2 θ(1 +
β cos θ)/2. The values of β and Re are specified constants, so the swimming stroke
is represented as a fixed boundary condition. By axisymmetry, ψ |ρ=0 =0 and ω|ρ=0 =0
on the z-axis. Finally, the flow is uniform in the far-field, so ψ |r→∞ = −Uρ2/2 and
ω|r→∞ = 0.

A spectral element method (Karniadakis & Sherwin 2005) was used to spatially
discretize (3.3), (3.4) and the boundary conditions. The shape functions were defined
as a tensor product of Nth order Lagrange polynomials supported at the N + 1
Gauss–Lobatto integration points over the square [−1, 1]2 parametric space of
each quadrilateral element. Integration over each element was carried out using
the corresponding Gauss–Lobatto quadrature rule to produce a system of nonlinear
algebraic equations. This system was solved iteratively using Newton–Raphson
iteration. Iteration was terminated when the L2-norm of the relative errors in ψ
and ω over all discretization points was reduced below 10−6.

The spatial domain was discretized into high-order computational grids using the
software package ‘Gmsh’ (Geuzaine & Remacle 2009). Three different grids were
used depending on the value of Re. For Re6 0.1, a polar grid extending to R∞ = 1000
and consisting of 9 × 9 node quadrilateral elements was used. The elements were
distributed evenly in the θ -direction (Nθ = 10) and progressed geometrically outward
in the r-direction (Nr = 20). A similar grid was used for 0.16Re6 10, with R∞ = 100
(figure 2a). For Re> 10, a different mesh was used to provide better resolution in the
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FIGURE 2. (Colour online) Structured polar grids (a) were used for both axisymmetric
and 3-D (by revolving them azimuthally) computations of the flow. For axisymmetric
computations with Re> 10, a different mesh (b) was used with greater resolution in the
wake of the squirmer to more accurately resolve the details of the flow in this region.

squirmer wake. Here, a boundary layer grid was used along the squirmer surface, with
Nr = 10 and Nθ = 51, extending RBL = 0.25 radii from the squirmer surface (here the
subscript BL stands for boundary layer). The radial grid size grew geometrically with
r, and was initially ∆r0 = 0.01 at the squirmer surface. The remainder of the grid was
unstructured, with upstream boundaries extending to R∞ = 32, and a rectangular wake
region extending a distance of 100 radii behind the squirmer (figure 2b). The far-field
boundary conditions were enforced at the exterior boundary of the mesh. We refer the
reader to the Appendix for details on grid convergence.

The far-field boundary condition of uniform, oncoming flow cannot be directly
applied because the steady-state swimming speed U is unknown a priori. Since the
flow is assumed to be steady and axisymmetric, we instead enforce that Fz is equal
to zero. Expressing (2.2) in terms of ω for an axisymmetric flow field gives (Khair
& Chisholm 2014)

Fz = Re
π

2

∫

π

0

v2
s sin (2θ) dθ + π

∫

π

0

(

∂(rω)

∂r
− 2ω

)

sin2 θ dθ. (3.5)

A secant method was used to iteratively compute the value of U at which (3.5)
vanishes. At each iteration, the flow is solved with U = U〈n〉, where n is the iteration
number, and (3.5) is evaluated to give F〈n〉

z . An improved estimate for U is given

by linear interpolation: U〈n+1〉 = (U〈n〉F〈n−1〉
z − U〈n−1〉F〈n〉

z )/(F
〈n−1〉
z − F〈n〉

z ). Iteration was

terminated when |U〈n〉 − U〈n−1〉| was reduced below 10−5.
Computations for each value of β were started initially with Re = 0.01. Two initial

guesses of the swimming speed are required, which were made as U〈0〉 = 0.99 and
U〈1〉 = 1.01, since U is close to unity at small Re. An initial guess for the stream
function and vorticity fields of uniformly zero was sufficient for convergence of
the computed flow in this case. A simple continuation strategy was employed by
incrementally increasing Re. Initial guesses for U and the flow field at a given Re
were supplied by using the values computed at the last largest values of Re for which
a converged solution was successfully reached.

3.2. Computation of unsteady 3-D flows

Unsteady 3-D flows were explored using the JADIM code described in detail in
Magnaudet, Rivero & Fabre (1995) and Legendre & Magnaudet (1998). The JADIM
code has been extensively used and validated in previous studies concerning the



3-D flow dynamics of spheroidal and disk-shaped bodies with no-slip (solid) or slip

(bubble) surfaces in uniform, shear or turbulent flows (see e.g. Legendre & Magnaudet

1998; Merle, Legendre & Magnaudet 2005; Legendre, Merle & Magnaudet 2006;

Hallez & Legendre 2011). In particular, the wake transition from axisymmetric to

3-D flow for a fixed body has been considered in Mougin & Magnaudet (2001),

Magnaudet & Mougin (2007) and Fabre, Auguste & Magnaudet (2008). In the case

of a sphere, a first bifurcation resulting in loss of axial symmetry in the flow is

detected at a critical Reynolds number (based on the sphere radius and speed of

translation U) of Re
(c1)
U = 105, in agreement with linear stability analysis (Natarajan &

Acrivos 1993) and previous numerical studies (Johnson & Patel 1999; Tomboulides

& Orszag 2000). A second (Hopf) bifurcation is observed at Re
(c2)
U = 135, leading

to time-dependent flow, which is also in good agreement with previous numerical

findings (Johnson & Patel 1999; Tomboulides & Orszag 2000), according to which

the Hopf bifurcation lies in within the range 135 < Re
(c2)
U < 137. In Magnaudet &

Mougin (2007), the vortex shedding process for a sphere at ReU = 150 corresponds to

a Strouhal number of StU = fa/U = 0.0665, where f is the dimensional frequency of

vortex shedding. This falls within 2–3 % of that reported by Johnson & Patel (1999)

and Tomboulides & Orszag (2000) for the same Re.

Briefly, the JADIM code solves the incompressible NSEs (2.1a,b) in terms of

velocity and pressure variables. The spatial discretization employs a staggered grid on

which the equations are integrated using a second-order accurate finite-volume method.

Fluid incompressibility is satisfied after each time step by solving a Poisson equation

for an auxiliary potential. Time advancement is achieved through a second-order

accurate Runge–Kutta/Crank–Nicholson algorithm. At each time step, the swimming

speed U is updated by integrating (2.2). For each simulation, the squirmer was started

from rest with swimming stroke (1.2) and allowed to accelerate. Simulations were

terminated after a steady time-averaged value of the swimming speed was reached.

A polar grid extending to R∞ = 150 and rotated around the z-axis was used for

computation (figure 2a). Nodes were distributed uniformly in the θ -direction and

in a geometric progression in the r-direction. The effect of the number of nodes

(Nr = 150 along the radial direction, Nθ = 250 along the polar direction and Nϕ = 64

along the azimuthal direction), as well as R∞ and the radial grid size ∆r0 = 0.001 at

the body surface, were checked in order to ensure grid independence of the results

(see the Appendix).

The transition from steady axisymmetric to unsteady 3-D flow was investigated by

running the simulation for a given period of time while allowing numerical error to

perturb the initially axisymmetric flow profile. If the flow is unstable for a given β and

Re, such perturbations are expected to grow over time, resulting in a flow field that

is potentially 3-D and/or unsteady. Such is the case for a no-slip sphere in uniform

flow, where distinct axisymmetric, steady 3-D and unsteady 3-D flow regimes are

respectively encountered as Re is increased (Natarajan & Acrivos 1993; Tomboulides

& Orszag 2000). Specifically, simulations were performed with Re increased in coarse

increments until a transition, if one occurred, was identified. Then, Re was increased

in finer increments within the interval in which the transition occurred. This process

was repeated until a satisfactory estimate of the critical transition Re was procured.

The simulation time was increased as the critical Re of transition was approached, as

it generally required longer times for perturbations to grow and hence for the flow to

reach a final transitioned state.
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FIGURE 3. (Colour online) Swimming speed, U, normalized by 2B1/3, for β = ±0.5 (a)

and ±5 (b). The ‘C’ markers represent pushers and the ‘A’ markers represent pullers.
Hollow markers represent steady axisymmetric solutions, and filled markers represent
unsteady 3-D solutions. We follow these conventions for the remainder of the article. The
dashed line represents the speed of a neutral (β = 0) squirmer. For a β = +5 puller, the
steady axisymmetric flow destabilizes at Re ≈ 20, and hence the steady axisymmetric and
unsteady 3-D solutions diverge. Time averages of U are taken in the case of unsteady flow.
Dotted lines show the asymptotic result of Khair & Chisholm (2014) for U to O(Re2).

4. Results and discussion

4.1. Swimming speed of a squirmer

The calculated swimming speed U versus Re of a squirmer with β = ±0.5 and ±5
is shown in figure 3. There, U is normalized by 2B1/3, which is the swimming
speed at Re = 0 for all β, or the swimming speed of a neutral squirmer at arbitrary
Re. At Re = 0, U is independent of β because the equations governing the flow are
linear. Thus, the two terms in the swimming stroke (1.2) contribute to the flow field
independently; only the first (treading) term generates propulsion, while the second
only produces vorticity. This is not the case as Re is increased from zero: pushers
(pullers) monotonically increase (decrease) in speed if Re . O(1), in agreement with
results from asymptotic analyses (Wang & Ardekani 2012; Khair & Chisholm 2014).
The increase or decrease in swimming speed is amplified as |β| increases. However,
as Re is increased beyond an O(1) value, significantly different behaviour of pushers
versus pullers is observed. For all pushers and pullers with β < 1, U continues
to vary monotonically with increasing Re, eventually reaching a terminal value. The
computed swimming speed is nearly identical for axisymmetric and 3-D computations,
suggesting that there is no departure from steady axisymmetric flow. In contrast, a
non-monotonic trend is observed for pullers with β > 1, and no limiting value for U
is apparent up to Re = 1000. Moreover, the axisymmetric and 3-D computations give
drastically different results, suggesting the destabilization of the axisymmetric steady
flow (see § 4.3 for more detail). We remind the reader that Re for a squirmer is
defined as 2̺B1a/(3µ), in contrast to the Reynolds number based on the translational
speed U, which we denote ReU = ̺Ua/µ. Note that Re and ReU are the same order
of magnitude since U ∼ O(1).

Distinct contributions to the thrust and drag on a squirmer are provided by the
two terms on the right-hand side of (3.5). The first term, which equals 8πReβ/15
after integration, depends solely on the swimming stroke and vanishes when Re = 0.
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FIGURE 4. (Colour online) Streamlines of axisymmetric flow past a squirmer with β=±5;
(a,c,e,g) pusher: β = −5, (b,d, f,h) puller: β = 5; Re = 0.1 (a,b), 10 (c,d), 100 (e, f ), 1000
(g,h). Dashed streamlines represent negative values of the stream function. The tick marks
in (g) at Re = 1000 follow along streamlines of irrotational flow past a sphere.

The second term also vanishes if Re = 0 due to the antisymmetric, purely diffusive,
distribution of the vorticity, and it is hence associated with forces arising from the
flow asymmetry produced by inertia at finite Re. Thus, (3.5) is satisfied identically in
Stokes flow, and a squirmer propels itself at the same speed regardless of β. However,
pushers increase in speed with Re while pullers decrease at finite Re . O(1). In the
former case, the first term represents a drag force because it is negative when β < 0.
Thus, the redistribution of vorticity caused by inertia is responsible for the extra thrust
that increases the swimming speed with Re. The opposite occurs for a puller, where
β > 0: the contribution of the first term is a thrust, but it is outweighed by drag
produced by the inertial redistribution of vorticity. As Re is increased beyond an O(1)
value, the monotonic trend continues for a pusher until a limiting speed is reached. In
contrast, the swimming speed of a puller becomes non-monotonic. A fuller explanation
of these trends, especially when Re is large, requires a closer examination of the flow
fields generated by squirmers and how they differ for pushers versus pullers.

4.2. Flows generated by pushers and pullers

Streamlines illustrating the steady axisymmetric flow around pushers and pullers
are shown in figures 4 and 5, and contours of constant vorticity are shown in
figures 6 and 7. At Re = 0.1, symmetries in the near-field flow are apparent due
to the dominance of viscous forces over inertial forces: reversing the sign of β
causes the streamlines to be mirrored along the ρ-axis. Also, the vorticity is fore–aft
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FIGURE 5. (Colour online) Similar to figure 4 except with β=±0.5; (a) pusher: β=−0.5;
Re = 1000, (b) puller: β = 0.5; Re = 1000.
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U

FIGURE 6. (Colour online) Vorticity contours for axisymmetric flow with ω =
±{0.1, 0.2, 0.5, 1, 2, 5, . . . , 200}. Dashed lines represent negative values. The dotted line
in (h) at Re = 1000 encircles the region where there is an approximately constant value
of ω/ρ= 2.9 ± 0.05, indicating that the wake bubble behind a β = 5 puller has a structure
resembling a Hill’s vortex; (a,c,e,g) pusher: β = −5, (b,d, f,h) puller: β = 5; Re = 0.1 (a,b),
10 (c,d), 100 (e, f ), 1000 (g,h).

antisymmetric. Pushers generate positive vorticity ahead of their direction of travel
and negative vorticity behind, while pullers do the opposite. Closed-streamline
recirculatory regions appear in front of pushers and behind pullers if |β| > 1.
Streamlines separate from the squirmer surface at the point where the stroke vs(θ)
changes sign (Magar et al. 2003).

The flow patterns and swimming speed observed as Re is increased depend critically
on β. For pushers at Re ≫ 1, the majority of the vorticity, along with the upstream
closed-streamline region that is present if β < −1, is concentrated into a laminar

boundary layer of thickness O(1/
√

Re). This vorticity is then transported into a
narrow downstream wake due to the motion of the swimming stroke (figures 6a,c,e,g
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FIGURE 7. Similar to figure 6 except with β = ±0.5; (a) pusher: β = −0.5; Re = 1000,
(b) puller: β = 0.5; Re = 1000.
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FIGURE 8. (Colour online) The maximum value of |ω|, normalized by |β|, from
axisymmetric computations at β = ±0.5 and ±5 and from 3-D computations for β = +5.
In Stokes flow, max |ω/β| = 9|β|/4, as indicated by the dashed line to which the data

collapses as Re → 0. The dotted line indicates a slope of one-half, revealing that ω∼
√

Re
at large Re.

and 7a). The streamlines outside the boundary layer and wake tend toward a potential
flow profile, and no standing wake eddy is present (figures 4a,c,e,g and 5a). Thus,
the flow around a pusher apparently resembles that past an inviscid spherical bubble
at large ReU, which exhibits the same characteristics (Moore 1963; Leal 1989).
The key similarity is that the mobile surfaces of a bubble and a pusher squirmer
cause advection of vorticity downstream, thus preventing it from accumulating into a
recirculating wake. However, for a bubble, the shear-free surface produces ω∼ O(1),

whereas for a squirmer, ω∼ O(
√

Re) in the boundary layer (figure 8) due to the fixed
nature of the surface velocity profile (swimming stroke). This is akin to a towed,
rigid sphere with a no-slip surface, where the greater amount of boundary layer
vorticity results in flow separation and the appearance of a wake eddy if ReU & 10,
which grows with ReU (Dennis & Walker 1971; Fornberg 1988). These phenomena
are avoided by a streamlined no-slip body, but for a pusher, the strong vorticity
advection due to the propulsive surface motion interestingly achieves a similar effect.

Despite the bluff body shape and O(
√

Re) surface vorticity of a pusher, no wake
eddy is produced.

The flow around pullers with 0 < β < 1 may be described likewise. As Re is
increased, the boundary layer and wake become smaller in extent, and the majority
of the flow domain becomes irrotational (figures 5b and 7b). Again, vorticity is
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FIGURE 9. (Colour online) Flow state as a function of β and Re. The points of transition,
marked with an ‘×’ and interpolated by the solid lines, were obtained numerically
(see also table 1).

efficiently swept downstream by the mobile surface with a (monotonic) swimming
stroke vs(θ) that is directed along the path of the flow. Consequently, pushers
and pullers with β < 1 reach a terminal (dimensionless) swimming speed (i.e. a
dimensional swimming speed that is proportional to B1).

The axisymmetric flow that is observed around pullers with β > 1 as Re increases
is very different. A trailing vortical wake bubble is indeed present and grows with Re
(figure 4b,d, f,h). Thus, for pullers with β > 1, the flow does not become irrotational
within the majority of the flow domain as Re becomes large. As a result, the
swimming speed of a β > 1 squirmer does not attain a terminal value. The wake
eddy is caused by the reversal of vs along the rear half of the squirmer surface, which
hinders the advection of vorticity downstream, and causes its accumulation behind
the squirmer. This resembles flow past a rigid bluff body towed by an external force,
where fluid deceleration along the no-slip surface has the same effect. Indeed, if the
flow is restricted to be axisymmetric, the wake bubble resembles a Hill’s spherical
vortex at Re = 1000, where ω/ρ is constant in the region of closed streamlines and
ω= 0 elsewhere (figure 6h). Batchelor (1956) proposed that such flow structures exist
in the wake of bluff bodies in steady axisymmetric flow at large Re. The computations
of Fornberg (1988) show the presence of a Hill’s vortex-like wake structure behind a
sphere held fixed in a uniform flow, within which ω/ρ is nearly constant once ReU

is sufficiently large. Moreover, it is shown that such large Re axisymmetric flows
result in very low drag forces relative to that observed in 3-D flows beyond the onset
of flow instabilities. The observation that U increases with Re for an axisymmetric
β = 5 pusher when Re & O(1) (figure 3) indicates that the trailing vortex behind
a β > 1 puller is analogous to that behind a towed sphere; the wake eddy acts to
decrease the overall drag. Note that the point of flow separation along the surface
of a squirmer always occurs where vs(θ) changes sign regardless of Re (figure 4),
whereas it depends on ReU for a no-slip sphere.

4.3. Transition to 3-D and unsteady flow

Figure 9 and table 1 detail the transition of the flow around a squirmer from steady
and axisymmetric to unsteady and 3-D and are derived from unsteady 3-D flow



β 1.1 1.2 1.5 2.0 3.0 5.0

Re(c1) 725 432 170 83.0 40.3 21.0

Re(c2) 818 528 210 95.3 47.8 24.2

Re(c2) − Re(c1) 93 96 40 12.3 7.5 3.2

TABLE 1. Numerically obtained critical values of Re where the flow becomes 3-D
(Re(c1)) and unsteady (Re(c2)) (see also figure 9).

simulations. The critical values of Re at which the axisymmetry breaks (Re(c1)) and at
which the flow becomes unsteady (Re(c2)) are shown. For β > 1 pullers, Re(c1)<Re(c2),
and a monotonic decrease of Re(c1) and Re(c2) with β is observed. Moreover, Re(c1) and
Re(c2) both increase rapidly as β is decreased toward unity such that β = 1 appears to
be an asymptote; pushers and pullers with β < 1 produce steady axisymmetric flows
that remain stable up to at least Re = 1000.

This highlights another apparent similarity between the flow past a β < 1 squirmer
and an inviscid spherical bubble. For the latter, the asymptotic analysis of Moore
(1963) suggested that a potential flow is recovered as ReU → ∞. Specific studies
have also been carried out to determine how the wake structure and flow stability
vary with aspect ratio for oblate spheroidal bubbles (Dandy & Leal 1986; Blanco &
Magnaudet 1995; Magnaudet & Mougin 2007). It was revealed that only bubbles with
an aspect ratio larger than 1.65 or 2.21 exhibit a standing wake eddy or an unstable
wake, respectively. The reason is that a sufficient amount of vorticity (produced at the
bubble surface in an amount proportional to the surface curvature) must accumulate in

its wake for these transitions to occur. For a squirmer, a comparatively large O(
√

Re)

amount of boundary layer vorticity is generated, whereas it is O(1) for a spherical
bubble, so the stability of the flow past pushers and β <1 pullers despite this fact is an
intriguing result. Again, vorticity is strongly advected downstream by the propulsive
surface velocity, preventing its accumulation in the wake, and the stability of the
steady axisymmetric flow is preserved.

However, this does not imply stability at all Re. For no-slip objects where the

vorticity is similarly O(
√

Re), turbulent boundary layers develop when Re is very
large, even for streamlined objects such as airfoils or flat plates where there is no
instability caused by a wake eddy. For example, the boundary layer of a no-slip
sphere becomes turbulent at ReU ≈ 105 (Deen 1998, p. 512). For this reason, it is
very possible that the laminar boundary layer of a squirmer will also become turbulent
at sufficiently large Re, except, perhaps, in the singular β = 0 case where potential
flow results identically. Such a phenomenon likely occurs well above the maximum
Re = 1000 considered in this work, and hence is not further discussed here.

Given the previously noted similarities of the steady axisymmetric flow around a
β > 1 puller to that past a no-slip sphere, one might expect that the transitions to
3-D and unsteady flows that occur will also be analogous. This indeed appears to

be the case. For a no-slip sphere, the flow first bifurcates at Re
(c1)
U ≈ 105 (Natarajan

& Acrivos 1993; Tomboulides & Orszag 2000), resulting in a steady 3-D flow that
exhibits planar symmetry and two counter-rotating vortices in the wake. The symmetry
plane passes through the axis of translation, but its orientation is arbitrary due to
the initial axisymmetry of the flow. The scenario is the same for β > 1 pullers, and
planar flow symmetry is apparent in figure 10(a). The only difference is that Re(c1)

depends on β in the latter case. A second transition from steady to unsteady flow
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FIGURE 10. (Colour online) The streamwise component of the vorticity for a β= 5 puller
at an isocontour of ωz = ±1.05. In (a), Re = 22.6; the flow is planar symmetric and
steady (Re(c1)<Re<Re(c2)). Two counter-rotating vortices are present in the wake. In (b),
Re = 100; the flow is also planar symmetric but unsteady (Re > Re(c2)), and the wake
structure is more complicated; a pair of vortices is being shed downstream from the wake.
Finally in (c), Re = 158; the planar symmetry is broken and the flow appears to be almost
chaotic in nature.
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FIGURE 11. (Colour online) Magnitude of the lift force F⊥ normalized by 2B1aµ/3
(solid) and the azimuthal angle ϕF − ϕF0 at which it acts (dashed) for a β = 5 squirmer
accelerating from rest at time t = 0. Time is normalized by 3a/(2B1). Here, ϕF0 represents
the (arbitrary) initial angle of the lift when it first becomes non-zero. In (a) Re = 21.7
and (b) Re = 24.0, Re(c1) < Re< Re(c2), and a constant steady-state lift force is observed.
In (c) Re = 25.3 and (d) Re = 26.7, Re>Re(c2), and the lift force is oscillatory. In (c), the
direction of the lift remains constant, while in (d) it periodically reverses direction.

takes place at Re
(c2)
U ≈ 140 in the case of a no-slip sphere (Natarajan & Acrivos

1993; Tomboulides & Orszag 2000), and the same happens for a β > 1 puller at

Re(c2) = Re(c2)(β). In both cases, the planar flow symmetry persists, and as Re (or ReU)

is further increased, shedding of the wake vortices begins to occur (figure 10b).

Table 1 reveals that the quantity Re(c2)−Re(c1) decreases significantly as β is increased;

the difference is approximately 40 at β = 1.5 and decreases to only 3.2 at β = 5. The

flow is more quickly destabilized when the value of β is larger, and hence there is

only a narrow range of Re where it exhibits a steady 3-D state.

Once the flow enters an unsteady and/or 3-D state, the squirmer will no longer be

force-free or torque-free in general. Examining the hydrodynamic forces and torques

which arise in the vicinity of Re(c1) and Re(c2) yields some interesting observations.

Figure 11 shows the lift, defined as the force perpendicular to the direction of
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FIGURE 12. (Colour online) Analogous to figure 11 above, but now the magnitude of

the hydrodynamic torque T (normalized by 2B1a2µ/3) is plotted along with the angle
ϕT − ϕF0 that the torque forms with the initial lift force; Re = 21.7 (a), 24.0 (b), 25.3 (c),
26.7 (d). For all Re shown, the torque is perpendicular to both the direction of translation
and the lift.

translation, for a β = 5 puller started from rest, in which case Re(c1) = 21.0 and

Re(c2) = 24.2. If Re(c1)<Re<Re(c2), as in (a,b), a constant lift force is generated once

the flow reaches a steady state. Some small oscillations that eventually die out are

observed at Re = 24.0 but not at Re = 21.7. If Re> Re(c2), the flow is unsteady and

hence the lift does not reach a constant value in figure 11(c,d). At Re = 25.3, the

lift is oscillatory but always acts along the same direction, while at Re = 26.7, the

lift periodically reverses direction. The torque generated on the squirmer, plotted in

figure 12, clearly follows the same pattern as the lift, although it is offset by 90◦.

The lift and torque are perpendicular due to the planar flow symmetry; the lift is

in the symmetry plane, while the torque is normal to it (the symmetry can be seen

visually in figures 10a and10b).

Hydrodynamic forces acting parallel to the direction of swimming also cause

oscillations in the swimming speed when Re > Re(c2). The time-dependent speed

of a β = 5 puller accelerating from rest is shown in figure 13(a). Note that these

oscillations have double the frequency of that in the lift and torque. It is also

apparent that the average normalized swimming speed decreases significantly with

increasing Re. This can be ascribed to vortex shedding; the drag-reducing effect of the

vorticity-trapping wake bubble observed in (unstable) axisymmetric flows is lost as

the vorticity is instead shed downstream. This explains the deviation of the unsteady

3-D simulations from the axisymmetric ones seen in figure 3 at approximately the

same point at which the flow becomes unsteady.

From the dominant dimensional frequency f of the oscillations in the lift force, we

define the Strouhal number as St = 3fa/(2B1), which is plotted for a β = 5 puller

in figure 13(b). A rapid initial decrease of St occurs just as Re exceeds Re(c2) and

unsteady flow is established. At slightly higher Re, St rebounds and maintains a

value between 0.024 and 0.029 between Re = 60 and Re = 160. This can be roughly

compared to flow past a no-slip sphere where StU = fa/U = 0.067 at ReU = 150

(Natarajan & Acrivos 1993; Tomboulides & Orszag 2000).
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FIGURE 13. (Colour online) (a) Swimming speed, U/U0 versus time, t, for a β= 5 puller
accelerating from rest (3-D simulation). Time is normalized by 3a/(2B1). (b) The Strouhal
number St versus Re for a β = 5 puller.

It is also apparent from figure 13(a) that the flow at β = 5 transitions from having
just a single frequency at Re = 63 to appearing nearly chaotic at Re = 158. Also, the
planar symmetry observed at Re = 100 (figure 10b) is clearly broken at Re = 158
(figure 10c). Similar transitions occur for flow past a no-slip sphere in the range
300 < ReU < 500, and the fluctuations in the flow become increasingly irregular
as Re is further increased, signifying the beginnings of turbulence (Tomboulides
& Orszag 2000). This is also observed for a β = 5 puller at Re = 1000, as the
increasingly chaotic nature of the flow causes increasingly broadband fluctuations in
the swimming speed.

4.4. Power expenditure and hydrodynamic efficiency

The dimensionless power P expended by a squirmer versus Re for β = 0, ±0.5 and
±5 is shown in figure 14(a). This is calculated as the rate of work done on the fluid
by the tangential motion of the squirmer surface,

P = −
∫

S

n · σ · (vseθ) dS, (4.1)

where P is normalized by 4B2
1aµ/9. In axisymmetric flow, (4.1) simplifies to

P = 2π

∫

π

0

(2vs −ω|r=1)vs sin θ dθ. (4.2)

Additionally, power expended by the squirmer is dissipated viscously by the fluid.
The dimensionless rate of viscous dissipation Φ in the flow around a tangentially
deforming spherical body can be given in terms of the vorticity and surface velocity
(Stone 1993; Stone & Samuel 1996),

Φ =
∫

V

σ : ∇v dV =
∫

V

ω · ω dV + 2

∫

S

v2
s dS, (4.3)

and at steady state, Φ = P . This implies that a squirmer that minimizes the amount
of vorticity that it generates in the fluid will also minimize its power expenditure.
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FIGURE 14. (Colour online) Power P expended by a squirmer versus Re (a), and the
Lighthill efficiency ηL versus the translational Reynolds number ReU = ̺Ua/µ (b). Here,
P

∗ is the power necessary to tow a sphere in steady axisymmetric flow. A neutral (β= 0)
squirmer is indicated by the solid line (with no markers) and has P = 12π at all Re.

In fact, a neutral (β = 0) squirmer expends the least amount of energy at all Re

since it generates no vorticity. In this case, integrating (4.2) gives P|β=0 = 12π for
all Re. We may also integrate (4.2) to give the power expenditure in Stokes flow,
P|Re=0 = 12π(2 +β2)/2 (Wang & Ardekani 2012), which gives the limits approached
by the data in figure 14(a) as Re → 0. As Re is increased, P increases (if β 6= 0) due
to increased vorticity generation. As shown in figure 8, |ω|max increases monotonically,

scaling with
√

Re within the boundary layer at large Re. From (4.2) and (4.3), we
expect the same scaling for P , which is indeed observed in figure 14(a). We also
observe that P(β, Re) > P(β, 0) for all Re > 0. One might conjecture that this
behaviour is predicted by the Helmholtz minimum dissipation theorem (Batchelor
1967), which guarantees that a Stokes flow field dissipates less energy than any
other incompressible flow field with the same boundary velocities. However, the
far-field boundary velocity for a squirmer is given by its swimming speed U, which
generally depends on Re, so the theorem does not apply. Nonetheless, the observation
that P is minimized at Re = 0 for a given value of β is intriguing. Moreover, we
observe that P increases monotonically with Re. This finding may be compared to
the monotonic increase of the extensional viscosity of a dilute suspension of rigid
spheres with Re in uniaxial extensional flow. Specifically, the extensional viscosity

also increases monotonically and scales with
√

Re at large Re due to intense O(
√

Re)

boundary layer vorticity (Ryskin 1980). The extensional viscosity is proportional to
the viscous dissipation rate in the flow. Thus, it is an interesting observation that
the power expended by a squirmer, which is viscously dissipated, behaves similarly
to the extensional viscosity of a dilute suspension of spheres as a function of the
Reynolds number.

The Lighthill (1952) efficiency ηL of a squirmer is defined as the ratio of the power
P∗ required to tow a no-slip sphere at a speed U to the power P expended by a
squirmer to swim at that same speed. This quantity is plotted in figure 14(b). Here,
the horizontal axis is the Reynolds number based on the translational swimming
speed, ReU = ReU = ̺Ua/µ. Note that we take P∗ as the power required to tow
a sphere in steady axisymmetric flow at the same ReU. At Re = 0, ηL = 1/(2 + β2),



pushers and pullers have the same efficiency. At small Re, asymptotic theory shows
that pushers are slightly more efficient than pullers (Wang & Ardekani 2012).
Thus, it would be reasonable to expect that larger differences in efficiency might
be observed at larger Re. Interestingly, our results reveal that the difference in
efficiency between a β = ±0.5 pusher and puller is very slight, even up to Re = 1000.
This is somewhat surprising considering that a β = −0.5 pusher moves nearly 10 %
faster than a β = 0.5 puller at Re = 1000. Thus, in this case, a puller and pusher exert
approximately the same amount of power once differences in speed are taken into
account. Similarly, a β = ±5 puller and pusher have nearly the same efficiency up to
the point where the steady axisymmetric flow destabilizes at ReU ≈ 20, with that of
a pusher being only slightly greater. If one considers the unstable axisymmetric flow
that arises beyond ReU ≈ 20, pullers interestingly become more efficient than pushers.
The drag reducing effect of the Hill’s vortex-like wake is responsible. However, if
the flow is allowed to be unsteady and 3-D, pushers continue to be more efficient
by a margin that increases with ReU. The vortex shedding that takes place in the
wake of a high Re puller reduces the amount of swimming work that goes into
forward propulsion and causes a subsequent loss of efficiency. This suggests that
‘pushing’ may be more efficient than ‘pulling’ at larger Re due to the increased flow
stability.

One may notice that ηL increases above unity in some cases, indicating that the
power required to tow a sphere exceeds that expended by a squirmer swimming at
the same speed. In Stokes flow, ηL 6 3/4 for any spherical swimmer moving only
by tangential surface deformations (Stone & Samuel 1996). For a neutral squirmer at
Re = 0, ηL = 1/2. However, this bound does not apply when Re > 0. Indeed, ηL|β=0

increases above unity at ReU ≈ 7, and the same is true for β = ±0.5 squirmers at
ReU ≈ 10. This highlights the difficulty of swimming against wholly resistive viscous
forces (Purcell 1977). For a squirmer, swimming is always less efficient than being
towed by an external force in the absence of fluid inertia, but may be more efficient
when inertia is present.

Finally, we note that the propulsion of a squirmer via tangential surface motion
is drag-based. This is in contrast to the flapping and undulatory mechanisms of
propulsion employed by some (usually large Re) swimmers such as fishes, which
are lift-based. The efficiency of lift-based propulsion can be very high in inertial
flows where Re is large. However, this efficiency decreases drastically with Re, and
drag-based propulsion has superior efficiency when fluid viscosity is a strong factor
(Walker 2002). Thus, without rigorous calculation, we surmise that the efficiency of a
squirmer improves compared to lift-based propulsion as Re is decreased, likely being
comparable at moderate Re. This clearly makes sense from a biological perspective;
the ciliated organisms most closely described by the squirmer model are often
microorganisms that swim at small Re, although ctenophores provide an interesting
example of moderate to large Re squirmers.

5. Conclusion

We have demonstrated fundamental differences between the locomotions of pusher
and puller squirmers with a fixed swimming stroke when inertia is important to
the flow. Specifically, it is shown that a pusher, as well as a β < 1 puller, does not
generate a standing wake eddy, and also that it produces steady axisymmetric flow that
remains stable to at least Re = 1000. The vorticity is confined to a laminar boundary

layer of thickness O(
√

Re), and the flow becomes largely irrotational as Re increases.



This is due to the strong downstream advection of vorticity by the propulsive surface
velocity profile. Before, such behaviour had only been demonstrated for bubbles,
which produce O(1) vorticity. That this also holds for a β < 1 squirmer is a key

result, as squirmers produce a much larger O(
√

Re) vorticity (similar to a no-slip
body).

In contrast, a β > 1 puller is ineffective at transporting vorticity from its wake,
similar to a towed, rigid sphere. Thus, it exhibits a recirculating wake region that
triggers a transition to unsteady 3-D flow at a critical Re. A progression of flow
patterns is observed as Re is further increased, which strongly resemble those that
occur for a rigid sphere, until weakly turbulent flow develops when Re ∼ O(1000).

Finally, we show that squirmers that minimize vorticity generation generally
maximize their efficiency. In the range of Re where steady axisymmetric flow is stable,
the swimming efficiency of pushers and pullers is surprisingly similar. However, the
vortex shedding that occurs for β > 1 pullers in unsteady 3-D flow at larger Re

reduces their overall efficiency below that of a pusher where the axisymmetric flow
remains stable.

Future work will entail further quantification of squirmers in unsteady 3-D flows;
at sufficiently large Re, the flow around β > 1 pullers is expected to become fully
turbulent, similar to flow around a no-slip body. Furthermore, it would be worthwhile
to consider the motion of squirmers that are not bound to move along a single axis
of translation. In this case, the motion of the squirmer would be fully coupled to the
flow, and different swimming paths would be observed depending upon the values of
Re and β. The present results will be useful in quantifying fluid mixing, production of
feeding currents and hydrodynamic signalling by the abundance of aquatic swimmers
living at Re up to 1000.
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Appendix. Validation of numerical solutions

Convergence of the flow computations with respect to the grid parameters was tested
empirically. First, it was ensured that the distance R∞ from the squirmer at which
uniform flow was imposed was large enough to not affect the computed swimming
speed U. Computations were relatively insensitive to this parameter due to the fast
velocity decay from the squirmer surface (∼1/r2 at Re = 0 and ∼1/r3 at large Re,
outside the wake) (Subramanian 2010), provided that the domain was not so small
as to restrict flow near the squirmer body. For the axisymmetric computations, the
polynomial order N of the shape functions within each element was incrementally
increased to convergence (figure 15). In order to fully resolve the boundary layer, it
was ensured that the condition ∆r0/δ. N2/9 (Gottlieb & Orszag 1977) was satisfied,
where ∆r0 is the element size (perpendicular to the boundary layer) and δ is the
boundary layer thickness. The thickness of the boundary layer was estimated as δ =
O(1/

√
Re) since the boundary layer is expected to be laminar. For the second-order

accurate finite-volume method used for 3-D computations, a higher mesh resolution is
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each element. The element thickness in the boundary layer was ∆r0 = 0.01.
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required due to the lower order approximation, and satisfactorily converged solutions
were reached with ∆r0 = 0.001 (figure 16).

Additional validation of our computational methods was carried out by computing
the drag coefficient of a no-slip sphere in uniform flow and comparing to previously
known results (figure 17). The drag coefficient is defined as CD = 2FD/(π̺a2U2),
where FD is the drag force and U is the far-field velocity of the oncoming flow.
Known values are provided by the correlation CD = (

√
12/ReU + 0.5407)2 (Abraham

1970). Additionally, values in (potentially unstable) steady axisymmetric flow up to
ReU = 2500 are provided by Fornberg (1988). The computational meshes used for our
computations were the same as those used for the squirmer computations at Re = 1000.
The results of the comparison show good agreement. Note that when ReU & 500, CD

becomes nearly constant, and the reported computations reproduce this feature.
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