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Let K be a eld equipped with a valuation. Tropical varieties over K can be de ned with a theory of Gröbner bases taking into account the valuation of K. Because of the use of the valuation, the theory of tropical Gröbner bases has proved to provide settings for computations over polynomial rings over a p-adic eld that are more stable than that of classical Gröbner bases.

Beforehand, these strategies were only available for homogeneous polynomials. In this article, we extend the F5 strategy to a new de nition of tropical Gröbner bases in an a ne setting.

We provide numerical examples to illustrate time-complexity and p-adic stability of this tropical F5 algorithm. We also illustrate its merits as a rst step before an FGLM algorithm to compute (classical) lex bases over p-adics.

INTRODUCTION

Tropical geometry as we understand it has not yet reached half a century of age. It has nevertheless spawned signi cant applications to very various domains, from algebraic geometry to combinatorics, computer science, economics, non-archimedean geometry (see [START_REF] Maclagan | Introduction to tropical geometry[END_REF], [START_REF] Einsiedler | Douglas Nonarchimedean amoebas and tropical varieties[END_REF]) and even attempts at proving the Riemann hypothesis (see [C15]).

E ective computation over tropical varieties make decisive use of Gröbner bases. Since Chan and Maclagan's de nition of tropical Gröbner bases taking into account the valuation in [START_REF] Chan | Gröbner bases over elds with valuations and tropical curves by coordinate projections[END_REF][START_REF] Chan | Diane Gröbner bases over elds with valuations[END_REF], computations of tropical Gröbner bases are available over elds
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On the other hand, for classical Gröbner bases, numerous algorithms have been developed allowing for more and more e cient computations. The latest generation of algorithms for computing Gröbner bases is the family of signature-based algorithms, which keep track of where the polynomials come from in order to anticipate useless reductions. This idea was initiated in Algorithm F5 [F02], and has since then been widely studied and generalized ( [START_REF] Bardet | On the Complexity of the F5 Gröbner basis Algorithm[END_REF][START_REF] Christian | A survey on signature-based algorithms for computing Gröbner bases[END_REF]).

Most of those algorithms, including the original F5 algorithm, are speci cally designed for homogeneous systems, and adapting them to a ne (or inhomogeneous) systems requires special care (see [E13]).

An F5 algorithm computing tropical Gröbner bases without any trivial reduction to 0, inspired by the classical F5 algorithm, has been described in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF]. The goal of this paper is to extend the de nition of tropical Gröbner bases to inhomogeneous ideals, and describe ways to adapt the F5 algorithm in this new setting.

The core motivation is the following. It has been proved [V15] that computing tropical Gröbner bases, taking into account the valuation, is more stable for polynomial ideals over a p-adic eld than classical Gröbner bases.

Thus, an a ne variant of tropical Gröbner bases is highly desirable to handle non-homogeneous ideals over p-adics. For classical Gröbner bases, it is always possible to homogenize the input ideal, compute a homogeneous Gröbner basis, and dehomogenize the result. This technique is not always optimal, because the algorithm may end up reaching a higher degree than needed, computing points at in nity of the system, but it always gives a correct result and, in the case of signature Gröbner basis algorithms, is able to eliminate useless reductions. However, in a tropical setting, terms are ordered with a tropical term order, taking into account the valuation of the coe cients. As far as we know it, there is no way to dehomogenize a system in a way that would preserve the tropical term order. Indeed, no tropical term order can be an elimination order.

Moreover, the FGLM algorithm can be adapted to the tropical case (see Chap. 9 of [V*]), making it possible to compute a lexicographical (classical) Gröbner basis from a tropical one. We provide numerical data to estimate the loss in precision for the computation of a lex Gröbner basis using a tropical F5 algorithm followed by an FGLM algorithm, in an a ne setting.

Related works

A canonical reference for an introduction to computational tropical algebraic geometry is the book of Maclagan and Sturmfels [START_REF] Maclagan | Introduction to tropical geometry[END_REF].

The computation of tropical varieties over Q with trivial valuation is available in the Gfan package by Anders Jensen (see [Gfan]), by using standard Gröbner bases computations. Chan and Maclagan have developed in [START_REF] Chan | Diane Gröbner bases over elds with valuations[END_REF] a Buchberger algorithm to compute tropical Gröbner bases for homogeneous entry polynomials (using a special division algorithm). Following their work, still for homogeneous polynomials, a Matrix-F5 algorithm has been proposed in [V15] and a Tropical F5 algorithm in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF]. Markwig and Ren have provided a completely di erent technique of computation using projection of standard bases in [START_REF] Markwig | Yue Computing tropical varieties over elds with valuation[END_REF], again only for homogeneous entry polynomials.

In the classical Gröbner basis setting, many techniques have been studied to make the computation of Gröbner bases more efcient. In particular, Buchberber's algorithm is frequently made more e cient by using the sugar-degree (see [START_REF] Alessandro | One sugar cube, please" or selection strategies in the Buchberger algorithm[END_REF][START_REF] Bigatti | Computing inhomogeneous Gröbner bases[END_REF]) instead of the actual degree for selecting the next pair to reduce. This technique was a precursor of modern signature techniques, in the sense that the sugar-degree of a polynomial is exactly the degree of its signature. General signature-based algorithms for computing classical Gröbner bases of inhomogeneous ideals have been extensively studied in [E13].

Speci cities of computating tropical GB

The computation of tropical GB, even by a Buchberger-style algorithm, is not as straightforward as for classical Gröbner bases. One way to understand this is the following: even for homogeneous ideals, there is no equivalence between tropical Gröbner bases and row-echelon linear bases at every degree. Indeed,we can remark that

(f 1 , f 2 ) = (x + , 2x + ) is a tropical GB over Q[x,
] with 2adic valuation, w = [0, 0] and grevlex ordering. Nevertheless, the corresponding 2 × 2 matrix in the vector space of homogeneous polynomials of degree 2 is not under tropical row-echelon form.

As a consequence, reduction of a polynomial by a tropical GB is not easy. In [START_REF] Chan | Gröbner bases over elds with valuations and tropical curves by coordinate projections[END_REF][START_REF] Chan | Diane Gröbner bases over elds with valuations[END_REF], Chan and Maclagan relied on a variant of Mora's tangent cone algorithm to obtain a division algorithm. In [START_REF] Vaccon | Matrix-F5 Algorithms and Tropical Gröbner Bases Computation[END_REF][START_REF] Vaccon | A Tropical F5 algorithm[END_REF], the authors relied on linear algebra and the computation of (tropical) row-echelon form. In this article, we extend their method to the computation of tropical Gröbner bases in an a ne setting, through an F5 algorithm.

Main idea and results

Extending the tropical F5 algorithm to inhomogeneous inputs poses two di culties. First, as mentioned, tropical Gröbner bases used to be only de ned and computed for homogeneous systems. Even barebones algorithms such as Buchberger's algorithm are not available for inhomogeneous systems. The second problem is a general problem of signature Gröbner bases with inhomogeneous input. The idea of signature algorithms is to compute polynomials with increasing signatures, and the F5 criterion detects trivial reductions to 0 by matching candidate signatures with existing leading terms. For homogeneous ideals, the degree of the signature of a polynomial and the degree of the polynomial itself are correlated. This is what makes the F5 criterion applicable.

The survey paper [E13] has shown that Algorithm F5, using the position over term ordering on the signatures, has to reach a tradeo between eliminating all reductions to 0 and performing other useless reductions.

More precisely, let f 1 , . . . , f m be homogeneous polynomials with coe cients in a eld with valuation K, and de ne I k,d the vector space of polynomials in f 1 , . . . , f k with degree at most d. With the usual computational strategy, the algorithm computes a basis of I 1, 1 , then I 2, 1 , and so on until I m, 1 , and then I 1, 2 , and so on. In a lot of situations [START_REF] Bardet | On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations Proceeding of the[END_REF] ideals with more generators have a Gröbner basis with lower degree, and this strategy ensures that the algorithm does not reach a degree higher than needed.

However, the same algorithm for a ne system will, at each step, merely compute a set of polynomials in each I k,d . This set needs not be a generating set because of degree falls. To obtain a basis instead, one has to proceed up to some I k,δ with δ ≥ d. When δ > d, some polynomials will be missing for the F5 criterion in degree less than δ , and the corresponding trivial reductions to 0 will not be eliminated.

In this paper, we show that the tropical F5 algorithm [START_REF] Vaccon | A Tropical F5 algorithm[END_REF] works in an a ne setting, and we characterize those trivial reductions to 0 which are eliminated by the F5 criterion. In particular, we show that the Macaulay matrices built at each step of the computations are Macaulay matrices of all polynomials with a given sugar-degree.

Compared to [START_REF] Vaccon | A Tropical F5 algorithm[END_REF], the overall presentation of the F5 algorithms is clari ed. It can now be summarized as the following strategy: ltration, signature, F5 elimination criterion, Buchberger-F5 criterion and nally the F5 algorithm.

T 1.1. Given a set of (non-necessarily homogeneous) polynomials f 1 , . . . , f m ∈ K[X 1 , . . . , X n ], the Tropical F5 algorithm (Algorithm 3) computes a tropical Gröbner basis of I , without reducing to 0 any trivial tame syzygy (Def. 3.1).

We also examine an incremental a ne version of the homogeneous tropical F5-algorithm and an a ne tropical F4, and we compare their performances on several examples. Even in a nonhomogeneous setting, the loss in precision of the tropical F5 algorithm remains satisfyingly low.

Organization of the paper

Section 2 introduces notations and nonhomogeneous tropical Gröbner bases. Section 3 then introduces the ltration on ideals necessary for F5 algorithms in this context. Section 4 is devoted to provide a Buchberger-F5 criterion on which Section 5 elaborates a rst tropical F5 algorithm. Section 6 brie y presents other methods for the computation of nonhomogeneous tropical Gröbner bases. Finally, Section 7 displays numerical results related to the precision behaviour and time-complexity of the algorithms we have described.

AFFINE TROPICAL GB 2.1 Notations

Let k be a eld with valuation al . The polynomial ring k[X 1 , . . . , X n ] will be denoted by A. Let T be the set of monomials of A. For

u = (u 1 , . . . , u n ) ∈ Z n ≥0 , we write x u for X u 1 1 . . . X u n n and | f | for the degree of f ∈ A. In A s , (e i ) s i =1
is the canonical basis. The matrix of a list of polynomials written in a basis of monomials is called a Macaulay matrix.

Given a mapping ϕ : U → V , Im(ϕ) denotes the image of ϕ. For a matrix M, Rows(M) is the list of its rows, and Im(M) denotes the left-image of M (i.e. Im(M) = span(Rows(M)). For w ∈ Im( al) n ⊂ R n and ≤ 1 a monomial order on A, we de ne ≤ a tropical term order as in the following de nition: De nition 2.1. Given a, b ∈ k * and x α and x β two monomials in A, we write ax α < bx β if:

• |x α | < |x β |, or • |x α | = |x β |, and al(a) + w • α > al(b) + w • β, or al(a) + w • α = al(b) + w • β and x α < 1 x β . For u of valuation 0, we write ax α = ≤ uax α . Accordingly, ax α ≤ bx β if ax α < bx β or ax α = ≤ bx β .
Throughout this article, we are interested in computing a tropical Gröbner basis of I = f 1 , . . . , f s for some given f 1 , . . . , f s ∈ A (ordered increasingly by degree).

Tropical GB

A tropical term order provides an order on the terms of the polynomials f ∈ A.

De nition 2.2. For f ∈ A, we de ne LT (f ) to be the biggest term of f . We de ne LM(f ) to be the monomial corresponding to LT (f ) and LC(f ) the corresponding coe cient.

We de ne LM(I ) to be the monomial ideal generated by the monomials LM(f ) for f ∈ I .

We can then naturally de ne what is a tropical Gröbner basis (tropical GB for short):

De nition 2.3. G ⊂ I is a tropical GB of I if span(LM( ) for ∈ G) = LM(I ).
We can remark that for homogeneous polynomials this de nition coincide with that given in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF].

FILTRATION AND S-GB

De nition and elimination criterion

One of the main ingredient for F5 algorithms is the de nition of a vector space ltration of the ideal I . It is de ned from the initial polynomials F = (f 1 , . . . , f s ) generating I . For simplicity, we assume that they are ordered by increasing degree.

First, we extend ≤ to the monomials of the vector space A s . To that intent, we highlight some monomials that appear as leading monomial of a syzygy.

De nition 3.1. Let (a 1 , . . . , a s ) ∈ A s and i ∈ {1, . . . , s } be such that: (1) j a j f j = 0. (2) a i 0 and a j = 0 for j > i. (3) for all j < i,

|a j f j | ≤ |a i f i |.
We call such a syzygy a tame syzygy and we de ne LM(a i )e i to be its leading monomial. We de ne LM(T S z(F )) as the module in A s generated by the leading monomials of the tame syzygies. Trivial tame syzygies are the tame syzygies that are also trivial (i.e. in the module generated by the f i e jf j e i ).

The F5 criterion that we use in this article is designed to recognize some of the tame syzygies and use this knowledge to avoid useless reduction to zero of some polynomials. It is the main motivation for de ning a ltration on the vector space A s . We use a degree-re ning monomial ordering ≤ m on A. 1 We de ne a total order on the monomials of A s . De nition 3.2. We write that x α e i ≤ si n x β e j if:

1 ≤ m is not necessarily related to ≤ 1 and ≤.

(1

) if i < j, or (2) if i = j and |x α f i | < |x β f j |, or (3) if i = j and |x α f i | = |x β f j |, and • x α LM(T S z(F )) and x β ∈ LM(T S z(F )), or • both x α , x β ∈ LM(T S z(F )) and x α ≤ m x β , or • both x α , x β LM(T S z(F )) and x α ≤ m x β .
De nition 3.3. We consider the vector space

I ≤ s i n x α e i := Span({x β f j , s.t. x β e j ≤ si n x α e i })
and the vector space I < s i n x α e i de ned accordingly. We de ne I =

↑x α e i I ≤ s i n x α e i as an increasing vector space ltration of I .

We then have a very natural de nition of signature. In litterature, this notion of signature is sometimes called minimal signature.

De nition 3.4. For f ∈ I , the smallest x α e i such that f ∈ I ≤ s i n x α e i is called the signature of f and noted S(f ).

The degree |x α f i | is called the sugar-degree of x α e i . 2 For the purpose of Algorithm 3, we design a ltration compatible with the sugar-degree.

De nition 3.5. We consider the vector space

I ≤d = Span({x β f j , s.t. |x β e j | ≤ d })
We then de ne, for x α e i with sugar-degree d, the vector space I ≤d ≤ s i n x α e i = Span({x β f j , s.t. x β e j ≤ si n x α e i and |x β f j | ≤ d }). I = ↑d I ≤d is also a vector space ltration. I ≤d can itself be ltrated by the I ≤d ≤ s i n x α e i . We have a compatible notion of signature:

De nition 3.6. For d ∈ Z >0 and f ∈ I ≤d , the smallest x α e i such that f ∈ I ≤d ≤ s i n x α e i is called the d-signature of f and noted S d (f ).

We remark that S d (f ) can be di erent from S(f ) for small f , but all S d (f ) are equal when d is large.

The main motivation for de ning the vector spaces I ≤d ≤ s i n x α e i is their nite dimension. Their compatibility with the sugar-degree allows the F5 algorithm to compute only one Macaulay matrix by sugar-degree d.

The goal of the F5 criterion is to recognize some x α e i such that the ltration is constant at I ≤d ≤ s i n x α e i . As a consequence, this knowledge allows to skip some calculation as, because of this constancy, they will not provide any new leading monomial. We can then state a rst version of the F5 elimination criterion:

P 3.7 ([F02]). If x α is such that x α e i ∈ LM(Ts z(F )), d ≥ |x α f i |, then the ltration is constant at I ≤d ≤ s i n x α e i . If x α ∈ LM(I ≤d ≤ s i n x β e j
) for some x β and j such that |x β f j | ≤ |x α |, then

x α e i ∈ LM(Ts z(F )) for any i > j.

P

. For the rst part, we can write (x α + )f i = j <i a j f j , with LT ( ) < x α and for all j < i, |a j f j | ≤ |x α f i |. Then:

x α f i = (-)f i + i -1 j=1 a j f j .
2 Sugar-degree has been introduced and explored in [START_REF] Alessandro | One sugar cube, please" or selection strategies in the Buchberger algorithm[END_REF][START_REF] Bigatti | Computing inhomogeneous Gröbner bases[END_REF].

By linear algebra and a complete reduction using as pivot the x β e j ∈ LM(Ts z(F )), we can assume that has no monomial in LM(T S z(F )) and obtain: x α f i ∈ I ≤d <x α e i , and therefore, the ltration is constant at I ≤d ≤x α e i . For the second part, we can write

x α + = k ≤j a k f k , with LT ( ) < x α and for all k ≤ j, |a j f j | ≤ |x β f j | ≤ |x α |. Then (x α + )f i -k ≤j (a k f i )f k = 0 and we do have |x α f i | ≥ |(a k f i )f k | for all k ≤ j.
If all the f i 's are homogeneous, this coincides with the usual F5 elimination criterion, as for example stated in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF], which eliminates all trivial reductions to zero in the course of the algorithm. For a ne polynomials, the F5 criterion only eliminates those trivial reductions which are tame.

Tropical S-GB

In order to take advantage of the F5 elimination criterion to compute tropical Gröbner bases, we focus on the computation of tropical Gröbner bases which are compatible with the ltration: tropical S-GB. We rst need the de nition of reductions compatible with the ltration and the corresponding irreducible polynomials.

De nition 3.8 (S-reduction)

. Let e, ∈ I , h ∈ I . We say that e S-reduces to with h, e → h S , if there are t ∈ T and α ∈ k * such that:

• LT ( ) < LT (e), LM( ) LM(e) and eαth = and • S(th) < si n S(e).

It is then natural to de ne what is an S-irreducible polynomial.

De nition 3.9 (S-irreducible polynomial). We say that ∈ I is S-irreducible if there is no h ∈ I which S-reduces . If there is no ambiguity, we might omit the S -.

De nition 3.10 (Tropical S-Gröbner basis). We say that G ⊂ I , a set of S-irreducible polynomials, is a tropical S-Gröbner basis (or tropical S-GB, or just S-GB for short when there is no ambiguity) of I with respect to a given tropical term order, if for each S-irreducible polynomial h ∈ I , there exist ∈ G and t ∈ T such that LM(t ) = LM(h) and tS( ) = S(h).

De nition 3.11. De nitions 3.8, 3.9 and 3.10 have natural analogues when one restricts to the vector space I ≤d and S d with S dreduction, S d -irreducible polynomial and tropical S d -GB. P 3.12. If G is a tropical S-Gröbner basis, then for any nonzero h ∈ I , there exist ∈ G and t ∈ T such that:

• LM(t ) = LM(h) • S(t ) = tS( ) = S(h) if h is irreducible, and S(t ) = tS( ) < si n S ( 
h) otherwise. Hence, there is an S-reductor for h in G when h is not irreducible. As a consequence computing a tropical S-GB provides a tropical GB, and we can use the F5 elimination criterion 3.7 to our advantage when computing these tropical S-GB. Moreover, we also have the following niteness result: P 3.14. Every tropical S-Gröbner basis contains anite tropical S-Gröbner basis.

P

. We refer to the proof of Proposition 14 of [AP]. It uses an adapted Dickson's Lemma and since it is mostly a question of monomial ideals, the transposition to the tropical setting is direct.

Linear algebra and existence

For x α ∈ T and 1 ≤ i ≤ n, let us denote by Mac ≤ s i nx α e i (F ) the Macaulay matrix of the polynomials x β f j such that x β f j ≤ x α f i , ordered increasingly for the order on the x β e j 's. One can perform a tropical LUP algorithm on Mac ≤d (F ) (see Algo. 2) and obtain all the leading monomials in I ≤ s i n x α e i . This can be (theoretically) performed for all x α e i to obtain the existence of an S-GB of I .

More on signatures

We de ne Σ to be the set of signatures.

Thanks to Proposition 3.7, not all x α e i can be a signature:

Remark 3.15. If x α e i ∈ LM(T S z(F )) then x α e i Σ.
We provide two lemmata to understand the compatibility of Σ with basic operations on polynomials. If one takes the point of view of linear algebra, the proof is direct.

L 3.17. If ∈ I and τ ∈ T then S(τ ) ≤ τS( ). If moreover τS( ) ∈ Σ, then S(τ ) = τS( ) and for all µ ∈ T such that µ divides τ , S(µ ) = µS( ).

P

. The rst part is direct. For the second part, one can show that it is possible to write that τ = h+r for some h ∈ I of signature τS( ), irreducible, and r ∈ I < s i n τ S ( ) and conclude that S(τ ) = τS( ).

For the last statement, assume that there exists a µ ∈ T dividing τ such that S(µ ) < µS( ). Then S(τ ) = S( τ µ µ ) ≤ τ µ S(µ ) < τ µ µS( ) = τS( ), which is a contradiction.

BUCHBERGER-F5 CRITERION

In this section, we explain a criterion, the Buchberger-F5 criterion, on which we build our F5 algorithm to compute tropical S-Gröbner bases. It is an analogue of the Buchberger criterion which includes the F5 elimination criterion. We need a slightly di erent notion of S-pairs, called here normal pairs and can then state the Buchberger-F5 criterion.

De nition 4.1 (Normal pair). Given 1 , 2 ∈ I , let Spol( 1 , 2 ) = u 1 1u 2 2 be the S-polynomial of 1 and 2 , with for i ∈ {1, 2},

u i = l cm(LM( 1 ), LM( 2 )) LT ( i )
. We say that ( 1 , 2 ) is a normal pair if:

(1) the i 's are S-irreducible polynomials.

(2) S(u i i ) = LM(u i )S( i ) for i = 1, 2.

(3) S(u 1 1 ) S(u 2 2 ).

We de ne accordingly d-normal pairs in I ≤d .

T 4.2 (B F5

). Suppose that G is a nite set of S-irreducible polynomials of I = f 1 , . . . , f s such that:

(1) for all ∀i ∈ 1, s , there exists ∈ G such that S( ) = e i .

(2) for any 1 , 2 ∈ G such that ( 1 , 2 ) is a normal pair, there exists ∈ G and t ∈ T such that t is S-irreducible and tS( ) = S(t ) = S(Spol( 1 , 2 )). Then G is a S-Gröbner basis of I . The analogue result using d-normal pairs to recognize an S d -GB in I ≤d is also true.

Remark 4.3. The converse of this result is clear. Theorem 4.2 is an analogue of the Buchberger criterion for tropical S-Gröbner bases. To prove it, we adapt the classical proof of the Buchberger criterion and the proof of the tropical Buchberger algorithm of Chan and Maclagan (Algorithm 2.9 of [C13]). We need two lemmata, the rst one being elementary.

L 4.4. Let x α , x β , x γ , x δ ∈ T and P, Q ∈ A be such that LM(x α P) = LM(x β Q) = x γ and x δ = lcm(LM(P), LM(Q)). Then Spol(x α P, x β Q) = x γ -δ Spol(P, Q). L 4.5.
Let G be an S-Gröbner basis of I up to some signature σ . Let h ∈ I , be such that S(h) ≤ σ . Then there exist r ∈ N, 1 , . . . , r ∈ G, Q 1 , . . . , Q r ∈ A such that for all i and x α a monomial of Q i , S(x α i ) = x α S( i ) ≤ S(h) and LT (Q i i ) ≤ LT (h), the x α S( i )'s are all distinct and non-zero, and, nally, we have

h = r i =1 Q i i . P .
It is clear by linear algebra. One can form a Macaulay matrix whose rows correspond to polynomials cτ with τ ∈ T , c ∈ k * , ∈ G such that S(τ ) = τS( ) ≤ S(h). Only one row is possible per non-zero signature, and each monomial in LM(I ≤σ ) is reached as leading term by only one row. It is then enough to stack h at the bottom of this matrix and perform a tropical LUP form computation (see Algorithm 2) to read the Q i 's on the reduction of h.

PROOF

T 4.2. We prove the main result by induction on the signature. We follow the order ≤ si n for the induction. It is clear for σ = e 1 and also for the fact we can pass from an S-GB up to < si n e i to ≤ si n e i . We write the elements of G as 1 , . . . , r for some r ∈ Z >0 .

Let us assume that G is an S-GB up to signature < si n σ for some signature σ and let us prove it is a S-GB up to ≤ si n σ . We can assume that all ∈ G satisfy LC( ) = 1. Let P ∈ I be irreducible, with LC(P) = 1 and such that S(P) = σ . We prove that there is τ ∈ T , ∈ G such that LM(P) = LM(τ ) and S(τ ) = τS( ) = σ .

Our rst assumption for G implies that there exist at least one ∈ G and some τ ∈ T such that τS( ) = S(P) = σ .

If LM(τ ) = ≤ LM(P) we are done. Otherwise, by Lemma 3.16, there exist some a, b ∈ k * such that S(aP + bτ ) = σ ′ for some σ ′ < si n σ .

We can apply Lemma 4.5 to aP + bτ and obtain that there exist h 1 , . . . , h r ∈ A, such that P = r i =1 h i i , and for all i, and x γ monomial of h i , the x γ S( i ) = S(x γ i ) ≤ si n σ are all distincts. We remark that LT (P) ≤ max i (LT ( i h i )). We denote by m i := LT ( i h i ).

Among all such possible ways of writing P as r i =1 h i i , we dene β as the minimum of the max i (LT ( i h i ))'s. Such a β exists thanks to Lemma 2.10 in [START_REF] Chan | Diane Gröbner bases over elds with valuations[END_REF] (adaptation to the non-homogeneous setting is for free). We write x u = LM(β).

If LT (P) = ≤ β, then we are done. Indeed, there is then some i and τ in the terms of h i such that LM(τ i ) = LM(P) and S(τ i ) = τS( i ) ≤ si n σ .

We now show that LT (P) < β leads to a contradiction.

We can renumber the i 's so that:

• β = ≤ m 1 = ≤ • • • = ≤ m d . • β > m i for i > d.
We can assume that among the set of possible (h 1 , . . . , h r ) that reaches β, we take one such that this d is minimal.

Since LT (P) < β, then we have d ≥ 2. We can write

Spol( 1 , 2 ) = LC( 2 ) lcm(LM( 1 ), LM( 2 )) LM( 1 ) 1 -LC( 1 ) lcm(LM( 1 ), LM( 2 ) LM( 2 ) 2 .
By construction, LM(h 1 )S( 1) LM(h 2 )S( 2 ), so (LM(h 1 ) 1 , LM(h 2 2 ) is a normal pair. By Lemma 4.4, there exists a term µ such that µ l cm(LM( 1 ), LM( 2 ))

LM( i )

= LM(h i ) for i ∈ {1, 2}. So by Lemma 3.17, ( 1 , 2 ) is a normal pair as well.

If S(Spol( 1 , 2 )) = σ, by the second property of the F5 criterion, we are done.

Otherwise, S(Spol( 1 , 2 )) < si n σ . Moreover, let

L = LC(h 1 1 ) LC( 1 )LC( 2 )
x u lcm(LM( 1 ), LM( 2))

.

Then we have S(L • Spol( 1 , 2 )) ≤ si n σ thanks to Lemma 4.4. Using the same construction as before with the rst assumption of the F5 criterion and Lemmata 3.16 and 4.5, we obtain some

h ′ i 's such that L •Spol( 1 , 2 ) = r i =1 h ′ i i , LT (h ′ i i ) ≤ LT (L •Spol( 1 , 2 ))
< β for all i. Furthermore, the signatures S(x α i ) = x α S( i ) for i ∈ {1, . . . , r } and x α in the support of h ′ i are all distincts. We then get:

P = r i =1 h i i , = r i =1 h i i -L • Spol( 1 , 2 ) + r i =1 h ′ i i , = h 1 - LC(h 1 1 ) LC( 1 ) x u LM( 1 ) + h ′ 1 1 + h 2 - LC(h 1 1 ) LC( 2 ) x u LM( 2 ) + h ′ 2 2 + r i =3 h i + h ′ i i , =: r i =1 h i i ,
where the h i 's are de ned naturally. By construction, LT (

h 1 1 ) < LT (h 1 1 ) = β and LT ( h i ) ≤ β for i ≤ d and LT ( h i ) < β for i > d.
As a consequence, we have obtained a new expression for f with either max i (LT ( h i )) < β or this term attained stricly less than d times, which is in either case a contradiction with their de nitions as minima. So LT (P) = ≤ β, which concludes the proof of the main result. It is then direct to adapt the previous proof to the case of an S d -GB. This theorem holds also for S-GB (or S d -GB) up to a given signature. We have the following variant as a corollary for compatibility with sugar-degree: P 4.6. Suppose that d ∈ Z >0 , and G is a nite set of polynomials of I such that:

(1) Any ∈ G is S d -irreducible in I ≤d .

(2) For all 1 , 2 ∈ G we have 1 , 2 and Spol( 1 , 2 ) in I ≤d .

(3) For all i ∈ 1, s , there exists ∈ G such that S d ( ) = e i . (4) for any 1 , 2 ∈ G such that ( 1 , 2 ) is a d-normal pair, there exists ∈ G and t ∈ T such that t is S d -irreducible and

tS d ( ) = S d (t ) = S d (Spol( 1 , 2 )).
Then G is an S-Gröbner basis of I .

FALGORITHM

In this section, we present our F5 algorithm. To this intent, we need to discuss some crucial algorithmic points: how to recognize with which pairs to proceed and how to build the Macaulay matrices and reduce them. Some algorithms are on the following page.

Admissible pairs and guessed signatures

The second condition in the De nition 4.1 of normal pairs is not possible to check in advance in an F5 algorithm. One needs an S-Gröbner basis up to the corresponding signature to be able to certify it. To circumvent this issue, we use the weaker notion of admissible pair.

De nition 5.1 (d-Admissible pair). Given 1 , 2 ∈ I ≤d , let Spol( 1 , 2 ) = u 1 1u 2 2 be the S-polynomial of 1 and 2 . We have

u i = lcm(LM( 1 ), LM( 2 )) LT ( i ) .
We say that ( 1 , 2 ) is a d-admissible pair if:

(1) LM(u i )S d ( i ) = x α i e j i LM(T S z).

(2) LM(u 1 )S d ( 1 ) LM(u 2 )S d ( 2 ).

To certify that a set is an S d -GB, handling d-admissible pairs instead of d-normal pairs is harmless. Indeed, d-normal pairs in I ≤d are contained inside the d-admissible pairs. Whether a pair is d-admissible can be checked easily before proceeding to reduction.

During the execution of the algorithm, when a polynomial x α is processed, it is at rst not possible to know what is its signature. Algorithm 3 has computed S d ( ) beforehand. Thanks to the F5 elimination criterion (Prop 3.7), we can detect some of the x α such that S(x α ) x α S( ) and eliminate them. For the processed polynomials, we use x α S d ( ) as a guessed signature in the algorithm. Once an S-GB up to signature < x α S d ( ) is computed, we have the following alternative. First case: S d (x α ) < x α S d ( ) and x α reduces to zero (by the computed S d -GB up to d-signature < x α S d ( )). The guessed signature was wrong but it is harmless as the polynomial is useless anyway. Second case: S d (x α ) = x α S d ( ), and then the guessed signature is certi ed. Once the criterion of Proposition 4.6 is satis ed, all signatures are certi ed.

What happens when we can obtain f with signature S d (f ) = x α e i in degree d, and S d +1 (f ) = x β e j < si n x α e i in degree d + 1? Thanks to the way Algorithm 1 handles polynomials, always looking for smallest signature available, f and its multiples will then be built using only the second way. The rst way of writing will at most appear so as to be reduced by the second one.

Symbolic Preprocessing and Rewritten criterion

One of the main parts of the F5 algorithm 3 is the Symbolic Preprocessing : Algorithm 1. From the current set of S-pairs, sugar-degree d, and the current S d -1 -GB, it produces a Macaulay matrix. One can read on the tropical reduction of this matrix new polynomials to append to the current basis to obtain an S d -GB. It mostly consists of detecting which pairs are admissible and selecting a (complete) set of reductors.

A special part of the algorithm is the use of Rewritten techniques (due to Faugère (see [F02])).

The idea is the following. Once a polynomial has passed the F5 elimination criterion and is set to appear in a Macaulay matrix, it can be replaced by any other multiple of an element of G of the same d-signature. Indeed, assuming correctness of the algorithm without any rewriting technique, if one of them, h, is of d-signature x α e i , the algorithm computes a tropical S-Gröbner basis up to d-signature < si n x α e i . Hence, h can be replaced by any other polynomial of same signature: it would be reduced to the same polynomial. By induction, one can prove that all of them can be replaced at the same time. We also remark that this is still valid for replacing a row of a given guessed d-signature by another of the same guessed d-signature.

One e cient way is to replace a polynomial t × by the polynomial x β h (h ∈ G) of same (guessed) d-signature tS d ( ) such that x β has smallest degree. 3 Taking the sparsest available is another possibility. It actually leads to a substantial reduction of the running time of the F5 algorithm.

Linear algebra

To reduce the Macaulay matrices while respecting the signatures, we use the following tropical LUP algorithm from [V15]: Algorithm 2. If the rows correspond to polynomials ordered by increasing signature, it computes a row-reduction, respecting the signatures with each non-zero row with a di erent leading monomial.

A Complete Algorithm

We now provide with Algorithm 3 a complete version of an F5 algorithm wich uses Buchberger-F5 criterion and all the techniques introduced in this section.

T 5.2. Algorithm 3 computes an S-GB of I . It avoids trivial tame syzigies.

P

. It relies on Theorem 4.2 and then Proposition 4.6. The proof is by induction on the sugar-degree, then i, then the x α e i . One rst proves that at the end of the main while loop any guessed signature is correct, or its row has reduced to zero, and then that S d -GB are computed, signature by signature. One can then apply 4.6 on the output to conclude. Termination is a consequence of correctness and Prop. 3.14. For the syzygies, it is a consequence of Prop. 3.7 and the fact that trivial syzygies of leading monomial x α e i are such that x α ∈ LM( f 1 , . . . , f i -1 ).

Remark 5.3. Condition 1 of 4.2 and 3 of 4.6 is not satis ed when for some i, f i ∈ f 1 , . . . , f i -1 . This is harmless as: (1) As soon as it is found by computation, no signature in e i will appear anymore. (2) The Buchberger-F5 criterion can be applied omitting f i .

C 3 .

 3 13. If G is a tropical S-Gröbner basis, then G is a tropical Gröbner basis of I , for < .

L 3 .

 3 16. If f , ∈ I are such that S(f ) = S( ) and LM(f ) LM( ), then there exist a, b ∈ k * such that S(a f + b ) < S(f ) and a f + b 0.
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Algorithm 1: Symbolic-Preprocessing-Rewritten input : P, a set of d -1-admissible pairs of sugar-degree d and G such that G ∩ I ≤d -1 is an S d -1 -GB output : A Macaulay matrix of degree d 1 for Q polynomial in P do 2 Replace Q in P by the polynomial (uS( ),u × ) with latest added to G reaching the same guessed signature ;

3 C ← the set of the monomials of the polynomials in P ; 4 U ← the polynomials of P with their signature, except only one polynomial is taken by guessed signature ; Find j such that M i, j has the greatest term M i, j x mon j for ≤ of the row i; 7 Swap the columns 1 and j of M, and the 1 and j entries of mon;

8 By pivoting with the rst row, eliminates the coe cients of the other rows on the rst column;

9 Proceed recursively on the submatrix M i ≥2, j ≥2 ; 10 Return M;

Algorithm 3: A complete F5 algorithm input : f 1 , . . . , f s polynomials, ordered by degree output :

Replace the occurence of f i in G by its reduction modulo G ∩ f 1 , . . . , f i -1 ; 6 OTHER ALGORITHMS 6.1 Iterative F5

In this subsection, we present brie y another way of extending the F5 algorithm to the a ne setting: a completely iterative way in the initial polynomials. The idea is to compute tropical Gröbner bases for f 1 , f 1 , f 2 , . . . , f 1 , . . . , f s . This corresponds to using the position over term ordering on the signatures, or in terms of ltration, to the following ltration on A s : De nition 6.1. We write that x α e i ≤ incr x β e j if:

(1) if i < j.

(2

, then the ltration is constant at I ≤x α e i .

P

. We can write x α + = j <i a j f j , with for all j a j ∈ I , and ∈ I with no monomial in LM(I i -1 ). Then:

and the ltration is constant at I ≤x α e i .

It is then possible to state a Buchberger-F5 criterion and provide an adapted F5 algorithm. The two algorithms will then di er in the following way. 1. For a given x α and e i , the vector space I <x α e i is much bigger in the iterative setting, often of in nite dimension. Thus, polynomials of signature x α e i can be more deeply reduced. 2. More syzygies can be avoided in the iterative setting. 3. However, many more matrices are to be produced: one for each i and each necessary degree. Construction of the matrices is not mutualised by degree anymore.

F4

Another way to compute tropical Gröbner bases for a ne polynomials is to adapt Faugère's F4 algorithm [F99] Roughly, the F4 algorithm is an adaptation of Buchberger's algorithm such that: all S-polynomials of a given degree are processed and reduced together in a big Macaulay matrix, along with their reducers. The algorithm carries on the computation until there is no S-polynomials to reduce.

In a tropical setting, we have adapted the so-called "normal strategy" of F4 using the tropical LUP algorithm to reduce the Macaulay matrices. We have used Algorithm 2 to reduce the Macaulay matrices. So-called tropical row-echelon forms (Algorithm 3.2.2 and 3.7.3 of [V15]) are also possible, enabling a trade-o between speed, thoroughness of the reduction and loss in precision.

NUMERICAL EXPERIMENTS

A toy implementation of our algorithms in Sagemath [Sage] is available on https://gist.github.com/TristanVaccon. We have gathered some numerical results in the following arrays. Timings are in seconds of CPU time. 4

Benchmarks

Here, the base eld is Q with 2-adic valuation. We have applied the tropical F5 algorithm, Algorithm 3, an iterative tropical F5, and a tropical F4 algorithm on the Katsura n and Cyclic n systems for varying n. Dots mean no conclusion in decent time.

w=[0,. 

Trop. F5+FGLM

For a given p, we take three polynomials with random coe cients in Z p (using the Haar measure) in

We rst compute a tropical Gröbner basis for the weight w = [0, 0, 0] 5 and the grevlex monomial ordering, and then apply an FGLM algorithm (tropical to classical as in Chapter 9 of [V*]) to obtain a lex GB. For any given choice of d i 's, we repeat the experiment 50 times. Coe cients of the initial polynomials are all given at some high-enough precision O(p N ) for no precision issue to appear. We can not provide a certi cate on the monomials of the output basis though. Results are compiled in the following arrays. 4 Everything was performed on a Ubuntu 16.04 with 2 processors of 2.6GHz and 16 GB of RAM. 5 E ciency of this choice regarding to the loss in precision was studied in the extended version of [V15] Firstly, an array for timings given as couples: average of the timings for the tropical F5 part and for the FGLM part, with D = d 1 +d 2 +d 3 -2, the Macaulay bound. We add that for p = 2, 3, there is often a huge standard deviation on the timings of the F5 part. Coe cients of the output tropical GB or classical GB are known at individual precision O(p N -m ). We compute the total mean and max on those m's on the obtained GB. Results are compiled in the following array as couples of mean and max. The rst array is for the F5 part and the second for the precision on the nal result. Most of the loss in precision appears in the FGLM part. In comparison, the F5 part is quite stable, and hence, our goal is achieved.