
HAL Id: hal-01792165
https://hal.science/hal-01792165

Submitted on 15 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Affine Tropical F5 Algorithms
Tristan Vaccon, Thibaut Verron, Kazuhiro Yokoyama

To cite this version:
Tristan Vaccon, Thibaut Verron, Kazuhiro Yokoyama. On Affine Tropical F5 Algorithms. IS-
SAC ’18: 2018 ACM International Symposium on Symbolic and Algebraic Computation, 2018,
�10.1145/3208976.3209012�. �hal-01792165�

https://hal.science/hal-01792165
https://hal.archives-ouvertes.fr


On A�ine Tropical F5 Algorithms

Tristan Vaccon
Université de Limoges; CNRS, XLIM

UMR 7252
Limoges, France

tristan.vaccon@unilim.fr

Thibaut Verron
Johannes Kepler University

Institute for Algebra
Linz, Austria

thibaut.verron@jku.at

Kazuhiro Yokoyama
Departement of Mathematics, Rikkyo

University
Tokyo, Japan

kazuhiro@rikkyo.ac.jp

ABSTRACT

LetK be a �eld equippedwith a valuation. Tropical varieties overK
can be de�ned with a theory of Gröbner bases taking into account
the valuation of K . Because of the use of the valuation, the theory
of tropical Gröbner bases has proved to provide settings for com-
putations over polynomial rings over a p-adic �eld that are more
stable than that of classical Gröbner bases.

Beforehand, these strategies were only available for homoge-
neous polynomials. In this article, we extend the F5 strategy to
a new de�nition of tropical Gröbner bases in an a�ne setting.

We provide numerical examples to illustrate time-complexity
and p-adic stability of this tropical F5 algorithm. We also illustrate
its merits as a �rst step before an FGLM algorithm to compute (clas-
sical) lex bases over p-adics.
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1 INTRODUCTION

Tropical geometry as we understand it has not yet reached half
a century of age. It has nevertheless spawned signi�cant applica-
tions to very various domains, from algebraic geometry to com-
binatorics, computer science, economics, non-archimedean geom-
etry (see [MS15], [EKL06]) and even attempts at proving the Rie-
mann hypothesis (see [C15]).

E�ective computation over tropical varieties make decisive use
of Gröbner bases. Since Chan and Maclagan’s de�nition of tropical
Gröbner bases taking into account the valuation in [C13, CM13],
computations of tropical Gröbner bases are available over �elds
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with trivial or non-trivial valuation, but only in a context of homo-
geneous ideals.

On the other hand, for classical Gröbner bases, numerous algo-
rithms have been developed allowing for more and more e�cient
computations. The latest generation of algorithms for computing
Gröbner bases is the family of signature-based algorithms, which
keep track of where the polynomials come from in order to an-
ticipate useless reductions. This idea was initiated in Algorithm
F5 [F02], and has since then been widely studied and generalized
([BFS14, EF17]).

Most of those algorithms, including the original F5 algorithm,
are speci�cally designed for homogeneous systems, and adapting
them to a�ne (or inhomogeneous) systems requires special care
(see [E13]).

An F5 algorithm computing tropical Gröbner bases without any
trivial reduction to 0, inspired by the classical F5 algorithm, has
been described in [VY17]. The goal of this paper is to extend the
de�nition of tropical Gröbner bases to inhomogeneous ideals, and
describe ways to adapt the F5 algorithm in this new setting.

The core motivation is the following. It has been proved [V15]
that computing tropical Gröbner bases, taking into account the val-
uation, is more stable for polynomial ideals over ap-adic �eld than
classical Gröbner bases.

Thus, an a�ne variant of tropical Gröbner bases is highly de-
sirable to handle non-homogeneous ideals over p-adics. For classi-
cal Gröbner bases, it is always possible to homogenize the input
ideal, compute a homogeneous Gröbner basis, and dehomogenize
the result. This technique is not always optimal, because the algo-
rithm may end up reaching a higher degree than needed, comput-
ing points at in�nity of the system, but it always gives a correct
result and, in the case of signature Gröbner basis algorithms, is
able to eliminate useless reductions. However, in a tropical setting,
terms are ordered with a tropical term order, taking into account
the valuation of the coe�cients. As far as we know it, there is no
way to dehomogenize a system in a way that would preserve the
tropical term order. Indeed, no tropical term order can be an elim-
ination order.

Moreover, the FGLM algorithm can be adapted to the tropical
case (see Chap. 9 of [V*]), making it possible to compute a lexico-
graphical (classical) Gröbner basis from a tropical one. We provide
numerical data to estimate the loss in precision for the computa-
tion of a lex Gröbner basis using a tropical F5 algorithm followed
by an FGLM algorithm, in an a�ne setting.

1.1 Related works

A canonical reference for an introduction to computational trop-
ical algebraic geometry is the book of Maclagan and Sturmfels
[MS15].

The computation of tropical varieties over Q with trivial valua-
tion is available in the Gfan package by Anders Jensen (see [Gfan]),

https://doi.org/10.1145/3208976.3209012
https://doi.org/10.1145/3208976.3209012


by using standard Gröbner bases computations. Chan and Macla-
gan have developed in [CM13] a Buchberger algorithm to compute
tropical Gröbner bases for homogeneous entry polynomials (using
a special division algorithm). Following their work, still for homo-
geneous polynomials, a Matrix-F5 algorithm has been proposed in
[V15] and a Tropical F5 algorithm in [VY17]. Markwig and Ren
have provided a completely di�erent technique of computation us-
ing projection of standard bases in [MY16], again only for homo-
geneous entry polynomials.

In the classical Gröbner basis setting, many techniques have
been studied to make the computation of Gröbner bases more ef-
�cient. In particular, Buchberber’s algorithm is frequently made
more e�cient by using the sugar-degree (see [GMNRT91, BCM11])
instead of the actual degree for selecting the next pair to reduce.
This technique was a precursor of modern signature techniques, in
the sense that the sugar-degree of a polynomial is exactly the de-
gree of its signature. General signature-based algorithms for com-
puting classical Gröbner bases of inhomogeneous ideals have been
extensively studied in [E13].

1.2 Speci�cities of computating tropical GB

The computation of tropical GB, even by a Buchberger-style algo-
rithm, is not as straightforward as for classical Gröbner bases. One
way to understand this is the following: even for homogeneous
ideals, there is no equivalence between tropical Gröbner bases and
row-echelon linear bases at every degree. Indeed,we can remark
that (f1, f2) = (x + y, 2x + y) is a tropical GB over Q[x,y] with 2-
adic valuation, w = [0, 0] and grevlex ordering. Nevertheless, the
corresponding 2 × 2 matrix in the vector space of homogeneous
polynomials of degree 2 is not under tropical row-echelon form.

As a consequence, reduction of a polynomial by a tropical GB is
not easy. In [C13, CM13], Chan and Maclagan relied on a variant
of Mora’s tangent cone algorithm to obtain a division algorithm.
In [V15, VY17], the authors relied on linear algebra and the com-
putation of (tropical) row-echelon form. In this article, we extend
their method to the computation of tropical Gröbner bases in an
a�ne setting, through an F5 algorithm.

1.3 Main idea and results

Extending the tropical F5 algorithm to inhomogeneous inputs poses
two di�culties. First, as mentioned, tropical Gröbner bases used
to be only de�ned and computed for homogeneous systems. Even
barebones algorithms such as Buchberger’s algorithmare not avail-
able for inhomogeneous systems. The second problem is a general
problem of signature Gröbner bases with inhomogeneous input.
The idea of signature algorithms is to compute polynomials with
increasing signatures, and the F5 criterion detects trivial reduc-
tions to 0 by matching candidate signatures with existing leading
terms. For homogeneous ideals, the degree of the signature of a
polynomial and the degree of the polynomial itself are correlated.
This is what makes the F5 criterion applicable.

The survey paper [E13] has shown that Algorithm F5, using the
position over term ordering on the signatures, has to reach a trade-
o� between eliminating all reductions to 0 and performing other
useless reductions.

More precisely, let f1, . . . , fm be homogeneous polynomialswith
coe�cients in a �eld with valuation K , and de�ne Ik,d the vector
space of polynomials in 〈f1, . . . , fk 〉 with degree at most d . With
the usual computational strategy, the algorithm computes a basis

of I1,1, then I2,1, and so on until Im,1, and then I1,2, and so on.
In a lot of situations [BFS04] ideals with more generators have a
Gröbner basis with lower degree, and this strategy ensures that the
algorithm does not reach a degree higher than needed.

However, the same algorithm for a�ne systemwill, at each step,
merely compute a set of polynomials in each Ik,d . This set needs
not be a generating set because of degree falls. To obtain a basis
instead, one has to proceed up to some Ik,δ with δ ≥ d . When
δ > d , some polynomials will be missing for the F5 criterion in
degree less than δ , and the corresponding trivial reductions to 0
will not be eliminated.

In this paper, we show that the tropical F5 algorithm [VY17]
works in an a�ne setting, and we characterize those trivial reduc-
tions to 0 which are eliminated by the F5 criterion. In particular,
we show that the Macaulay matrices built at each step of the com-
putations are Macaulay matrices of all polynomials with a given
sugar-degree.

Compared to [VY17], the overall presentation of the F5 algo-
rithms is clari�ed. It can now be summarized as the following strat-
egy: �ltration, signature, F5 elimination criterion, Buchberger-F5
criterion and �nally the F5 algorithm.

Theorem 1.1. Given a set of (non-necessarily homogeneous) poly-
nomials f1, . . . , fm ∈ K[X1, . . . ,Xn], the Tropical F5 algorithm (Al-
gorithm 3) computes a tropical Gröbner basis of I , without reducing
to 0 any trivial tame syzygy (Def. 3.1).

We also examine an incremental a�ne version of the homo-
geneous tropical F5-algorithm and an a�ne tropical F4, and we
compare their performances on several examples. Even in a non-
homogeneous setting, the loss in precision of the tropical F5 algo-
rithm remains satisfyingly low.

1.4 Organization of the paper

Section 2 introduces notations and nonhomogeneous tropical Gröb-
ner bases. Section 3 then introduces the �ltration on ideals nec-
essary for F5 algorithms in this context. Section 4 is devoted to
provide a Buchberger-F5 criterion on which Section 5 elaborates a
�rst tropical F5 algorithm. Section 6 brie�y presents othermethods
for the computation of nonhomogeneous tropical Gröbner bases.
Finally, Section 7 displays numerical results related to the preci-
sion behaviour and time-complexity of the algorithms we have de-
scribed.
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2 AFFINE TROPICAL GB

2.1 Notations

Letk be a �eldwith valuationval .The polynomial ringk[X1, . . . ,Xn]
will be denoted by A. Let T be the set of monomials of A. For
u = (u1, . . . ,un) ∈ Z

n
≥0, we write xu for X

u1

1 . . .X
un
n and | f | for

the degree of f ∈ A. In As , (ei )
s
i=1 is the canonical basis.

The matrix of a list of polynomials written in a basis of mono-
mials is called aMacaulay matrix.

Given a mapping ϕ : U → V , Im(ϕ) denotes the image of ϕ. For
a matrixM, Rows(M) is the list of its rows, and Im(M) denotes the
left-image ofM (i.e. Im(M) = span(Rows(M)). Forw ∈ Im(val)n ⊂



Rn and ≤1 a monomial order on A, we de�ne ≤ a tropical term
order as in the following de�nition:

De�nition 2.1. Given a,b ∈ k∗ and xα and xβ two monomials in

A, we write axα < bxβ if:

• |xα | < |xβ |, or

• |xα | = |xβ |, and val(a)+w · α > val(b)+w · β , or val(a)+

w · α = val(b) +w · β and xα <1 x
β
.

For u of valuation 0, we write axα =≤ uaxα . Accordingly, axα ≤

bxβ if axα < bxβ or axα =≤ bx
β
.

Throughout this article, we are interested in computing a tropi-
cal Gröbner basis of I = 〈f1, . . . , fs 〉 for some given f1, . . . , fs ∈ A
(ordered increasingly by degree).

2.2 Tropical GB

A tropical term order provides an order on the terms of the poly-
nomials f ∈ A.

De�nition 2.2. For f ∈ A,we de�ne LT (f ) to be the biggest term
of f .We de�ne LM(f ) to be the monomial corresponding to LT (f )
and LC(f ) the corresponding coe�cient.

We de�ne LM(I ) to be the monomial ideal generated by the
monomials LM(f ) for f ∈ I .

We can then naturally de�ne what is a tropical Gröbner basis
(tropical GB for short):

De�nition 2.3. G ⊂ I is a tropical GB of I if span(LM(д) for д ∈
G) = LM(I ).

We can remark that for homogeneous polynomials this de�ni-
tion coincide with that given in [VY17].

3 FILTRATION ANDS-GB

3.1 De�nition and elimination criterion

One of the main ingredient for F5 algorithms is the de�nition of
a vector space �ltration of the ideal I . It is de�ned from the ini-
tial polynomials F = (f1, . . . , fs ) generating I . For simplicity, we
assume that they are ordered by increasing degree.

First, we extend ≤ to the monomials of the vector space As . To
that intent, we highlight some monomials that appear as leading
monomial of a syzygy.

De�nition 3.1. Let (a1, . . . ,as ) ∈ As and i ∈ {1, . . . , s} be such
that: (1)

∑
j aj fj = 0. (2) ai , 0 and aj = 0 for j > i . (3) for all j < i,

|aj fj | ≤ |ai fi |.
We call such a syzygy a tame syzygy and we de�ne LM(ai )ei

to be its leading monomial. We de�ne LM(TSyz(F )) as the module
in As generated by the leading monomials of the tame syzygies.
Trivial tame syzygies are the tame syzygies that are also trivial (i.e.
in the module generated by the fiej − fjei ).

The F5 criterion that we use in this article is designed to recog-
nize some of the tame syzygies and use this knowledge to avoid
useless reduction to zero of some polynomials. It is the main mo-
tivation for de�ning a �ltration on the vector space As . We use a

degree-re�ning monomial ordering ≤m on A.1 We de�ne a total
order on the monomials of As .

De�nition 3.2. We write that xα ei ≤siдn xβ ej if:

1≤m is not necessarily related to ≤1 and ≤.

(1) if i < j, or

(2) if i = j and |xα fi | < |x
β fj |, or

(3) if i = j and |xα fi | = |x
β fj |, and

• xα < LM(TSyz(F )) and xβ ∈ LM(TSyz(F )), or

• both xα ,xβ ∈ LM(TSyz(F )) and xα ≤m xβ , or

• both xα ,xβ < LM(TSyz(F )) and xα ≤m xβ .

De�nition 3.3. We consider the vector space

I≤siдnxα ei := Span({xβ fj , s.t. x
βej ≤siдn xα ei })

and the vector space I<siдnxα ei de�ned accordingly. We de�ne I =⋃
↑xα ei I≤siдnxα ei as an increasing vector space �ltration of I .

We then have a very natural de�nition of signature. In littera-
ture, this notion of signature is sometimes called minimal signa-
ture.

De�nition3.4. For f ∈ I , the smallest xα ei such that f ∈ I≤siдnxα ei
is called the signature of f and noted S(f ).

The degree |xα fi | is called the sugar-degree of x
α ei .

2 For the
purpose of Algorithm 3, we design a �ltration compatible with the
sugar-degree.

De�nition 3.5. We consider the vector space

I ≤d = Span({xβ fj , s.t. |x
βej | ≤ d})

We then de�ne, for xα ei with sugar-degree d , the vector space

I ≤d
≤siдnxα ei

= Span({xβ fj , s.t. x
β ej ≤siдn xα ei and |x

β fj | ≤ d}).

I =
⋃
↑d I ≤d is also a vector space �ltration. I ≤d can itself be

�ltrated by the I ≤d
≤siдnxα ei

. We have a compatible notion of signa-

ture:

De�nition 3.6. For d ∈ Z>0 and f ∈ I ≤d , the smallest xα ei such

that f ∈ I ≤d
≤siдnxα ei

is called thed-signature of f and noted Sd (f ).

We remark that Sd (f ) can be di�erent from S(f ) for small f , but
all Sd (f ) are equal when d is large.

The main motivation for de�ning the vector spaces I ≤d
≤siдnxα ei

is their �nite dimension. Their compatibilitywith the sugar-degree
allows the F5 algorithm to compute only one Macaulay matrix by
sugar-degree d .

The goal of the F5 criterion is to recognize some xα ei such

that the �ltration is constant at I ≤d
≤siдnxα ei

. As a consequence, this

knowledge allows to skip some calculation as, because of this con-
stancy, they will not provide any new leading monomial. We can
then state a �rst version of the F5 elimination criterion:

Proposition 3.7 ([F02]). If xα is such that xα ei ∈ LM(Tsyz(F )),

d ≥ |xα fi |, then the �ltration is constant at I ≤d
≤siдnxα ei

. If xα ∈

LM(I ≤d
≤siдnx β ej

) for some xβ and j such that |xβ fj | ≤ |x
α |, then

xα ei ∈ LM(Tsyz(F )) for any i > j .

Proof. For the �rst part, we can write (xα + д)fi =
∑
j<i aj fj ,

with LT (д) < xα and for all j < i, |aj fj | ≤ |x
α fi |. Then:

xα fi = (−д)fi +

i−1∑

j=1

aj fj .

2Sugar-degree has been introduced and explored in [GMNRT91, BCM11].



By linear algebra and a complete reduction using as pivot the

xβ ej ∈ LM(Tsyz(F )), we can assume that д has no monomial in

LM(TSyz(F )) and obtain: xα fi ∈ I ≤d
<xα ei

, and therefore, the �ltra-

tion is constant at I ≤d
≤xα ei

.

For the second part, we can write xα + д =
∑
k≤j ak fk , with

LT (д) < xα and for all k ≤ j, |aj fj | ≤ |x
β fj | ≤ |x

α |. Then (xα +
д)fi −

∑
k≤j (ak fi )fk = 0 and we do have |xα fi | ≥ |(ak fi )fk | for

all k ≤ j . �

If all the fi ’s are homogeneous, this coincides with the usual F5
elimination criterion, as for example stated in [VY17], which elim-
inates all trivial reductions to zero in the course of the algorithm.
For a�ne polynomials, the F5 criterion only eliminates those triv-
ial reductions which are tame.

3.2 TropicalS-GB

In order to take advantage of the F5 elimination criterion to com-
pute tropical Gröbner bases, we focus on the computation of tropi-
cal Gröbner bases which are compatiblewith the �ltration: tropical
S-GB. We �rst need the de�nition of reductions compatible with
the �ltration and the corresponding irreducible polynomials.

De�nition 3.8 (S-reduction). Let e,д ∈ I , h ∈ I . We say that e

S-reduces to д with h, e →h
S
д, if there are t ∈ T and α ∈ k∗ such

that:

• LT (д) < LT (e), LM(д) , LM(e) and e − αth = д and
• S(th) <siдn S(e).

It is then natural to de�ne what is anS-irreducible polynomial.

De�nition 3.9 (S-irreducible polynomial). We say that д ∈ I is
S-irreducible if there is no h ∈ I whichS-reduces д. If there is no
ambiguity, we might omit theS − .

De�nition 3.10 (TropicalS-Gröbner basis). We say thatG ⊂ I , a
set ofS-irreducible polynomials, is a tropical S-Gröbner basis
(or tropicalS−GB, or justS−GB for short when there is no ambi-
guity) of I with respect to a given tropical term order, if for each
S-irreducible polynomial h ∈ I , there exist д ∈ G and t ∈ T such
that LM(tд) = LM(h) and tS(д) = S(h).

De�nition 3.11. De�nitions 3.8, 3.9 and 3.10 have natural ana-
logues when one restricts to the vector space I ≤d and Sd withSd -
reduction,Sd -irreducible polynomial and tropicalSd -GB.

Proposition 3.12. IfG is a tropicalS-Gröbner basis, then for any
nonzero h ∈ I , there exist д ∈ G and t ∈ T such that:

• LM(tд) = LM(h)
• S(tд) = tS(д) = S(h) ifh is irreducible, and S(tд) = tS(д) <siдn
S(h) otherwise.

Hence, there is anS-reductor for h inG when h is not irreducible.

Corollary 3.13. If G is a tropical S-Gröbner basis, then G is a
tropical Gröbner basis of I , for < .

As a consequence computing a tropicalS-GB provides a tropical
GB, and we can use the F5 elimination criterion 3.7 to our advan-
tage when computing these tropicalS-GB. Moreover, we also have
the following �niteness result:

Proposition 3.14. Every tropicalS-Gröbner basis contains a �-
nite tropicalS-Gröbner basis.

Proof. We refer to the proof of Proposition 14 of [AP]. It uses
an adapted Dickson’s Lemma and since it is mostly a question of
monomial ideals, the transposition to the tropical setting is direct.

�

3.3 Linear algebra and existence

For xα ∈ T and 1 ≤ i ≤ n, let us denote by Mac≤siдnxα ei
(F ) the

Macaulay matrix of the polynomials xβ fj such that xβ fj ≤ xα fi ,

ordered increasingly for the order on the xβej ’s. One can perform
a tropical LUP algorithm onMac≤d (F ) (see Algo. 2) and obtain all
the leading monomials in I≤siдnxα ei . This can be (theoretically)

performed for all xα ei to obtain the existence of anS-GB of I .

3.4 More on signatures

We de�ne Σ to be the set of signatures.
Thanks to Proposition 3.7, not all xα ei can be a signature:

Remark 3.15. If xα ei ∈ LM(TSyz(F )) then xα ei < Σ.

We provide two lemmata to understand the compatibility of Σ
with basic operations on polynomials.

Lemma 3.16. If f ,д ∈ I are such that S(f ) = S(д) and LM(f ) ,
LM(д), then there exist a,b ∈ k∗ such that S(af + bд) < S(f ) and
af + bд , 0.

If one takes the point of view of linear algebra, the proof is di-
rect.

Lemma 3.17. If д ∈ I and τ ∈ T then S(τд) ≤ τS(д). If moreover
τS(д) ∈ Σ, then S(τд) = τS(д) and for all µ ∈ T such that µ divides
τ , S(µд) = µS(д).

Proof. The �rst part is direct. For the second part, one can show
that it is possible to write that τд = h+r for someh ∈ I of signature
τS(д), irreducible, and r ∈ I<siдnτ S (д) and conclude that S(τд) =

τS(д).
For the last statement, assume that there exists a µ ∈ T dividing

τ such that S(µд) < µS(д). Then S(τд) = S( τµ µд) ≤
τ
µ S(µд) <

τ
µ µS(д) = τS(д), which is a contradiction. �

4 BUCHBERGER-F5 CRITERION

In this section, we explain a criterion, the Buchberger-F5 crite-
rion, on which we build our F5 algorithm to compute tropical S-
Gröbner bases. It is an analogue of the Buchberger criterion which
includes the F5 elimination criterion.

We need a slightly di�erent notion ofS-pairs, called here normal
pairs and can then state the Buchberger-F5 criterion.

De�nition 4.1 (Normal pair). Given д1,д2 ∈ I , let Spol(д1,д2) =
u1д1 − u2д2 be the S-polynomial of д1 and д2, with for i ∈ {1, 2},

ui =
lcm(LM(д1),LM(д2))

LT (дi )
.We say that (д1,д2) is a normal pair if:

(1) the дi ’s areS-irreducible polynomials.
(2) S(uiдi ) = LM(ui )S(дi ) for i = 1, 2.
(3) S(u1д1) , S(u2д2).

We de�ne accordingly d-normal pairs in I ≤d .

Theorem 4.2 (Buchberger-F5 criterion). Suppose that G is a
�nite set ofS-irreducible polynomials of I = 〈f1, . . . , fs 〉 such that:

(1) for all ∀i ∈ J1, sK, there exists д ∈ G such that S(д) = ei .



(2) for any д1,д2 ∈ G such that (д1,д2) is a normal pair, there
exists д ∈ G and t ∈ T such that tд is S-irreducible and
tS(д) = S(tд) = S(Spol(д1,д2)).

ThenG is aS-Gröbner basis of I . The analogue result usingd-normal

pairs to recognize anSd -GB in I ≤d is also true.

Remark 4.3. The converse of this result is clear.

Theorem 4.2 is an analogue of the Buchberger criterion for trop-
ical S-Gröbner bases. To prove it, we adapt the classical proof of
the Buchberger criterion and the proof of the tropical Buchberger
algorithm of Chan andMaclagan (Algorithm 2.9 of [C13]).We need
two lemmata, the �rst one being elementary.

Lemma 4.4. Let xα ,xβ ,xγ , xδ ∈ T and P ,Q ∈ A be such that

LM(xα P) = LM(xβQ) = xγ and xδ = lcm(LM(P),LM(Q)). Then

Spol(xαP ,xβQ) = xγ−δ Spol(P ,Q).

Lemma 4.5. Let G be an S-Gröbner basis of I up to some signa-
ture σ . Let h ∈ I , be such that S(h) ≤ σ . Then there exist r ∈ N,
д1, . . . ,дr ∈ G, Q1, . . . ,Qr ∈ A such that for all i and xα a mono-
mial of Qi , S(x

αдi ) = xα S(дi ) ≤ S(h) and LT (Qiдi ) ≤ LT (h), the
xα S(дi )’s are all distinct and non-zero, and, �nally, we have

h =

r∑

i=1

Qiдi .

Proof. It is clear by linear algebra. One can form a Macaulay
matrix whose rows correspond to polynomials cτд with τ ∈ T , c ∈
k∗,д ∈ G such that S(τд) = τS(д) ≤ S(h). Only one row is possible
per non-zero signature, and each monomial in LM(I≤σ ) is reached
as leading term by only one row. It is then enough to stack h at the
bottom of this matrix and perform a tropical LUP form computa-
tion (see Algorithm 2) to read the Qi ’s on the reduction of h. �

PROOF of Theorem 4.2. We prove the main result by induc-
tion on the signature. We follow the order ≤siдn for the induction.
It is clear for σ = e1 and also for the fact we can pass from an
S-GB up to <siдn ei to ≤siдn ei . We write the elements of G as
д1, . . . ,дr for some r ∈ Z>0.

Let us assume that G is an S-GB up to signature <siдn σ for
some signature σ and let us prove it is aS-GB up to ≤siдn σ . We
can assume that allд ∈ G satisfy LC(д) = 1. Let P ∈ I be irreducible,
with LC(P) = 1 and such that S(P) = σ . We prove that there is
τ ∈ T ,д ∈ G such that LM(P) = LM(τд) and S(τд) = τS(д) = σ .

Our �rst assumption for G implies that there exist at least one
д ∈ G and some τ ∈ T such that τS(д) = S(P) = σ .

If LM(τд) =≤ LM(P) we are done. Otherwise, by Lemma 3.16,
there exist some a,b ∈ k∗ such that S(aP + bτд) = σ ′ for some
σ ′ <siдn σ .

We can apply Lemma 4.5 to aP +bτд and obtain that there exist
h1, . . . ,hr ∈ A, such that P =

∑r
i=1 hiдi , and for all i, and x

γ mono-

mial of hi , the x
γ S(дi ) = S(xγдi ) ≤siдn σ are all distincts. We re-

mark that LT (P) ≤ maxi (LT (дihi )). We denote bymi := LT (дihi ).
Among all such possible ways of writing P as

∑r
i=1 hiдi , we de-

�ne β as the minimum of the maxi (LT (дihi ))’s. Such a β exists
thanks to Lemma 2.10 in [CM13] (adaptation to the non-homogeneous
setting is for free). We write xu = LM(β).

If LT (P) =≤ β , then we are done. Indeed, there is then some i
and τ in the terms of hi such that LM(τдi ) = LM(P) and S(τдi ) =
τS(дi ) ≤siдn σ .

We now show that LT (P) < β leads to a contradiction.

We can renumber the дi ’s so that:

• β =≤ m1 =≤ · · · =≤ md .
• β >mi for i > d .

We can assume that among the set of possible (h1, . . . ,hr ) that
reaches β , we take one such that this d is minimal.

Since LT (P) < β , then we have d ≥ 2.
We can write

Spol(д1,д2) = LC(д2)
lcm(LM(д1),LM(д2))

LM(д1)
д1

− LC(д1)
lcm(LM(д1),LM(д2)

LM(д2)
д2 .

By construction,LM(h1)S(д1) , LM(h2)S(д2), so (LM(h1)д1,LM(h2д2)
is a normal pair. By Lemma 4.4, there exists a term µ such that

µ
lcm(LM(д1),LM(д2))

LM(дi )
= LM(hi) for i ∈ {1, 2}. So by Lemma 3.17,

(д1,д2) is a normal pair as well.
If S(Spol(д1,д2)) = σ , by the second property of the F5 criterion,

we are done.
Otherwise, S(Spol(д1,д2)) <siдn σ . Moreover, let

L =
LC(h1д1)

LC(д1)LC(д2)

xu

lcm(LM(д1), LM(д2))
.

Then we have S(L · Spol(д1,д2)) ≤siдn σ thanks to Lemma 4.4. Us-
ing the same construction as beforewith the �rst assumption of the
F5 criterion and Lemmata 3.16 and 4.5, we obtain some h′i ’s such

that L ·Spol(д1,д2) =
∑r
i=1 h

′
iдi , LT (h

′
iдi ) ≤ LT (L ·Spol(д1,д2)) < β

for all i . Furthermore, the signatures S(xαдi ) = xα S(дi ) for i ∈
{1, . . . , r } and xα in the support of h′i are all distincts.

We then get:

P =

r∑

i=1

hiдi ,

=

r∑

i=1

hiдi − L · Spol(д1,д2) +

r∑

i=1

h′iдi ,

=

(
h1 −

LC(h1д1)

LC(д1)

xu

LM(д1)
+ h′1

)
д1

+

(
h2 −

LC(h1д1)

LC(д2)

xu

LM(д2)
+ h′2

)
д2 +

r∑

i=3

(
hi + h

′
i

)
дi ,

=:

r∑

i=1

h̃iдi ,

where the h̃i ’s are de�ned naturally.

By construction, LT (h̃1д1) < LT (h1д1) = β and LT (h̃i) ≤ β for

i ≤ d and LT (h̃i) < β for i > d .
As a consequence, we have obtained a new expression for f with

either maxi (LT (h̃i )) < β or this term attained stricly less than d
times, which is in either case a contradiction with their de�nitions
as minima. So LT (P) =≤ β , which concludes the proof of the main
result. It is then direct to adapt the previous proof to the case of an
Sd -GB. �

This theorem holds also forS-GB (orSd -GB) up to a given sig-
nature. We have the following variant as a corollary for compati-
bility with sugar-degree:



Proposition 4.6. Suppose that d ∈ Z>0, and G is a �nite set of
polynomials of I such that:

(1) Any д ∈ G isSd -irreducible in I
≤d
.

(2) For all д1,д2 ∈ G we have д1,д2 and Spol(д1,д2) in I
≤d
.

(3) For all i ∈ J1, sK, there exists д ∈ G such that Sd (д) = ei .
(4) for any д1,д2 ∈ G such that (д1,д2) is a d-normal pair, there

exists д ∈ G and t ∈ T such that tд is Sd -irreducible and
tSd (д) = Sd (tд) = Sd (Spol(д1,д2)).

ThenG is anS-Gröbner basis of I .

5 F5 ALGORITHM

In this section, we present our F5 algorithm. To this intent, we need
to discuss some crucial algorithmic points: how to recognize with
which pairs to proceed and how to build the Macaulay matrices
and reduce them. Some algorithms are on the following page.

5.1 Admissible pairs and guessed signatures

The second condition in the De�nition 4.1 of normal pairs is not
possible to check in advance in an F5 algorithm. One needs an
S-Gröbner basis up to the corresponding signature to be able to
certify it. To circumvent this issue, we use the weaker notion of
admissible pair.

De�nition 5.1 (d-Admissible pair). Givenд1,д2 ∈ I
≤d
, let Spol(д1,д2) =

u1д1 − u2д2 be the S-polynomial of д1 and д2 .We have

ui =
lcm(LM(д1),LM(д2))

LT (дi )
.

We say that (д1,д2) is a d-admissible pair if:

(1) LM(ui)Sd (дi ) = xαi eji < LM(TSyz).

(2) LM(u1)Sd (д1) , LM(u2)Sd (д2).

To certify that a set is an Sd -GB, handling d-admissible pairs
instead of d-normal pairs is harmless. Indeed, d-normal pairs in

I ≤d are contained inside the d-admissible pairs. Whether a pair is
d-admissible can be checked easily before proceeding to reduction.

During the execution of the algorithm, when a polynomial xαд
is processed, it is at �rst not possible to know what is its signa-
ture. Algorithm 3 has computed Sd (д) beforehand. Thanks to the
F5 elimination criterion (Prop 3.7), we can detect some of the xαд
such that S(xαд) , xα S(д) and eliminate them. For the processed
polynomials, we use xα Sd (д) as a guessed signature in the algo-
rithm. Once anS-GB up to signature < xα Sd (д) is computed, we
have the following alternative. First case: Sd (x

αд) < xα Sd (д) and
xαд reduces to zero (by the computed Sd -GB up to d-signature
< xα Sd (д)). The guessed signature was wrong but it is harmless as
the polynomial is useless anyway. Second case: Sd (x

αд) = xα Sd (д),
and then the guessed signature is certi�ed. Once the criterion of
Proposition 4.6 is satis�ed, all signatures are certi�ed.

What happens when we can obtain f with signature Sd (f ) =

xα ei in degree d , and Sd+1(f ) = xβej <siдn xα ei in degree d +
1? Thanks to the way Algorithm 1 handles polynomials, always
looking for smallest signature available, f and its multiples will
then be built using only the second way. The �rst way of writing
will at most appear so as to be reduced by the second one.

5.2 Symbolic Preprocessing and Rewritten
criterion

One of the main parts of the F5 algorithm 3 is the Symbolic Prepro-
cessing : Algorithm 1. From the current set of S-pairs, sugar-degree
d , and the current Sd−1-GB, it produces a Macaulay matrix. One
can read on the tropical reduction of this matrix new polynomi-
als to append to the current basis to obtain an Sd -GB. It mostly
consists of detecting which pairs are admissible and selecting a
(complete) set of reductors.

A special part of the algorithm is the use of Rewritten tech-
niques (due to Faugère (see [F02])).

The idea is the following. Once a polynomial has passed the
F5 elimination criterion and is set to appear in a Macaulay ma-
trix, it can be replaced by any other multiple of an element of G
of the same d-signature. Indeed, assuming correctness of the al-
gorithm without any rewriting technique, if one of them, h, is of
d-signature xα ei , the algorithm computes a tropicalS-Gröbner ba-
sis up to d-signature <siдn xα ei . Hence, h can be replaced by any
other polynomial of same signature: it would be reduced to the
same polynomial. By induction, one can prove that all of them can
be replaced at the same time. We also remark that this is still valid
for replacing a row of a given guessed d-signature by another of
the same guessed d-signature.

One e�cient way is to replace a polynomial t ×д by the polyno-

mial xβh (h ∈ G) of same (guessed)d-signature tSd (д) such that x
β

has smallest degree.3 Taking the sparsest available is another pos-
sibility. It actually leads to a substantial reduction of the running
time of the F5 algorithm.

5.3 Linear algebra

To reduce the Macaulay matrices while respecting the signatures,
we use the following tropical LUP algorithm from [V15]: Algo-
rithm 2. If the rows correspond to polynomials ordered by increas-
ing signature, it computes a row-reduction, respecting the signa-
tures with each non-zero row with a di�erent leading monomial.

5.4 A Complete Algorithm

We now provide with Algorithm 3 a complete version of an F5 al-
gorithm wich uses Buchberger-F5 criterion and all the techniques
introduced in this section.

Theorem 5.2. Algorithm 3 computes anS-GB of I . It avoids triv-
ial tame syzigies.

Proof. It relies on Theorem 4.2 and then Proposition 4.6. The
proof is by induction on the sugar-degree, then i , then the xα ei .
One �rst proves that at the end of the main while loop any guessed
signature is correct, or its row has reduced to zero, and then that
Sd -GB are computed, signature by signature. One can then apply
4.6 on the output to conclude. Termination is a consequence of
correctness and Prop. 3.14. For the syzygies, it is a consequence
of Prop. 3.7 and the fact that trivial syzygies of leading monomial
xα ei are such that xα ∈ LM(〈f1, . . . , fi−1〉). �

Remark 5.3. Condition 1 of 4.2 and 3 of 4.6 is not satis�ed when
for some i, fi ∈ 〈f1, . . . , fi−1〉 . This is harmless as: (1) As soon
as it is found by computation, no signature in ei will appear any-
more. (2) The Buchberger-F5 criterion can be applied omitting fi .

3Indeed, such an h can be considered as one of the most reduced possible.



Algorithm 1: Symbolic-Preprocessing-Rewritten

input :P , a set of d − 1-admissible pairs of sugar-degree

d and G such thatG ∩ I ≤d−1 is anSd−1-GB
output :A Macaulay matrix of degree d

1 for Q polynomial in P do
2 Replace Q in P by the polynomial (uS(д),u × д) with д

latest added toG reaching the same guessed
signature ;

3 C ← the set of themonomials of the polynomials in P ;

4 U ← the polynomials of P with their signature, except

only one polynomial is taken by guessed signature ;

5 D ← ∅ ;

6 while C , D do
7 m ← max(C \ D) ;

8 D ← D ∪ {m} ;

9 V ← ∅ ;

10 for д ∈ G do
11 if LM(д) | m then
12 V ← V ∪ {(д, m

LM(д)
)} ;

13 (д, δ ) ← the element ofV with δ × д of smallest
guessed signature not already in the signatures of U,
with tie-breaking by taking minimal δ (for degree
then for ≤siдn) ;

14 U ← U ∪ {δ × д} ;

15 C ← C ∪ {monomials of δ × д} ;

16 M ← the polynomials ofU , written in a Macaulay matrix

and ordered by increasing guessed signature ;

17 ReturnM ;

Algorithm 2: The tropical LUP algorithm

input :M , a Macaulay matrix of degree d in A, with
nrow rows and ncol columns, andmon a list of
monomials indexing the columns ofM .

output :M̃ , the U of the tropical LUP-form ofM

1 M̃ ← M ;

2 if ncol = 1 or nrow = 0 or M has no non-zero entry then

3 Return M̃ ;

4 else
5 for i = 1 to nrow do

6 Find j such that M̃i, j has the greatest term

M̃i, jx
monj for ≤ of the row i ;

7 Swap the columns 1 and j of M̃ , and the 1 and j

entries ofmon;

8 By pivoting with the �rst row, eliminates the
coe�cients of the other rows on the �rst
column;

9 Proceed recursively on the submatrix M̃i≥2, j≥2;

10 Return M̃ ;

Algorithm 3: A complete F5 algorithm

input : f1, . . . , fs polynomials, ordered by degree
output :A tropicalS-GB G of 〈f1, . . . , fs 〉

1 G ← {(ei , fi ) for i in J1, sK} ;

2 B ← {S-pairs ofG} ; d ← 1 ;

3 while B , ∅ do
4 if there is i s.t. | fi | = d then
5 Replace the occurence of fi inG by its reduction

moduloG ∩ 〈f1, . . . , fi−1〉 ;

6 P receives the pop of the d − 1-admissible pairs in B
of sugar-degree d . Suppress from B the others of
sugar-degree d ;

7 Write them in a Macaulay matrix Md , along with
theirSd -reductors obtained from G (one per
signature) by
Symbolic-Preprocessing-Rewritten(P ,G)
(Algorithm 1);

8 Apply Algorithm 2 to compute the U in the tropical

LUP form ofM (no choice of pivot) ;

9 Add toG all the polynomials obtained from M̃ that
provide new leading monomial up to their
d-signature ;

10 Add to B the corresponding new d-admissible pairs ;

11 d ← d + 1 ;

12 Return G ;

6 OTHER ALGORITHMS

6.1 Iterative F5

In this subsection, we present brie�y another way of extending the
F5 algorithm to the a�ne setting: a completely iterative way in the
initial polynomials. The idea is to compute tropical Gröbner bases
for 〈f1〉 , 〈f1, f2〉 , . . . , 〈f1, . . . , fs 〉 .

This corresponds to using the position over term ordering on
the signatures, or in terms of �ltration, to the following �ltration
on As :

De�nition 6.1. We write that xα ei ≤incr x
βej if:

(1) if i < j .

(2) if i = j and |xα fi | < |x
β fj |.

(3) if i = j and |xα fi | = |x
β fj |, and

• xα < LM(Ii−1) and x
β ∈ LM(Ii−1), or

• both xα ,xβ ∈ LM(Ii−1) and x
α ≤ xβ , or

• both xα ,xβ < LM(Ii−1) and x
α ≤ xβ .

Proposition 6.2 ([F02]). If xα ∈ LM(Ii−1), then the �ltration is
constant at

I≤xα ei .

Proof. We can write xα + д =
∑
j<i aj fj , with for all j aj ∈ I ,

and д ∈ I with no monomial in LM(Ii−1). Then: x
α fi = (−д)fi +∑i−1

j=1(aj fi )fj , and the �ltration is constant at I≤xα ei . �

It is then possible to state a Buchberger-F5 criterion and provide
an adapted F5 algorithm. The two algorithms will then di�er in the
following way. 1. For a given xα and ei , the vector space I<xα ei



is much bigger in the iterative setting, often of in�nite dimension.
Thus, polynomials of signature xα ei can bemore deeply reduced. 2.
More syzygies can be avoided in the iterative setting. 3. However,
many more matrices are to be produced: one for each i and each
necessary degree. Construction of the matrices is not mutualised
by degree anymore.

6.2 F4

Another way to compute tropical Gröbner bases for a�ne polyno-
mials is to adapt Faugère’s F4 algorithm [F99]

Roughly, the F4 algorithm is an adaptation of Buchberger’s algo-
rithm such that: all S-polynomials of a given degree are processed
and reduced together in a big Macaulay matrix, along with their
reducers. The algorithm carries on the computation until there is
no S-polynomials to reduce.

In a tropical setting, we have adapted the so-called "normal strat-
egy" of F4 using the tropical LUP algorithm to reduce theMacaulay
matrices. We have used Algorithm 2 to reduce the Macaulay ma-
trices. So-called tropical row-echelon forms (Algorithm 3.2.2 and
3.7.3 of [V15]) are also possible, enabling a trade-o� between speed,
thoroughness of the reduction and loss in precision.

7 NUMERICAL EXPERIMENTS

A toy implementation of our algorithms in Sagemath [Sage] is
available on https://gist.github.com/TristanVaccon. We have gath-
ered some numerical results in the following arrays. Timings are

in seconds of CPU time.4

7.1 Benchmarks

Here, the base �eld isQwith 2-adic valuation.We have applied the
tropical F5 algorithm, Algorithm 3, an iterative tropical F5, and a
tropical F4 algorithm on the Katsura n and Cyclic n systems for
varying n. Dots mean no conclusion in decent time.

w=[0,. . . ,0] Katsura 4 5 6 7 Cyclic 4 5 6

Trop F5 .16 1.2 1371 • 0.4 21 •

Iterative trop F5 0.3 1.9 1172 • 0.4 21 •

Trop F4 .5 5 30 • 1.7 112 •

w = [(−2)i−1] Katsura 4 5 6 7 Cyclic 4 5 6

Trop F5 0.15 0.8 17 • 0.18 11 •

Iterative trop F5 0.18 1.1 20 • 0.18 11 •

Trop F4 0.2 1.7 15 • 1 65 •

7.2 Trop. F5+FGLM

For a given p, we take three polynomials with random coe�cients
in Zp (using the Haar measure) in Qp [x,y,z] of degree 2 ≤ d1 ≤
d2 ≤ d3 ≤ 4. We �rst compute a tropical Gröbner basis for the

weightw = [0, 0, 0]5 and the grevlex monomial ordering, and then
apply an FGLM algorithm (tropical to classical as in Chapter 9 of
[V*]) to obtain a lex GB. For any given choice of di ’s, we repeat the
experiment 50 times. Coe�cients of the initial polynomials are all

given at some high-enough precisionO(pN ) for no precision issue
to appear. We can not provide a certi�cate on the monomials of the
output basis though. Results are compiled in the following arrays.

4Everything was performed on a Ubuntu 16.04 with 2 processors of 2.6GHz and 16
GB of RAM.
5E�ciency of this choice regarding to the loss in precisionwas studied in the extended
version of [V15]

Firstly, an array for timings given as couples: average of the
timings for the tropical F5 part and for the FGLM part, with D =
d1+d2+d3−2, the Macaulay bound.We add that for p = 2, 3, there
is often a huge standard deviation on the timings of the F5 part.

D = 4 5 6 7 8 9

p = 2 .7 0.2 2.5 0.5 18 2.3 300 11 50 37 145 138

3 .8 .2 .9 .5 4 2 9 11 16 37 80 144

101 0.3 .2 .5 .5 1 2 3 10 4.6 37 11 150

65519 .4 .2 .6 .6 1.3 2.6 3.5 11 5 39 10 132

Coe�cients of the output tropical GB or classical GB are known

at individual precision O(pN−m).We compute the total mean and
max on thosem’s on the obtained GB. Results are compiled in the
following array as couples of mean and max. The �rst array is for
the F5 part and the second for the precision on the �nal result.

D = 4 5 6 7 8 9

p = 2 1.3 13 1.3 13 1.3 14 1.5 13 1.4 17 1.3 15

3 .6 6 .7 8 .7 7 .6 7 .6 7 .6 10

101 0 1 0 1 0 1 0 2 0 2 0 1

65519 0 0 0 0 0 1 0 0 0 0 0 0

D = 4 5 6 7 8 9

p = 2 8 71 17 170 58 393 167 913 290 1600 570 3900

3 5 38 13 114 27 230 81 640 167 1600 430 3100

101 .2 11 0 2 1.3 80 4 210 8 407 0 2

65519 0 0 0 0 0 0 0 0 0 0 0 0

Most of the loss in precision appears in the FGLM part. In compar-
ison, the F5 part is quite stable, and hence, our goal is achieved.
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