
Rearrangement Scenarios Guided by
Chromatin Structure

Sylvain Pulicani1,4, Pijus Simonaitis2, Eric Rivals1,3, and
Krister M. Swenson1,3

1 LIRMM, CNRS – Université Montpellier
161 rue Ada, 34392 Montpellier, France

swenson@lirmm.fr
2 ENS Lyon, 46 alle d’Italie, 69364 Lyon, France,

3 Institut de Biologie Computationnelle (IBC), Montpellier, France,
4 Institut de Génétique Humaine (IGH), UMR9002 CNRS-UM, Montpellier, France

pulicani@lirmm.fr

Abstract. Genome architecture can be drastically modified through a
succession of large-scale rearrangements. In the quest to infer these re-
arrangement scenarios, it is often the case that the parsimony principal
alone does not impose enough constraints. In this paper we make an
initial effort towards computing scenarios that respect chromosome con-
formation, by using Hi-C data to guide our computations. We confirm
the validity of a model – along with optimization problems Minimum
Local Scenario and Minimum Local Parsimonious Scenario – de-
veloped in previous work that is based on a partition into equivalence
classes of the adjacencies between syntenic blocks. To accomplish this
we show that the quality of a clustering of the adjacencies based on
Hi-C data is directly correlated to the quality of a rearrangement sce-
nario that we compute between Drosophila melanogaster and Drosophila
yakuba. We evaluate a simple greedy strategy to choose the next rear-
rangement based on Hi-C, and motivate the study of the solution space
of Minimum Local Parsimonious Scenario.

Keywords: genome rearrangement, double cut and join, DCJ, Hi-C, chromatin
conformation

1 Introduction

Genome architecture is modified on a large scale by rearrangements. Even some-
what distantly related species, such as human and mouse, can share almost all of
the same genes yet have drastically different gene orders [6]. These differences are
a result of a succession of rearrangements from an ancestral architecture, each
rearrangement acting on breakpoints between conserved stretches of DNA. In the
quest to infer accurate rearrangement scenarios that transform one modern-day
architecture into another, it is often the case that the parsimony principal alone
does not impose enough constraints [5].

One potentially useful biological factor that drives chromosome evolution
is the 3-dimensional conformation of chromosomes in the nucleus; a current
hypothesis is that breakpoints which are close in 3D space are more likely to
take part in a rearrangement than those which are distant. Evidence supporting
this hypothesis has been reported for inter-species rearrangements [13], as well
as for somatic rearrangements [17,3]. We call this the locality hypothesis.

Although the 3D conformation is not static, loci tend to group together
into topologically associating domains (TADs). Existing techniques to get an
accurate estimate of the distance between pairs of loci (like for example FISH),
are not scalable to the whole genome, therefore the Hi-C method was developed
as a surrogate [8,10]. Hi-C operates on several cells at once, binning genomic
coordinates into windows and producing a matrix where position i, j contains
the number of loci within window i that come in close physical contact with a
loci from window j. Thus the weight of a rearrangement that acts on breakpoints
in window i and j can be obtained by looking up that value in the matrix.

In previous work, we developed algorithms to use this 3D structure to guide
the computation of rearrangement scenarios. We sought out local scenarios, rely-
ing on a partition of the adjacencies such that each class of the partition contains
mutually proximal adjacencies. Rearrangements that act on breakpoints from the
same class then have no cost, and are referred to as local, whereas those that
act on breakpoints from different classes incur a cost of one, and are referred
to as non-local [12,11]. We called these problems Minimum Local Scenario
(MLS) and Minimum Local Parsimonious Scenario (MLPS). The former
asks for the minimum number of non-local moves necessary when transforming
one genome into the other, while the latter asks the same question for parsi-
monious scenarios. A partition of the adjacencies is part of the input to MLS
and MLPS. It remains an open question how to create such a partition given
genome adjacencies and Hi-C data.

In this paper, we explore practical aspects of finding rearrangement scenarios
using Drosophila melanogaster and Drosophila yakuba. To this end, we compute
a double cut and join (DCJ) scenario [15,2] that greedily chooses a next move
based on the weight (Hi-C value) for its pair of breakpoints. In Section 2 we
show that this scenario has exceptionally high weight with respect to scenarios
where DCJs are sampled at random.

In Section 3 we address practical aspects of computing globally optimal local
scenarios using MLS and MLPS. In particular, we show that MLS can be
computed efficiently despite being NP-Hard (proved in [11]). We also show that
a simple k-medoid clustering can be used as an informative partition of the
adjacencies.

In Section 4.1 we evaluate how the greedy scenario from Section 2 performs
with respect to the clusterings. Our results show that the scenario does not
minimize the number of non-local moves, indicating that there is room for im-
provement. On the other hand, we show that a hybrid method which computes
an MLPS before sampling random parsimonious DCJ moves finds higher weight
scenarios than sampling alone. A hybrid method that attempts to greedily choose

parsimonious local moves after computing non-local moves with MLPS does not,
however, outperform the generic greedy algorithm. This indicates that further
work needs to be done to choose a set of non-local moves from the many possible
MLPSs that maximize the weight with respect to the Hi-C data.

Finally, Section 6.1 shows that the difference between the MLPS and the
MLS is generally very low. As shown in Simonaitis and Swenson [11], this indi-
cates that an algorithm which allows for an arbitrary difference of costs between
local and non-local moves is possible.

1.1 Definitions and Experimental Setup

When comparing large-scale genome architecture, syntenic blocks of similar se-
quences of genes between a group of species are first inferred using sequence sim-
ilarity [7]. The adjacencies between these blocks are the stretches of nucleotides
with no homology between the genomes, and are the potential locations for
breakpoints that rearrangements act on. These breakpoints could be close or far
in three dimensional space, as indicated by Hi-C data. We refer to this spacial
proximity as the weight of a pair of breakpoints, and by extension as the weight
of a rearrangement. The weight of a scenario is the mean of the weights of its
rearrangements.

Our general experimental setup is the following. Genomes of Drosophila
melanogaster and Drosophila yakuba are first partitioned into 64 syntenic blocks
(see Section 5.1). The adjacencies between the blocks are the potential break-
points. Normalized Hi-C data for melanogaster are used as a locality measure-
ment (see Section 5.2). We construct a partition of the adjacencies by clustering
around medoids [9] using Hi-C data as the similarity function (see Section 3.2).

To weight a rearrangement we take the intervals (i, j), (k, l) corresponding
to the coordinates of the breakpoints of the DCJ. Say the interval (i, j) ((k, l),
respectively) spans windows i′ through j′ (k′ through l′, respectively) of the
Hi-C matrix. The weight of the move then is the average matrix value over
all combinations of indices {i′, i′ + 1, . . . , j′} × {k′, k′ + 1, . . . , l′}. Intervals are
updated through DCJs as described in [12].

Figure 1 shows a toy example describing our model of genome rearrangement
with respect to Hi-C data. Consider a DCJ that operates on s1xs2 and s3ys4
where si is a syntenic block or telomere, and x and y are adjacencies. Then there
are two different ways to make s1 adjacent to s3: we can have either s1xs3 (and
s2ys4) or s1ys3 (and s2xs4). The two possibilities are illustrated by the first DCJ
in panels (a) and (b); they invert the same blocks, yet act on the adjacencies in
the two different ways.

The distinction between cost and weight is an important one in our presen-
tation. Weight always refers to a value or average value taken directly from a
Hi-C matrix. Two examples are: 1) the weight of a scenario, which is a function
of the values in the Hi-C matrix, and 2) the weight of a clustering, which is
a function of the Hi-C values between pairs of adjacencies in the same cluster.
Cost always refers to an assessment of a scenario of rearrangements with respect
to a clustering of the adjacencies. For example, the cost of a scenario can be

2 -1 -3ba c d

1 -2 -3ba c d

1 2 -3ba c d

1 2 3ba c d

2 -1 -3ba c d

1 -2 -3b ac d

31 2b ac d

1 -2 3b ac d

A:

B:

A:

B:

a

b

c d

a

d

b

c

1.7

1.7

0.5 0.7

1.3 1.2

0.31.30.5

0.7 0.3 1.2

a) b) c)

1.6

1.2

0.7

0.5

Fig. 1: Parsimonious DCJ scenarios transforming genome A into B. Syntenic
blocks are represented by numbers, adjacencies by gray boxes, and telomeres
(chromosome ends) by ◦. Each DCJ changes the blocks or telomeres surrounding
two adjacencies. Panel (c) shows a matrix such that position i, j is the average
value in the Hi-C matrix for the genomic intervals corresponding to adjacencies
i and j. Panels (a) and (b) show two possible greedy parsimonious scenarios
computed of the first having average weight 1.4 and the second with average
weight 0.97 respectively.

computed with respect to a clustering (of any weight) by assigning a cost of zero
to adjacencies that are in the same cluster, and a cost of one to the others.

2 Greedy Computation of Rearrangement Scenarios

2.1 Greedy Scenarios

In order to maximize the weight of a scenario, we designed Algorithm 1. This
greedy algorithm computes a parsimonious rearrangement scenario, performing
at each step the DCJ with the highest weight from all the available parsimonious
DCJs.

Data:
– The genomes A and B,
– MA, the corresponding Hi-C maps for A.

Result: L, a parsimonious scenario of DCJs transforming A into B.
C := A;
while C is not equal to B do

d := a DCJ that transforms C into C ′ such that
dist(C ′, B) = dist(C,B)− 1 and the weight of d in MA is maximum;

Apply d to C;
Append d to L;

end

Algorithm 1: Greedy Parsimonious Scenario

2.2 Weight and Greedy Scenarios

We compared the weight of a greedy scenario with those of 1000 parsimonious
scenarios where each DCJ is sampled uniformly at random. The results are shown
in Figure 2.

0.8 0.9 1.0 1.1 1.2
Weight

0

20

40

60

80

100

Fr
eq

ue
nc

y

Greedy
Sampled

Fig. 2: Weight of the greedy scenario as a vertical bar along with the distribution
of 1000 sampled parsimonious scenarios. The greedy scenario has a low proba-
bility of being sampled due to the exponential number of parsimonious scenarios
(with respect to scenario length).

The greedy scenario has a significantly higher weight than the sampled sce-
narios. This is expected as the greedy scenario is a local maximum. We also
note that the weight along the greedy scenario decreases linearly (r2 = 0.92),
and that only 10 DCJs out of 51 are performed with inter-chromosomal adja-
cencies. Moreover, the last 8 DCJs (those with lowest weights) are done using
inter-chromosomal adjacencies.

3 Global Computation of Locality

We saw in the last section that a scenario with exceptionally high weight can be
obtained by greedily computing a parsimonious scenario according to Hi-C. In
this section we discuss practical aspects behind the computation of scenarios that
globally minimize non-local moves. First we define the optimization problems
used for this task in previous work [11,12]. In Section 3.3 we show that the first
of the two problems is tractable when computing scenarios between melanogaster
and yakuba, despite being NP-hard.

These optimization problems rely on a partition of the adjacencies as input.
In the final two subsections we show how we compute clusters of adjacencies to
serve as these partitions, and how the quality of these clusters show a strong

correlation to the number of non-local moves that must be done (the Minimum
Local Scenario).

3.1 Optimization Problems

The idea behind the clustering of adjacencies is that pairs of adjacencies in the
same cluster are more likely to take part as breakpoints in a rearrangement than
pairs between different clusters. Thus we evaluate rearrangements by giving the
inter-cluster rearrangements a cost of 1, and the intra-cluster rearrangements a
cost of 0. The locality cost (or just cost) of a scenario is the sum of the cost of
the constituent moves. With such a model in hand we posed two optimization
problems for which we developed algorithms for [12,11].

Problem 1 (MLS). Minimum Local Scenario

INPUT: Adjacency sets A and B with a clustering of A.
OUTPUT: A scenario of rearrangements transforming A into B.
MEASURE: The locality cost of the scenario.

The problem Minimum Local Parsimonious Scenario introduces the con-
straint that the output is also a parsimonious scenario, i.e. a scenario of minimum
length.

Problem 2 (MLPS). Minimum Local Parsimonious Scenario

INPUT: Adjacency sets A and B with a clustering of A.
OUTPUT: A parsimonious scenario of rearrangements transforming A into B.
MEASURE: The locality cost of the scenario.

We will use the term MLS and MLPS to denote the locality cost of the
scenario for an optimal solution of the problem.

3.2 Clustering

Both algorithms of the previous section require a clustering of the adjacencies
for genome A. To that end, we use Hi-C data as a similarity measure for the
clustering; the higher the weight for a pair of adjacencies, the more likely we are
to have them in the same cluster. Clustering around medoids [9] was chosen for
its simplicity and speed. A medoid of a cluster is an element that maximizes the
sum of the similarities to the rest of a cluster. This sum is the cluster’s weight,
and when summed over all the clusters it provides us with a weight function
for a clustering. An important property of this clustering method is that it
provides many local optima that we can compare to the solutions obtained for our
optimization problems (MLS and MLPS). We use three clustering algorithms:
k-medoids, random, and mixed that generate k clusters for a fixed k, which
in our case ranges from 1 to 70.

The k-medoids algorithm starts with randomly initialized centroids. The
rest of the elements are then associated to the centroids that are most similar to

them. The medoids of the obtained clusters are then computed and they become
the new centroids around which the elements will be clustered. We continue this
procedure until the weight of a clustering stops increasing.

The random algorithm partitions the elements at random into k non-empty
clusters. On our data we observe that the weights of the random clusters are
always smaller than those provided by the clustering around medoids. In order
to bridge the gap between the obtained weights we mix k-medoids and random
algorithms to obtain a mixed algorithm that initializes the centroids randomly
and then chooses at random the number of resulting elements to be assigned
to the clusters based on the similarity function, and how many of them will be
assigned at random (without performing further iterations).

3.3 Feasibility of Computing MLS

In general, finding the MLS is computationally costly, as we have proven it to
be NP-hard [11]. In other words, we cannot expect to be able to compute a
scenario that minimizes the number of non-local moves on any pair of genomes.
We established an exact algorithm, however, that runs efficiently if a certain
parameter called the number of simple cycles is “small enough”. We expect
“small enough” to roughly be in the hundreds of thousands.

Although the number of simple cycles between two genomes is hard to pre-
dict since it depends on the entire problem input (i.e. the syntenic blocks and
the clustering), we find that between melanogaster and yakuba the number of
simple cycles is always very small using the clusters computed by the k-medoids
algorithm. Particularly encouraging is the fact the even completely random clus-
tering yield a practical number of simple cycles.

In particular, we ran 100 instances of k-medoids using Hi-C data from
melanogaster for every k ranging from 2 to 70, and computed the number of
simple cycles for those clusterings. The values for all 6900 runs are presented in
Figure 3a. The average number of simple cycles is 16.9 for k = 42, the maximum
that we observed. The average number of simple cycles over all k is 8.5. Fig-
ure 3b presents a similar histogram for the runs of random for melanogaster.
As expected, random clusterings produce larger numbers of simple cycles.

0 10 20 30 40 50 60
Simple Cycles

0

1000

2000

3000

4000

5000

6000

7000

Fr
e
q
u
e
n
cy

(a) Using k-medoids clusterings. Average
is 8.5, standard deviation is 8.4. The highest
average is 16.9 for k = 42.

0 10000 20000 30000 40000 50000
Simple Cycles

0

10

20

30

40

50

60

70

Fr
e
q
u
e
n
cy

(b) Using random clusterings. Average is
9,164, standard deviation is 18,227. Four
values higher than 50,000 were detected
with a maximum of 86,319.

Fig. 3: The frequency of the number of simple cycles computed for all possible
values of k (ranging from 2 to 70).

3.4 MLS and the Weight of the Clustering

Figure 4a presents 200 independent clusterings of the adjacencies of Drosophila
melanogaster into k = 15 clusters. Half of them are generated using the random
algorithm, the others using the k-medoids algorithm. There is a clear separation
on both axes between these two sets of clusterings. The MLS and clustering
weight are always significantly better on a k-medoids clustering than a random
clustering. Similar results are found for values of k ranging from 5 to 50.

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

M
LS

Weight of Clustering

(a) 100 random clusterings (blue dots) and
100 k-medoids clusterings (red dots).

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

M
LS

Weight of Clustering

(b) 100 mixed clusterings with varying
amounts of randomly assigned adjacencies.
Point colors go from blue (random) to red.
Pearson’s correlation:
r = −0.87 (p-value = 1 × 10−31)

Fig. 4: The number of non-local moves computed for MLS compared to the
weight of the clustering for k = 15 clusters on D. melanogaster Hi-C data.

The mixed clustering was introduced in order to bridge the gap between the
weights of the clusterings provided by random and k-medoids. We note a sig-
nificant inverse correlation between the weights of the clusterings and MLS cost.
Figure 4b depicts 100 independent clusterings for the adjacencies of Drosophila
melanogaster obtained using the mixed algorithm. In this plot the color of a
point indicates how many of the adjacencies in that particular clustering got
assigned to the clusters at random during a run of mixed. Blue shows that a
clustering is mostly random and red, on the other hand, means that most of the
adjacencies got assigned to the centroids based on the similarity function. In this
example Pearson’s correlation r is found to be -0.87 with a 2-tailed p-value of
1× 10−31. Similar results were found for values of k ranging from 5 to 50, where
the correlation slightly increases up to k = 25 before slowly decreasing.

4 Evaluation

As we have seen, the MLS and MLPS are the results of a binary cost function.
On the other side, the greedy scenario is a mean of Hi-C values. Therefore we
cannot compare them directly. In this section, we compare the scenarios in two
complementary ways. First we compute the locality cost of the greedy scenario
using the clustering. Second we compute the weight of hybrid algorithms that
first compute non-local moves with MLPS, and then complete the scenario using
sampling or greedy methods.

4.1 Evaluating Greedy on Clusters

Using the same clusters as below, we computed the cost for the sampled scenarios
and for the greedy one. The results are shown in Figure 5, along with the costs
of MLS and MLPS.

15 20 25 30 35 40
Number of Clusters (k)

20

25

30

35

40

45

M
ea

n
of

 L
oc

al
 C

os
t

Dataset
Sampled
Greedy
MLS
MLPS

(a) Locality costs using k-medoids cluster-
ings. The MLS and MLPS curves almost
perfectly fit each other.

15 20 25 30 35 40
Number of Clusters (k)

34

36

38

40

42

44

46

48

50

M
ea

n
of

 L
oc

al
 C

os
t

Dataset
Sampled
Greedy
MLS
MLPS

(b) Locality costs using random cluster-
ings. The greedy and sampled curves almost
perfectly fit each other.

Fig. 5: Locality costs for the greedy, sampled, MLS and MLPS scenarios. Since
the DCJ distance is 51, the maximum possible cost is 51.

As a sanity check, note that for the same values of k, the cost using random
clusterings is significantly higher than when using k-medoids clusterings. For
k-medoids clustering, the cost of the greedy scenario is always lower than that
of a sampled scenario. By greedily preferring the adjacencies that maximize the
Hi-C weight, we give preference to the intra-cluster adjacencies. Moreover, the
difference in cost between the greedy scenario and the sampled ones increases for
small numbers of clusters. The costs of the MLS and MLPS are always lower
than for greedy. This shows that room for improvement remains over the purely
greedy algorithm.

4.2 The Weight of MLPS

A solution to MLPS does not directly give a Hi-C weight. In order to calculate it,
we arbitrarily choose one of the many optimal solutions to MLPS, each giving a
set of non-local moves. We then compute the local moves to build the rest of the
scenario by either sampling, or by choosing moves greedily. Call these algorithms
MLPS-sampled and MLPS-greedy, respectively. We compare the distributions
computed using the sampling methods to the values obtained using the greedy
methods in Figure 6.

0.8 0.9 1.0 1.1 1.2
Weight

0

20

40

60

80

100

Fr
eq

ue
nc

y

Greedy
MLPS greedy
Sampled
MLPS sampled

Fig. 6: Weights of the greedy and MLPS-greedy scenarios as vertical bars along
with the distribution of 1000 parsimonious sampled and MLPS-sampled scenar-
ios. The number of cluster is k = 20.

As expected, the MLPS-sampled distribution is significantly higher (i.e.
more weight) than the sampled distribution. Moreover, there is no MLPS-
sampled scenario with a particularly low weight. This indicates that the cluster-
ing captures the Hi-C information, allowing us to build biologically meaningful
scenarios with MLPS. This further buttresses the link between clustering and
MLPS observed in Section 6.1.

The greedy scenario remains better than the MLPS-greedy scenario. We
conjecture that this is due to the fact that we choose an arbitrary set of non-local
moves that correspond to an optimal MLPS. Moreover, we plotted the weight
of each move of the greedy and the MLPS-greedy scenarios in Figure 7. The
effect of choosing an arbitrary MLPS is apparent: the largest non-local moves
chosen by the greedy scenarios are not chosen by the MLPS-greedy method.

We conjecture that choosing – out of all possible MLPS solutions – the
solution that optimizes the weight of the non-local moves would yield a heavier
MLPS-greedy solution than the purely greedy solution. Indeed, by replacing
in the MLPS-greedy solution only the two lowest weighted non-local moves,
with the two highest weighted non-local moves from the pure greedy scenario,
the score of the new scenario would already be as good as the purely greedy
algorithm.

0 10 20 30 40 50
Moves

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
t

Local Moves Greedy
Non-local Moves Greedy
Local Moves MLPS Greedy
Non-local Moves MLPS Greedy

Fig. 7: Weight per move of the greedy and the MLPS-greedy scenarios.

5 Data Treatment

5.1 Creation of Syntenic Blocks

We computed syntenic blocks in two steps. First, we took the orthologs for D.
melanogaster and D. yakuba. This was done using the OMA groups database [1].
We removed each gene that overlaps or intersects another, along with its ortholog
in the other species. Then, the blocks were constructed using the Orthocluster
tool [16]. The basic idea of Orthocluster is to aggregate orthologs to make the
biggest possible blocks without breaking certain constraints that define the syn-
teny; these constraints are the maximal and minimal number of genes per blocks,
the absolute gene order between the genomes, the genes strandedness, the quan-
tity of non-ortholog genes and the possibility to make nested blocks. We forbid

the creation of nested blocks as we wanted a 1-1 block mapping. All other pa-
rameters were default.

Orthocluster outputs clusters of genes. We interpret the clusters as syntenic
blocks by taking the smallest gene position in a cluster as the start position of
the block from this cluster, and the largest position as the end for that block.

5.2 Hi-C as a Measure of the Locality

The Hi-C experiment provides a rough estimate of how many times a pair of
genomic loci are in close proximity [8]. Roughly speaking, formaldehyde is intro-
duced in a population of cells so that parts of the genomes that are in spacial
proximity are linked together. Each side of the link contains segments of DNA
that are then sequenced. The sequences are mapped to a reference genome so
that the pair of spatially proximal loci are determined. Finally, the raw data are
corrected for experimental biases (see [14] for the method applied to the matrices
that we use, published in [10]).

The chromosomes in the nucleus have a dynamic structure. Thus, cells from
the same cell type will yield different sets of pairs of loci. Therefore, since the
experiment is done on a cell population, we observe the average of all these sets
of loci among all the cells of the population.

Due to the nature of contact probability, which decreases dramatically with
respect to chromosomal distance (it roughly follows a power law), we applied the
normalization done by Lieberman-Aiden et al. (see the appendix of [8]) to the
matrices published in [10]. This gives the long rearrangements (in the genetic
coordinate sense) to have the same importance as the short ones. Specifically, a
normalized intrachromosomal heatmap entry INTRAij gets the value

INTRAij = Hij/averageAtDist(|i− j|),

where averageAtDist(d) is the expected value of an entry d off of the diagonal of
any intrachromosomal matrix. A normalized inter-chromosomal heatmap entry
INTERij gets the value

INTERij = Hij/
(interactioni ∗ interactionj

interactionall

)
,

where interactionx is the sum of all interactions for position x, and interactionall

is the total sum of all entries in all matrices (intra and inter-chromosomal).

6 Future Work and Conclusions

We wrap things up by introducing future directions. The first subsection dis-
cusses the feasibility of using more general weight functions when computing
globally optimal scenarios. We showed in [11] that this question is directly re-
lated to the difference MLPS −MLS. The second subsection briefly discusses
the possibility of using Hi-C data from two different species.

6.1 MLPS − MLS and the Weight of the Clustering

We study the value of the difference MLPS−MLS due to its potential role in
computing a more general cost function. When this difference is low the number
of non-parsimonious rearrangements in the MLS is few. In this case a non-binary
cost function that has an arbitrary, but fixed, difference between local and non-
local move cost is easier to compute and approximate [11]. In this section we
show that the difference is usually very low for Drosophila, and that higher
quality clusters reduce this difference.

A significant correlation between the difference MLPS−MLS and the weights
of the clusterings is found, as depicted in Figure 8a and Figure 8b for k = 10.
Similar results hold for values of k from 5 to 50.

0 20 40 60 80 100 120 140
0

2

4

6

8

10

M
LP

S
-M

LS

Weight of Clustering

(a) 100 random (blue dots) and 100 k-
medoids clusterings (red dots)

0 20 40 60 80 100 120 140
0

2

4

6

8

10

M
LP

S
-M

LS

Weight of Clustering

(b) 100 mixed clusterings with varying
amounts of randomly assigned adjacencies.
Dots color goes from blue (random) to red.
Pearson’s correlation:
r = −0.69 (p-value = 2 × 10−15)

Fig. 8: The difference in the number of non-local moves computed for MLPS
and MLS compared to the weight of the clustering for k = 10 clusters on D.
melanogaster Hi-C data.

Further, for the clusterings provided by k-medoids this value of MLPS −
MLS is low in general, as displayed in Figure 9a. As for Figure 3a we did 100
runs of k-medoids for every k, and found the average for MLPS−MLS to be
highest at k = 24 with a value 0.29. The average over all k was 0.12. A similar
histogram for the runs of random for melanogaster can be found in Figure 9b.

0 1 2 3
MLPS-MLS

0

1000

2000

3000

4000

5000

6000

7000

Fr
e
q
u
e
n
cy

(a) Using k-medoids clusterings. The aver-
age is 0.12, the standard deviation is 0.34.
The highest average is 0.29 for k = 24.

0 1 2 3 4 5 6 7 8 9
MLPS-MLS

0

10

20

30

40

50

60

70

Fr
e
q
u
e
n
cy

(b) Using random clusterings. The average
is 2.19, the standard deviation is 2.2. The
highest average is 7.

Fig. 9: The frequency of the difference MLPS−MLS over all possible values of
k (ranging from 2 to 70).

6.2 Using Hi-C from D. yakuba

No data for D. yakuba are publicly available at this time. However, we gained
access to unpublished preliminary data. All results for greedy scenarios and clus-
terings on melanogaster also apply to yakuba, and tend to be more pronounced.

When computing the parsimonious scenario from species A to B we use the
Hi-C data of A. In doing so, we ignore the differences in chromatin conformation
between A and B that are specific to species B. Between human and mouse,
for example, the conformation is in general very similar with a small number
of important differences [4]. Thus, using the Hi-C data from both species is a
current challenge.

As a preliminary investigation, we reverse the greedy scenario from A to B
and use the Hi-C data of species B. In that case, the weight is closer to that
of the sampled scenarios. This could be a reflection of the 3D spacial features
specific to each species; by selecting adjacencies of very high weight we could
select some special features in the chromatin conformation of one species over
the other. If these characteristics have no correspondence in the other genome,
they lead to low weight in the reversed scenario. Assuming that the differences
in 3D are linked to post-speciation evolutionary events, there is the potential
to use these adjacencies to place rearrangements on phylogenetic branches. We
plan to further investigate this direction.

6.3 Conclusions

We have demonstrated the existence of scenarios corresponding exceptionally
well to Hi-C data. They can be computed using a simple greedy strategy. In an
effort to find a global optimum we had developed the MLS and MLPS methods

in previous work, but it remained unclear how to use them since part of the
input is a partition of adjacencies into equivalence classes. Given such a clus-
tering of adjacencies, they give lower bounds on the number of non-local moves
required in a scenario. We showed that meaningful clusters can be found even
with a rudimentary clustering technique, and further, that a better clustering
implies a scenario requiring fewer non-local moves. These results were based on
computing MLS exactly, which was feasible since the number of simple cycles is
demonstrated to be small enough between D. melanogaster and D. yakuba.

A hybrid method, that first chooses a minimum number of non-local parsimo-
nious moves before greedily choosing high-weight moves (using Hi-C directly),
did not find a better scenario (with respect to Hi-C weight) than the purely
greedy strategy. There is evidence, however, of room for improvement. This mo-
tivates the study of the solution space of MLPS so that one could pick, among
all optimal solutions, the one that also has the best Hi-C values. In general, the
best way to balance weight and cost remains an open question.

From a practical perspective several improvements to this work are in order.
First, development of the same methods on the inversion model would be appro-
priate for certain branches of the tree of life. In Drosophila, extra care would have
to be taken since inversions and transpositions are the two main drivers behind
architecture transformations. Second, a world of more sophisticated clustering
methods exist. Application of the right method may partition the adjacencies in
a more relevant way when choosing local rearrangement scenarios.

7 Acknowledgements

The authors would like to thank the reviewers for their helpful comments. Sylvain
PULICANI is funded by NUMEV grant AAP 2014-2-028 and EPIGENMED
grant ANR-10-LABX-12-01. This work is partially supported by the IBC (In-
stitut de Biologie Computationnelle) (ANR-11-BINF-0002) and by the Labex
NUMEV flaship project GEM.

References

1. Adrian M Altenhoff, Nives Škunca, Natasha Glover, Clément-Marie Train, Anna
Sueki, Ivana Piližota, Kevin Gori, Bartlomiej Tomiczek, Steven Müller, Henning
Redestig, et al. The oma orthology database in 2015: function predictions, better
plant support, synteny view and other improvements. Nucleic acids research, page
gku1158, 2014.

2. Anne Bergeron, Julia Mixtacki, and Jens Stoye. A Unifying View of Genome
Rearrangements, pages 163–173. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006.

3. Peter J Campbell, Philip J Stephens, Erin D Pleasance, Sarah O’Meara, Heng
Li, Thomas Santarius, Lucy A Stebbings, Catherine Leroy, Sarah Edkins, Claire
Hardy, et al. Identification of somatically acquired rearrangements in cancer using
genome-wide massively parallel paired-end sequencing. Nature genetics, 40(6):722–
729, 2008.

http://www.ibc-montpellier.fr
http://www.ibc-montpellier.fr

4. Emily V. Chambers, Wendy A. Bickmore, and Colin A. Semple. Divergence of
mammalian higher order chromatin structure is associated with developmental
loci. PLoS computational biology, 9(4):e1003017, 2013.

5. Cedric Chauve, Haris Gavranovic, Aida Ouangraoua, and Eric Tannier. Yeast
ancestral genome reconstructions: the possibilities of computational methods II.
Journal of Computational Biology, 17(9):1097–1112, 2010.

6. Asif T Chinwalla, Lisa L Cook, Kimberly D Delehaunty, Ginger A Fewell, Lu-
cinda A Fulton, Robert S Fulton, Tina A Graves, LaDeana W Hillier, Elaine R
Mardis, John D McPherson, et al. Initial sequencing and comparative analysis of
the mouse genome. Nature, 420(6915):520–562, 2002.

7. Cristina G Ghiurcuta and Bernard ME Moret. Evaluating synteny for improved
comparative studies. Bioinformatics, 30(12):i9–i18, 2014.

8. Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev,
Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo,
Michael O. Dorschner, Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark
Groudine, Andreas Gnirke, John Stamatoyannopoulos, Leonid A. Mirny, Eric S.
Lander, and Job Dekker. Comprehensive mapping of long-range interactions re-
veals folding principles of the human genome. Science, 326(5950):289–293, Oct
2009.

9. Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids
clustering. Expert Systems with Applications, 36(2, Part 2):3336 – 3341, 2009.

10. Tom Sexton, Eitan Yaffe, Ephraim Kenigsberg, Frédéric Bantignies, Benjamin
Leblanc, Michael Hoichman, Hugues Parrinello, Amos Tanay, and Giacomo Cavalli.
Three-dimensional folding and functional organization principles of the drosophila
genome. Cell, 148(3):458–472, 2012.

11. Pijus Simonaitis and Krister M. Swenson. Finding local genome rearrangements,
page To Appear. Springer Berlin Heidelberg, 2017.

12. Krister M. Swenson, Pijus Simonaitis, and Mathieu Blanchette. Models and al-
gorithms for genome rearrangement with positional constraints. Algorithms for
Molecular Biology, 11(1):13, 2016.

13. Amélie S Véron, Claire Lemaitre, Christian Gautier, Vincent Lacroix, and Marie-
France Sagot. Close 3d proximity of evolutionary breakpoints argues for the notion
of spatial synteny. BMC genomics, 12(1):303, 2011.

14. Eitan Yaffe and Amos Tanay. Probabilistic modeling of hi-c contact maps elim-
inates systematic biases to characterize global chromosomal architecture. Nature
Genetics, 43(11):1059–1065, oct 2011.

15. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340–3346, 2005.

16. Xinghuo Zeng, Matthew J Nesbitt, Jian Pei, Ke Wang, Ismael A Vergara, and Nan-
sheng Chen. Orthocluster: a new tool for mining synteny blocks and applications
in comparative genomics. In Proceedings of the 11th international conference on
Extending database technology: Advances in database technology, pages 656–667.
ACM, 2008.

17. Yu Zhang, Rachel Patton McCord, Yu-Jui Ho, Bryan R Lajoie, Dominic G Hilde-
brand, Aline C Simon, Michael S Becker, Frederick W Alt, and Job Dekker. Spatial
organization of the mouse genome and its role in recurrent chromosomal translo-
cations. Cell, 148(5):908–921, 2012.

	Rearrangement Scenarios Guided by Chromatin Structure

