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This section gives additional information to accompany the main text. This document is organized
as follows. We first describe in detail how the rods work and how their properties are analysed (A).
We then describe our numerical simulations (B) and the definition of the Peclet number used to
compare both the numerics and the experiments (C). We then highlight the role of inertia in the
system (D) and the coexistence conditions for the cluster and the gas phase (E) and the analysis of
the cluster properties (F). We end up with the details of the experiments with biased trajectories
(G) and flexible walls (H) and the derivation of the analytical solution for the cluster dynamics (I).

A. The robots and their tracking:

The rods used are small plastic robots.
These robots are commercial systems (see
https://www.amazon.de/Mad-Bugs-electronische-
Mini-Insekten/dp/B004O2A500), purchased from a
local toy-store (Spielzeugladen Papajule) located in
Goettingen (D), S. Fig. 1.

The motility of these plastic robots is induced by the
vibration of the robot itself with an embedded battery
operating a vibration module working at frequencies f
between 150Hz (fresh battery) and 60Hz (after 80min).
The plastic robots have asymmetric soft legs which after
a few vibration cycles give rise to a directed movement
with velocities which depend on the frequency of vibra-
tion and can be varied from roughly V = 40 to 20cm/s.
The mechanism of propulsion of such robots has been
described in [1]. The bottom plate on which the robot
vibrates and its defects as well as the dynamics of the
asymmetric legs of the robots give rise to noise in this
directed movement. The robots generally move along
straight or mildly curved lines, collide with boundaries
and with each other. The experiments are carried out
using a fixed number N of these robots confined in a
circular container, fixed to the bottom plate, of radius
R = 30cm with 1mm thick metal walls and their dy-
namics is followed by video imaging for different values
of N . The surface of the container walls can be coated
with a sheet of 2mm thickness sponge to reduce the col-
lision intensity of the rods with the walls or it can be
made deformable by using thinner metal sheets or paper
sheets (0.1mm in thickness). This arena can be solidly
fixed to its support or left free to move depending on the
experiment carried out.

These robots have dimensions of 4.3 by 1.5cm (S. Fig
1) and a mass of 7g. The embedded vibration device
vibrates at frequencies fixed by the voltage of the battery.
This voltage decreases with time of operation making the
frequency of vibration and the velocity decrease (roughly
15% for the first 20min and faster afterwards)(S. Fig 1).

Both the driving speed and the frequency change with
battery time but the two quantities are correlated. The
tracking was carried out over periods of 10min where the
variation of frequency and velocity are considered small.

On short time scales, the directed motion of the robots
has a small but persistent lateral motion at the frequency
of vibration but with an amplitude that does not vary in
time (S. Fig. 1). This amplitude is larger at the level of
the head than for the center of mass.

To track these rods, two colored spots are stuck on
their backs. Tracking both spots simultaneously and on
all visible rods in color video recordings done at different
rates (going from 1kHz down to a few frames per second)
provides a means to measure both the orientation of the
rods and the position of their center of mass as a func-
tion of time from which we derive their instantaneous
translation velocity. Video recordings over time periods
from minutes to over an hour leads to statistically rep-
resentative velocity distributions and spatial properties
such as local densities, spatial configurations of clusters
or clustering probabilities

An important property of these rods, is their inability
to align their orientations upon a collision: the contact
time during a collision event is small and the orienta-
tion of the two rods is not parallel once the collision has
ended (S. Fig. 2). For a single collision the two rods
quickly lose their parallel orientation. In the right plot,
we show the distribution of travel distances over which
the two rods are within a small distance from each other
(slightly larger than a rod width as for the calculation
of clustering probabilities (see below)) and can therefore
be considered to be within a small cluster. Statistically
relevant data are obtained from a large number of col-
lisions leading to the distribution of contact times over
which the two rods are considered as part of a small clus-
ter. The contact time measured was converted into a dis-
tance scale using the velocity of the colliding rods during
the collision process. Note that the two rods remain in
close proximity, on average, for a distance much smaller
than the rod length. It is clear from these statistics that
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FIG. S 1. Photo of the robot and its dimensions as well as its trajectory measured at a high frame rate of 1000Hz. Time
dependence of the robot properties. Translation velocity, frequency of the Lateral oscillation and its amplitude versus battery
time.

the rods do not remain aligned for long enough distances.
Considering our rods to be 4.3cm long, the statistics show
that for distances larger than 2 particle sizes, barely any
events are detected.

B. Langevin Dynamics simulations:

The self propelled rods were modeled as rigid sphero-
cylinders of total length l+ d and diameter d, built from
6 spherical particles of mass m and a diameter d fused
together. The cylinder length to width ratio was fixed
l/d = 2. The ratio of total length to width is therefore
close to the experimental ratio which is 3. The individ-
ual spherical particles interact with each other and with
the boundary via a repulsive Weeks-Chandler-Andersen
(WCA) potential:

U(rij) = 4ε

[(
d

rij

)12

−
(
d

rij

)6
]

+ ε, (1)

for rij ≤ 21/6d and U(rij) = 0 for rij > 21/6d. ε fixes
the energy scale of the system. Each rod like particle
indexed by i obeys a Langevin equation for translation
and rotation:

mi
d2ri
dt2

= −OUi − γr
dri
dt

+ F n̂+η(t) (2)

Ii
d2θi
dt2

= Ti − γθ
dθi
dt

+Γ(t) (3)

Note that in these equations we have kept the inertial
terms proportional to the mass mi of the rods and to
their moment of inertia Ii. The vectorial noise η and the
scalar noise Γ are both of zero mean and delta correlated
in time, with amplitudes η0 and Γ0. Here F n̂ is the
active force giving a constant translation velocity for the
rods in the direction of the long axis n̂. γr and γθ are the
translational and the rotational friction coefficients, Ti is
the torque exerted by the other particles and related to
the repulsive potential Ui. An additional constant torque
T0 can be added to the second equation to simulate the
effect of a rotating trajectory.

We fixed the mass m = 1, the energy ε = 1 and the
length d = 1. The simulations were carried using the
parameters, unless otherwise specified, mi = 6, γr = 3 ,
F = 10, γθ = 1.4 and I = 2.8 in reduced units. The
amplitudes of the noise terms are η0 =

√
2αεγr and

Γ0 =
√

2αεγθ where α is a constant. The value of α was
varied leading to Péclet numbers Pe = V d/Ds ∈ [30, 300]
where Ds = αε/γr is the translational diffusion constant
and V = F/γr is the unperturbed speed of the parti-
cles. The equations of motion were solved using a modi-
fied version of LAMMPS (Large scale Atomic/Molecular
Massive Parallel Simulator) [10], where the active force
was included, using a time-step ∆t = 0.001.

C. Péclet number

For the purpose of comparison of experiments and sim-
ulations, a Péclet number is defined. The Péclet number
is the ratio of advection to diffusion given by the noise
term. In the Langevin equation this ratio is Pe = V d/Ds.
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FIG. S 2. Left: Collision between two rods: orientation angle before and after the collision as well as photos of the colliding
rods.The rods do not remain oriented and their velocities do not align following a collision. Right: Histogram of the distance
over which two rods, during a collision are considered to be part of the same cluster. Note that the distribution falls off rapidly
and for distances larger than the length of the rod, few events are recorded. This histogram was obtained in a fixed circular
arena with R = 30cm at a surface fraction of 0.11 (60 rods in the arena and at f = 140Hz).

The diffusion constant is given by the ratio of the en-
ergy scale of the imposed noise to the friction coeffi-
cient Ds = αε/γr. For the experiments, it is difficult
to measure directly the diffusion coefficient for a sin-
gle particle as its displacement is dominated by ballis-
tic motion. However, an energy scale can be obtained
from the observed vibration (measured in section A) as

Ec = 1
2I <

.

θ2 > where I is the moment of inertia of
the rod and θ is the angle of the oscillation. The brack-
ets are an average over time and the dot is the tempo-
ral derivative. By considering the robots as thin rods
of length l, knowing the vibration amplitude a and its
frequency f (which are measured), Ec = 1

12ma
2(2πf)2.

The friction coefficient γr is then estimated as m/τ using
the mass m of the rods and the characteristic time scale
for a particle to reach the velocity V from rest. This
gives an effective diffusion constant Ds ∼ τ

12a
2(2πf)2.

The experimental Peclet number can then be obtained
as Pe = 12V l/(τa2(2πf)2). The value of τ was measured
experimentally by measuring the temporal variation of
the velocity of a rod starting from rest and was found to
be around 0.1s. The amplitude of the oscillations was
found to be close to 0.3mm (see above). The phase dia-
gram is plotted versus the inverse of Pe for both simula-
tions and experiments in Fig. 2.

D. Importance of inertia

In order to reproduce the experimental observations,
we have kept the inertial terms in the Langevin equa-
tion. The importance of inertia is shown by the fact
that collisions between two rods and with the walls of
the arena are quasi elastic whereby the rods do not align
upon a collision and that the rods may bounce off the
wall. The change in orientation (see changes in orien-
tation angle for a collision between two rods in S.Fig.2

above and for a rod with the wall in S. Fig. 3 below) cou-
pled to large changes in the velocity are a clear sign that
inertia is important in the system used here. To show
this quantitatively alongside S. Fig. 2, we show the re-
sult of a collision with a wall in S. Fig. 3 below using fast
video imaging at 1000fps. Note that the rod bounces
off abruptly and its velocity goes from almost 30cm/s to
zero at collision before climbing up again to its stationary
value near 30cm/s. The velocity component perpendic-
ular to the wall changes rapidly near the collision and
ends up changing sign signaling that the rod is moving
away from the boundary. Estimates of the deceleration at
collision gives at least 10 m/s2. The rise time from near
zero up to the cruise velocity is nearly 0.1s as mentioned
above. Using the estimate of the damping term γrV/m,
we find roughly 3m/s2. It is clear that the accelerations
at play have to be taken into account. In the same fig-
ure, we have also plotted the orientation angle of the rod
during the collision where the angle changes from nearly
60◦ with respect to the normal to the wall to nearly -120◦

after the collision before climbing up to an angle of -60◦.
A similar observation can be made from estimates of de-
celeration upon a collision between two rods. Because
collisions are nearly elastic without further alignement,
coupled to velocity and orientation change during colli-
sion, we conclude that inertial effects must be included
in the dynamics.

E. Calculation of clustering probabilities and their
properties:

This calculation was carried out using home made soft-
ware whereby the rods are represented by segments along
their main axis. From the positions of these segments
and for all the rods in the recorded images, we calcu-
late the probability that one rod belongs to a cluster.
The relative distances between a chosen segment and all
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FIG. S 3. Example of a collision of a rod with a wall. Left: velocity parallel Vy and perpendicular Vx to the wall versus time.
Note the large change in velocity and its direction at collision. The inset shows the trajectory of the rod with the wall being
in the vertical direction. Right: orientation angle of the rod during the collision. Note again the rapid change upon a collision
giving rise (see inset) to large changes in the angular velocity of the rod. Here 0◦ indicates a rod parallel to the wall.

FIG. S 4. Pdfs that a randomly selected rod belongs to a cluster of size n for different surface fractions. The inset shows the
values of Nc and γ. The plots to the right show the variation of the residue of the fit (upper) and the weight of the power
law contribution (bottom). Note that a fit using the power law and the exponential contributions is better than a simple
exponential.

the other segments are calculated and if this distance
is smaller than a certain threshold (basically a distance
comparable (20% larger) to the rod width) the rods are
considered to belong to the same cluster. The statistics
are then averaged over all the rods in the container. The
obtained histograms are then normalized to obtain prob-
ability density functions.

As mentioned in the main text, this probability is a
monotonic and decreasing function of n, Fig. 1, approx-
imated as P (n) ∼ n−γ exp(−n/Nc) for low φ,. Here Nc
increases with φ and the exponent γ is roughly 1.7 (S.
Fig. 4). Note here that the quality of the fit is much
better for the functional shape proposed than with a sin-
gle exponential as shown in the right plots of S. Fig. 4.

Further increase in φ results in a drastic change of P (n)
which becomes non monotonic with a smooth decrease
for small n along with a marked peak for large clusters.
Note here that the exponent observed is larger than in
previous realizations on bacteria where γ is near 0.8 but
may depend on surface fraction and Péclet number [2–
4](for the last two references this is for the pdf of cluster
sizes which scales as n−γ−1 exp(−n/Nc) ). Further, the
value of this exponent is believed to depend on the exact
details of cluster growth and ejection of particles [5]. It is
clear that the clusters here being quasi one dimensional
as they are near the boundary and growing only at their
ends makes any comparison with previously measured
exponents delicate.
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FIG. S 5. Cluster positions in the arena (R = 30cm). Note
that most clusters reside near the walls (at position r/R =
1). The black line shows the mean position of a randomly
distributed collection of particles in the circular arena. In
this scale, the length of a rod is at 0.86 and its width is at
0.95. Most clusters reside at roughly a rod’s length from the
wall.

As mentioned in the text, the clusters reside mostly
near the boundary. By examining the spatial distribu-
tion of clusters in the arena (S. Fig. 5), large clusters
seem to assemble near the boundaries only. After the
transition (Fig. 1), the rods self assemble at the bound-
ary with a well defined ’hedgehog’ structure. Even before
the transition, large transient clusters are confined to a
small area near the boundary only (S. Fig. 5). It is thus
the boundary which is inducing clustering in these exper-
iments.

To test this assertion quantitatively, we count only par-
ticles residing at a distance from the wall larger than the
rod length. Removing boundary effects affects not only
the bimodal distributions above the transition (which be-
comes monotonic) but it also affects the functional shape
of the monotonic distributions. In both cases, P (n) be-
comes, to a good approximation, exponential (Inset of
Fig. 1 and S. Fig 6). Further, the observed increase of
Nc with φ in the disordered state is compatible with the
behavior of a gas of randomly distributed particles as
shown in S. Fig 6.

Additional simulations under similar conditions as the
experiments further confirm this assertion as in the ab-
sence of boundaries (by using periodic boundary condi-
tions) monotonic probability distributions are observed
even for the overdamped case (S. Fig 7).

F. Mechanical cluster model:

The clusters observed here have a particular hedge hog
structure which we describe in detail here: S. Fig.8 shows
this structure. The experimental determination of the
angle between the wall normal and the rod long axis ver-
sus distance along the cluster is shown for clusters of dif-

ferent sizes for experiments and simulations. Both show
an S like structure. This S like structure favors detach-
ment at the two ends where the orientation deviates from
normal to the wall. The rods at the two ends exert a force
on each end of the cluster; it is this force which mechan-
ically stabilizes the cluster. This cluster structure does
not allow rods to enter the cluster near its central region.
Only rods on the boundary can be inserted near the two
ends to make the cluster grow. Only the two rods at the
two ends are free to detach from the cluster. The rods in
the central region are confined and remain in the cluster.

The structure for a cluster of identical rods is com-
puted with a mechanical model of self propelled ellipses
in 2D. The ellipses are subject to a constant force aligned
with their major axis. The mechanical equilibrium is
computed in the limit of a flat wall without force fluc-
tuations (zero noise limit). The contact forces between
the particles are assumed to be normal and frictionless.
The procedure to obtain a stable cluster from a set of n
ellipses pushing against a wall is the following:

1) Initialization of the ellipse orientation: A list of n
angles ϑi(t=0) are chosen to form a first guess cluster
configuration. The index i goes from 1 to n.

2) Positioning of the n ellipses: The n ellipses with
orientations ϑi(t=0) are placed in contact with the wall
and in contact with their neighbors.

3) Estimation of the contact forces: The magnitude
of all the contact forces (ellipse/ellipse and ellipse/wall)
are computed from the mechanical equilibrium in the 2
directions of space. The orientations of the forces are
known because the forces are normal to the contacts.

4) Estimation of the torque: The torque Γi(t=0)
is computed for each ellipse knowing the locations,
magnitudes and orientations of the contact forces.

5) Modification of the orientation: The orientation
of the ellipse is modified after the estimated torque:
ϑi(t=dt) = ϑi(t=0) + dt*Γi(t=0)

6) Convergence: The steps 2-3-4-5 are repeated until
a stationary structure is found.

A typical structure for a small cluster is shown in S.Fig.
8 along with the results for different cluster sizes. The
qualitative agreement between experiments, simulations,
and the mechanical model is very good.

G. Obtaining biased trajectories:

In order to obtain rods that have circular trajectories,
their legs are shortened on a single side. The shortening
of the legs on one side makes the rods rotate in the di-
rection of the shortened legs. We therefore obtain popu-
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FIG. S 6. P (n) from the central part only avoiding boundary effects (upper left plot). Results from simulations for the central
part are included (bottom left plot). P (n) becomes roughly exponential. Division by an exponential function gives a flat
variation versus n as shown in the bottom plot on the right. The right upper plot shows the variation of the value of Nc versus
surface fraction compared to expectations from a gas of point like particles distributed randomly in the arena.

lations of rotating robots in either directions. The short-
ening of the legs was done manually so the exact length
was difficult to control. Nevertheless, we produced both
left turning and right turning rods as shown in Fig. 3, S.
Fig. 9 and S. Movie 5.

For such particles, their trajectories present particular
features. Take for example a rod with a trajectory turn-
ing clockwise. As it gets trapped near the boundary, and
if it is moving along the boundary in the clockwise direc-
tion, its own rotation will lead it to leave the boundary.
On the other hand if it is moving counterclockwise along
the boundary, its own rotation will stabilize the trajec-
tory as seen in S. Fig. 9 for the trajectory marked with a
red dashed line. Similarly, for counter clockwise turning
rods (blue trajectories) they are more stable if they move
up the boundary in the clockwise direction (dashed blue
trajectory in S. Fig. 9). Since clockwise rotating rods will
have a larger residence time if moving counterclockwise
along the boundary and the counterclockwise rotating
ones will have a larger residence time if moving clock-
wise along the boundary, the cluster will grow with one
chirality on one side and the opposite chirality on the
other, leading to chirality sorting through aggregation,

S. Fig. 9.

H. Effects of flexibility of the boundary

The boundary in the experiments presented is made
of 1mm thick steel. This boundary is difficult to de-
form. However, by using 0.1mm thick boundary, a rich
phenomenology can be obtained in the case where the
boundary is not fixed. The boundary is then able to
deform and move. These results are shown in Fig. 4 in
the main text. Experiments have been carried out with a
boundary made of 0.1mm thick paper which is even more
flexible. These experiments examine the link between the
deformability of the arena and its mobility. Indeed, in a
free to move and flexible arena, once a cluster forms,
the arena gets highly deformed and becomes asymmet-
ric. The cluster pushes the arena and makes it move. By
examining the correlation between the eccentricity of the
arena and its mobility (velocity), a clear correlation is
obtained with a correlation coefficient near 0.7 indicat-
ing a clear link between symmetry breaking and mobility
as illustrated in Fig. 4 of the main text. Further and
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FIG. S 7. Effects of high damping: The left plot shows P (n) for similar surface fractions and similar noise amplitude as
Fig.1 for the simulations but for very high damping (γr = 100 instead of γr = 3 for Fig.1. Note the presence of a cluster for
both densities with few if any particles in the gas phase. Right Plot: For periodic boundary conditions in the simulations, no
clustering occurs as the P (n) remain monotonic and close to exponentials (dashed lines) for low surface fractions. The solid
lines are fits to the expression given in the text with the exponent and Nc given in the caption. It is thus the boundaries which
favor clustering in both the overdamped and the underdamped cases. The overdamped case does favor clustering as the value
of Nc is larger.

FIG. S 8. Cluster structure: a) experimental determination of the angle between the wall normal and the rod long axis versus
distance along the cluster. b) determination of cluster structure in simulations. Both show an S like structure. This S like
structure favors detachment at the two ends where the orientation deviates from normal to the wall. The rods at the two ends
exert a force from each end; it is this force which mechanically stabilizes the cluster. This cluster structure does not allow rods
to enter the cluster near its central region. Only rods on the boundary can be inserted near the two ends to make the cluster
grow. Only the two rods at the two ends can detach from the cluster. The rods in the central region are confined and remain
in the cluster. c) cluster structure for different cluster sizes from experiments, d) and e) mechanical model results.

while for hard boundaries, the rods may bounce off the
boundary and go into the central area (short residence
time at the boundary due to rod/boundary collisions),
for flexible boundaries these collisions do not induce a
bouncing effect. On the contrary, the particle remains
parallel to the boundary for long times (see S. Fig. 10).

Clearly the flexibility of the boundary and its ability to
move, reduces the collision efficiency of the rods with the
boundary and leads to increased residence times. Also,
and because the cluster deforms the boundary and gives
rise to a radius of curvature smaller than the initial ra-
dius of the arena, the walls stabilize the cluster as the
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FIG. S 9. Illustration of the trajectories of two rods of differ-
ent chiralities. The lines (blue or red) indicate the trajecto-
ries. The rods with the blue trajectories rotate counterclock-
wise while the rods with red trajectories rotate clockwise. In
the left image, a rod with a blue trajectory moving along the
wall in the clockwise direction remains at the boundary for
a long time. On the contrary, and for clockwise turning rods
(red trajectories), they remain at the boundary when they
go in the counterclockwise direction. This effect gives rise to
the separation of the two populations in the cluster where the
red ones arrive from the right using counterclockwise trajec-
tories while the blue ones arrive from the left using clockwise
trajectories.

FIG. S 10. Collision of a rod with a flexible boundary. The
whole duration from the upper left to the bottom right image
is 1.3s. The images are separated by 0.2s except for the last
two where the interval is 0.1s.The boundary is 0.1mm thick
paper. Note that the rod deforms and pushes the boundary
before reorienting to become parallel to it and move along the
wall before escaping.

wall exerts an additional force on the ends of the cluster.
This will lead to an increase of the residence time in the
cluster and inhibit the rods at the two ends of the cluster
from escaping the cluster. The phase diagram for cluster
formation will naturally shift to smaller surface fractions.

I. Details of theoretical model

1. General equations

Here we introduce a simple theoretical description
of an assembly of self-propelled particles in a confined
medium. We call N the number of particles, V the avail-
able volume which will be assumed to be a disk of radius
R. We distinguish between 3 populations of particles:
Nv particles in the volume, nc particles in a surface clus-
ter, and to take into account the effects of the surface

we introduce Ns = N+
s +N−s which are particles moving

freely on the surface (N+
s and N−s are the populations

with positively and negatively oriented velocities, respec-
tively).

In the volume, we assume that shocks between parti-
cles occur with a frequency that is high enough to con-
sider that the particles diffuse: the length between two
shocks is assumed to be small compared to the other
lengths in the system. We call nV (x, t)dx the average
number of particles in a surface element dx around x,
the equation for nV is

∂tnV = ∇[D∇nV ], (4)

where D is the effective diffusion coefficient due to col-
lisions between the particles, which can be estimated to

D ∼ V 2τshocks ∼
V

nV `
, (5)

where V is the spontaneous velocity of the particles
and ` is the typical size of an individual particle. We
could consider that D varies with x (because it is in-
versely proportional to nV ) but, to a first approximation,
we will consider that D is independent of x. Actually
this diffusion constant can be measured in experiments
and its variation with nV is borne out experimentally as
shown in S. Fig. 11.

At the boundary, the equations for the densities n+S
and n−S (of particles per unit length) with respectively
positively or negatively oriented velocities read

∂tn
+
S = −V ∂sn+S − λn

+
S +

µ

2
nV (x, t), (6)

∂tn
−
S = +V ∂sn

−
S − λn

−
S +

µ

2
nV (x, t). (7)

Here, s is the curvilinear coordinate along the bound-
ary, for a disk it is simply s = Rθ. λ is the rate at which
particles detach from the surface and is inversely propor-
tional to the residence time τs which can be obtained ex-
perimentally. We have assumed that the particle velocity
along the boundary is similar to that in the volume. The
parameter µ appears in all theories of surface mediated
transport [6–9], it has dimension of a velocity and repre-
sents the efficiency at which particles that reach the sur-
face will attach to it (see below). Another interpretation
is that µ2/D is the typical length that the particles move
with a ballistic motion when escaping from the surface
before diffusion becomes dominant again. The parame-
ter µ should be viewed as a phenomenological parame-
ter whose order of magnitude is roughly the spontaneous
velocity V of the particles. As we will see below, this
parameter can be obtained experimentally.

We also assume the presence of a cluster at the bound-
aries, in which the particles do not move. Only two parti-
cles, located at the cluster boundary, can detach from it,
with a detachment rate denoted by λc. This hypothesis
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FIG. S 11. a) Determination of the rods diffusion constant due to collisions with other rods versus surface fraction. Note the
variation in φ−1.The inset shows representative Mean Square Displacements for rods at different surface fractions. The value
of D was determined from the linear region. b) The reduced diffusion coefficient versus surface fraction. Note that the value of
this coefficient is systematically smaller than 1.

is motivated by experimental observations of the cluster
structure (S. Fig. 8) where the rods at the center of the
cluster, with orientation normal to the boundary are con-
fined within the cluster by the rods at the two ends of
the cluster. There is a time scale associated with a rod
leaving the cluster from one of the two ends, and this
time scale is denoted τc such that λc = 1/τc. This time
scale can be estimated from experiments as shown in Fig.
2 and S. Fig. 12. This is done by counting the number
of jumps from a cluster of size n to a cluster of size n− 1
for a fixed period of time. This gives the frequency of de-
tachment of a single rod from the cluster. The variation
of the measured estimates of τc versus the rod frequency
f is given in S. Fig.12.

If the cluster is located in the interval [s1, s2] (with
s1 < s2), we obtain

∂tnc = −2λc + V [n+S (s1) + n−s (s2)], (8)

(note here that we assume that the velocity of the clus-
ter boundaries is small compared to V ). We also have

n+S (s2) = n−s (s1) = 0. (9)

The last equation of the model describes the continuity
of the flux near the boundary:

−D∇nV · next =

µnV − (n+S + n−S )λ− λc[δ(s− s1) + δ(s− s2)]
(10)

2. Conservation of the total number of particles

Let us check that these equations are consistent with
the conservation of the total number of particles,

N = Nv +Ns + nc =∫
dxnV (x, t) +

∫
∂S

ds(n+S + n−S ) + nc
(11)

We have indeed

∂tN =

∫
dx∇[D∇nV ] +

∫
∂S

ds[−V ∂sn+S + V ∂sn
−
S

−λ(n+S + n−S ) + µnV ]− 2λc + V [n+S (s1) + n−S (s2)]
(12)

Using the divergence formula and the boundary con-
ditions written above, it is straightforward to check that
∂tN = 0.

3. Solution in absence of clusters and interpretation of the
parameter µ

In absence of cluster, the stationary solution is the
uniform solution

nV (x) = nV =
(n+S + n−S )λ

µ
. (13)

This means that, in the absence of a cluster, the ratio of
the number of particles in the volume and in the surface
is controlled by λ and µ:

Nv
Ns

=
Rλ

2µ
. (14)
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FIG. S 12. Comparison to theoretical model: The parameters of the model τs, τc and µ can be obtained from experiments
and simulations. The upper plot shows the arena, a rod trajectory at a surface fraction of 0.16, and the region delimited by
a dashed circle and the boundary where these parameters are measured. The region where we consider the rods to be at the
boundary was determined by plotting the radially averaged surface fraction versus distance from the center (upper right plot).
This surface fraction shows a surplus near the boundary over a characteristic length scale (dashed line). The extent over which
the particles were considered to reside near the surface is determined by this length (the dashed circle in the schematic). a) the
ratio NS/NV versus frequency and number of rods in the arena (inset) b) and c) the variation of τs and τc versus the frequency
of vibration of the rods. The inset in b) also shows the variation of τs versus the number of rods in the arena.

This relation can be tested experimentally and an im-
portant feature is that the ratio is independent of the
total density as well as the characteristic properties of
the rods used in the experiments such as their vibra-
tion frequency f . This test is shown in S. Fig. 12 where
the ratio Nv

Ns
is determined from experiments for different

densities and different vibration frequencies. Note that
this ratio remains constant and allows to determine the
ratio λ

µ unambiguously. Since in experiments the value

of λ can also be estimated from the residence time τs
near the surface (S. Fig. 12) the parameter µ can also be
estimated.

This parameter µ is standard in all theories of surface
mediated transport [6–9] but it is not easy to interpret
its physical origin. We can however interpret it by com-
paring to the predictions of a more complicated model in
which one explicitly takes into account the angular diffu-
sion of the particles. The problem is that this complicates
the model which becomes difficult to solve analytically.
Let us restrict ourselves here to the case that no cluster is
present. Even in this simple case, the model with angular
diffusion cannot be solved analytically. We note however
that there is one simple case in which one can integrate
it: it is the case that the particles that escape from the
surface are all emitted in the volume with a probability
distribution for the angle ψ between the normal and the
different directions

q(ψ) = (cosψ)/2 (−π/2 < ψ < π/2) (15)

If q(ψ) has this simple form, one can easily check that
uniform functions nV , n

+
S , n

−
S are solutions of the equa-

tions. The relation between the bulk density and the
surface densities is then

nV (x) =
π(n+S + n−S )λ

2ηV
(16)

with V the spontaneous velocity of the active particles
and 2η the probability for a particle which touches the
surface to remain trapped on it. We can compare with
our model of surface mediated transport, and identify µ
to be

µ = 2ηV/π ∼ ηV (17)

The parameter µ has therefore a simple interpretation
in terms of the particles spontaneous velocity V and the
probability η to attach to the surface when touching it.
Form our estimates in experiments the value of η turns
out to be roughly 0.35 and independent of the surface
fraction and frequency of the rods.
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4. Stationary solution for a cluster of negligible size

In this section we give the solution of the model in the
case that the size of the cluster is negligible. In this sim-
ple case the model can be used to analyze the shape of the
stationary density in a non-trivial geometry. The finite
size of the cluster considerably complicates the geome-
try of the problem and we shall first neglect it: s1 = s2
(modulo the perimeter L = 2πR of the confinement vol-
ume). We restrict the analysis to the stationary states, in
which no quantity depends on time. Let us first consider
the stationary state of Eq. 3:

∂sn
+
S +

λ

V
n+S =

µ

2V
nV (x, t). (18)

We can write the above equation as

∂s[e
sλ/V n+S ] =

µ

2V
esλ/V nV (R, θ = s/R), (19)

where we have expressed nV (x) = nV (r, θ) in polar
coordinates, and the cluster position is taken at s = 0.
The solution of the above equation is

n+S (s) =
µ

2V

∫ s

0

ds′ e−(s−s
′)λ/V nV (R, s′/R). (20)

Let us define now ñ+S (θ)dθ the average number of par-
ticles on the surface, between angles θ and θ+ dθ, which
reads

ñ+S (θ) = n+S (θR)R

=
µR2

2V

∫ θ

0

dθ′ e−(θ−θ
′)λ̃ nV (R, θ′),

(21)

in which we have defined the dimensionless quantity

λ̃ =
λR

V
. (22)

We now use a decomposition in Fourier modes, defined
for any 2π-periodic function f(θ) by

f(θ) =

∞∑
q=−∞

fq e
iqθ, (23)

with the inversion formula

fq =
1

2π

∫ 2π

0

dθf(θ)e−iqθ. (24)

Note that for real f we have fq = f∗−q. Furthermore,
if f(θ) = f(−θ) we also have fq = f−q. We can write

nV (r, θ) =

∞∑
q=−∞

nq(r)e
iqθ, (25)

where nq satisfies

n′′q (r) +
n′q(r)

r
= q2

nq(r)

r2
. (26)

The only solution of the above equation that is finite
for all r < R is

nq(r) =
Aq
R2

( r
R

)|q|
. (27)

Using this decomposition, we have

ñ+S (θ) =
µe−θλ̃

2V

∫ θ

0

dθ′ eθ
′λ̃

∞∑
q=−∞

Aqe
iqθ′

=
µe−θλ̃

2V

∞∑
q=−∞

Aq
eθλ̃+iqθ − 1

λ̃+ iq
,

=
µ

2V

∞∑
q=−∞

Aq
eiqθ − e−θλ̃

λ̃+ iq
.

(28)

The mode amplitudes of ñ+S can now be calculated

ñ+S,q =
1

2π

∫ 2π

0

dθe−iqθñ+S (θ)

=
1

2π

∫ 2π

0

dθe−iqθ
µ

2V

∞∑
k=−∞

Ak
eikθ − e−θλ̃

λ̃+ ik
,

=
µ

2V (λ̃+ iq)

[
Aq −

( ∞∑
k=−∞

Ak

λ̃+ ik

)
1− e−2πλ̃

2π

]
.

(29)
Exploiting the symmetry of the problem, we see that

ñ+S (θ) = n−S (−θ), so that ñ+S,q = ñ−S,−q. Hence

ñS,q = ñ+S,q + ñ−S,q

= ñ+S,q + ñ+S,−q

=
µλ̃

V (λ̃2 + q2)

[
Aq − J

1− e−2πλ̃

2πλ̃

]
,

(30)

where we have defined the quantity J as

J =

∞∑
k=−∞

λ̃Ak

λ̃+ ik
= A0 +

∞∑
k=1

2λ̃2Ak

λ̃2 + k2
. (31)

We also introduce J1 such that
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J = A0 + J1. (32)

Consider now the boundary condition given above:

µnV +D(∂rnV )r=R = (n+S + n−S )λ+ 2λcδ(s)

= (ñ+S + ñ−S )
λ

R
+ 2

λc
R
δ(θ).

(33)

In Fourier space, with our notations, we obtain

(
µ+

D|q|
R

)
Aq
R2

=
λ

R
ñS,q+

2λc
R

=
V

R2
λ̃ñS,q+

2λc
R
. (34)

Inserting in this expression the previously obtained ex-
pression of ñS,q yields

(
µ+

D|q|
R

)
Aq
R2

=
µλ̃2

R2(λ̃2 + q2)

[
Aq − J

1− e−2πλ̃

2πλ̃

]
+

2λc
R
.

(35)
We can simplify this result:

(
q2

(λ̃2 + q2)
+
D|q|
Rµ

)
Aq = − λ̃2J

(λ̃2 + q2)

1− e−2πλ̃

2πλ̃
+

2λcR

µ
.

(36)
Writing the above equation for q = 0 provides the value

of J :

J
1− e−2πλ̃

2πλ̃
=

2λcR

µ
, (37)

and we thus deduce

(
q2

(λ̃2 + q2)
+
D|q|
Rµ

)
Aq =

2λcR

µ

q2

(λ̃2 + q2)
. (38)

Defining the dimensionless quantities

λ̃c =
λcR

µ
, D̃ =

D

µR
, (39)

our final result for Aq is

Aq =
2λ̃c q

q + D̃(λ̃2 + q2)
(q ≥ 1) (40)

J1 = J −A0 can thus be expressed as

J1 =

∞∑
q=1

2λ̃2

λ̃2 + q2
Aq = 2λ̃c

∞∑
q=1

2λ̃2q

[λ̃2 + q2][q + D̃(λ̃2 + q2)]
.

(41)

and finally

A0 = J − J1 = 2λ̃c[
2πλ̃

1− e−2πλ̃
−
∞∑
q=1

2λ̃2q

[λ̃2 + q2][q + D̃(λ̃2 + q2)]

]
= 2λ̃cF (λ̃, D̃)

(42)

where the last equality defines the dimensionless func-
tion F . The number of particles in the volume the cluster
is

Nv =

∫ 2π

0

dθ

∫ R

0

drr nV (r, θ) = πA0. (43)

The number of particles on the boundaries, outside the
cluster is

NS =

∫ 2π

0

dθ ñS(θ) = 2πñS,0. (44)

This leads to

NS = 2πñS,0 = 2π
µ

V λ̃

[
A0 − J

1− e−2πλ̃

2πλ̃

]

= 2λ̃c
2πµ

V λ̃

[
F (λ̃, D̃)− 1

]
.

(45)

We find that NS and Nv are positive for all parameter
values. However our description is consistent only when
there is a sufficient number of particles to form a cluster.
Since Ns and Nv do not depend on N , the theory seems
to predict that there is a critical number of particles, N∗

under which no cluster is possible (because for N < N∗

the theory would predict a negative number of particles
in the cluster). This critical number is

N∗ = Noutside = NV +NS = 2λ̃cπ

[
F +

2µ

V λ̃
(F − 1)

]
(46)

Let us now evaluate the function F . In fact, since one
can estimate D̃ ∼ D/(RV ), D̃ is comparable to the ratio
of the length traveled before reorienting in the bulk, over
the diameter of the volume. We already assumed that
this ratio is small. In S. Fig.11, experimental determina-
tion of D̃ shows that it is much smaller than 1, which
suggests to evaluate F for small D̃. This must be done
carefully, since λ̃ can be large or small compared to 1.
We find that

F '

{
1 + πλ̃ [λ̃� 1/D̃]

2πλ̃ [λ̃� 1/D̃(� 1)]
(47)
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Inserting this value into our expression for the number
of particles outside the cluster at leading order, we find

Noutside = 2π
Rλc
µ

{
1 + πλ̃+ 2µπ/V [if λ̃� 1/D̃]

2πλ̃ [if λ̃� 1/D̃(� 1)]

(48)
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