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Explicit and combined estimators for stable distributions

parameters
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Abstract: This article focuses on the estimation of the stability index and scale
parameter of stable random variables. While there is a sizable literature on this
topic, no precise theoretical results seem available. We study an estimator based on
log-moments, which always exist for such random variables. The main advantage of
this estimator is that it has a simple closed form expression. This allows us to prove
an almost sure convergence result as well as a central limit theorem. We show how to
improve the accuracy of this estimator by combining it with previously defined ones.
The closed form also enables us to consider the case of non identically distributed data,
and we show that our results still hold provided deviations from stationarity are ”small”.
Using a centro-symmetrization, we expand the previous estimators to skewed stable
variables and we construct a test to check the skewness of the data. As applications,
we show numerically that the stability index of multistable Lévy motion may be
estimated accurately and consider a financial log, namely the S&P 500, where we find
that the stability index evolves in time in a way that reflects with major financial events.

Keywords: averaging estimates; misspecifed model; moment estimate; Monte Carlo
approximation; stable distribution

1 Introduction

The class of α-stable distributions is ubiquitous in probability: such distributions ap-
pear as the limit of normalized sums of independent and identically distributed random
variables. Their probability densities exist and are continuous but they are not known in
closed form except for Gaussian distributions, Cauchy distributions, Lévy distributions
and constants. Non-Gaussian stable distributions are a model of choice for real world
phenomena exhibiting jumps. Indeed, for α < 2, their density exhibit ”heavy tails”, re-
sulting in a power-law decay of the probability of extreme events. They have been used
extensively in recent years for modeling in domains such as biomedicine [13], geophysics
[18], economy [11], finance [11], Internet traffic [1] and more. Non-Gaussian stable distri-
butions are characterized by four parameters: a scale parameter usually denoted σ, (that
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is proportional to variance in the Gaussian case), a stability parameter, denoted α, that
governs the heaviness of the tail and that ranges in (0, 2), a location parameter µ similar
to the mean in the case of Gaussian distributions, and a skewness parameter β ranging
in [−1, 1]. In order to use stable distributions for real world phenomena modeling, one
needs to estimate these parameters. A number of estimators are of common use, such as
the ones proposed by Fama-Roll [3], Mc Culloch [12] and Koutrouvelis [4, 5]. A difficulty
with these estimators is that they do not possess a simple closed form expression. As a
consequence, and to the best of our knowledge, no theoretical results are known about
them, such as almost sure convergence and central limit theorems. Their asymptotic
distributions as well as asymptotic variances are thus only accessible through numerical
simulations. Another drawback of not having explicit and simple closed forms is that
it is difficult to assess theoretically their performance in situations that slightly depart
from the classical assumptions of identical and independent random samples. This is
nevertheless desirable when one wishes to deal with real world data, which will often not
verify these ideal hypotheses.

Our main aim in this work is to investigate the theoretical properties of a simple
moment estimator. Since non-Gaussian stable random variables do not possess a finite
variance, and, in some cases, a well defined mean, we shall consider in fact an estimator
based on log-moments. This idea is not new, as it has long been remarked that log-
moment always exist for stable random variables and are convenient to work with. For
instance [10] considers the same estimator as the one we study and applies it to blind
channel identification. Owing to its simple expression, we are able to prove almost sure
convergence and a central limit theorem both in an identically and independent frame-
work and in a case of slight deviation from stationarity. We compare the performance
of our estimator with the Koutrouvelis regression method [4, 5]. The results depends
on the value of α and on the size of the sample. We then combine these two estimators
using a technique recently developed in [7] to enhance their performance, especially in
the case of small samples. As applications, we show numerical experiments both on
synthetic data (symmetric Lévy multistable motion) and on a financial log (S&P 500),
which confirm our theoretical results that the estimator is able to track smooth enough
variations of the stability index in time.
A stable distribution is characterized by four parameters. We write X ∼ Sα(σ, β, µ)
to indicate that X has a stable distribution with the stability index α ∈ (0, 2], scale
parameter σ ∈ R+, skewness β ∈ [−1, 1] and location parameter µ ∈ R (see [14]).

There are several parameterizations of stable distributions, each of which having
advantages and drawbacks. The following one, with characteristic function φ, is probably
the most popular:

φ(t) =


exp

(
−σα|t|α

(
1− iβsign(t) tan(

πα

2
)
)

+ iµt
)
, if α 6= 1,

exp

(
−σ|t|

(
1 + iβsign(t)

2 log |t|
π

)
+ iµt

)
, if α = 1

(1.1)
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where sign(t) =


1 if t > 0,

0 if t = 0,

−1 if t < 0
For a stable distribution, the density function is not known in closed form except

in few cases (Gaussian distribution, Cauchy distribution, . . . ). This makes it difficult
to use classical estimation methods based on the density function, such as maximum
likelihood or Bayesian statistics: although the density may be estimated numerically,
for instance through Fourier inversion, this procedure entails approximation errors that
cannot be easily assessed.

Another difficulty is that, except in the Gaussian case, stable random variables have
infinite moments of order at least the stability index. More precisely, for X ∼ Sα(σ, β, µ)
with 0 < α < 2, E[|X|p] < ∞ if and only if 0 < p < α (see Prop 1.2.16 in [14]).
This property implies that one cannot use a moment method for estimation. We study
in the next section a simple log-moment estimator that allows one to make explicit
computations.

In Section 2, we study estimators of α and σ for symmetric (that is, when µ = β = 0)
stable random variables: log-moments estimators and a combined estimator build with
the Koutrouvelis ones. In Section 3, we expand the log-moment, Koutrouvelis and
combined estimators to the skewed case studying two ways for the adaptation of the log-
moments estimator. The properties of log-moment estimators also allow us to propose a
method for testing the skewness of the data. In Section 4, we investigate the case of non-
identically distributed where we prove robustness of the log-moments estimators under
some conditions for the perturbations. In Section 5, we perform numerical experiments
involving multistable Lévy motion and real data with the study of a financial index.

2 Estimation methods

We build an estimator for the parameters α and σ using a combined estimator whose
general procedure of construction is described in [7]. In our special case, θ = (α, σ)> are
the parameters to estimate and we have access to p estimators for α and q estimators
for σ.
We consider averaging estimators of θ of the form

θ̂λ = λ>



α̂1
...
α̂p
σ̂1
...
σ̂q


, λ ∈ Λ, (2.1)

where λ> denotes the transpose of λ and Λ is a given subset of M(p+q)×2(R).

3



We measure the performance of θ̂λ for λ ∈ Λ using the mean square error (MSE).
We select λ? satisfying the conditions:

λ? = argmin
λ∈Λ

E[‖ θ̂λ − θ ‖2].

In what follows, we present a classical estimator, namely the Koutrouvelis one ([4],
[5]). The choice of this particular estimator is motivated by the results reported in [17]
showing that it performs usually better than other methods such as the Fama-Roll and
Mc Culloch ones. We want to combine the Koutrouvelis estimator described in Section
2.2 with the log-moments estimator (Section 2.1) to get better performance especially
when α < 1.

2.1 Symmetric case for log-moments

For a symmetric stable distribution closed form expressions are available for absolute
log-moments [8], which allow one to derive expressions for estimating α and σ. First,
note the following property:

Proposition 2.1. Let Z ∼ Sα(1, 0, 0), then

E[| log |Z||p] <∞ for all p > 0. (2.2)

Proof. See Appendix.

These expectations may be computed explicitly by remarking that:

E[(log |Z|)p] =
dpE[|Z|t]

dtp

∣∣∣∣
t=0

, (2.3)

and by using the following result:

Proposition 2.2. Let Z ∼ Sα(1, 0, 0). Then, for all 0 < t < min(α, 1),

E[|Z|t] =
Γ(1− t/α)

Γ(1− t) cos(πt/2)
. (2.4)

Proof. See Appendix.

We deduce that E[log |Z|] =
(

1
α − 1

)
γ and Var(log |Z|) = π2

6α2 + π2

12 , where γ is Euler
constant (γ = 0.57721 . . . ).

Theorem 2.3. Let (X1, . . . , Xn) be a sequence of independent and identically distributed
(iid) standard symmetric stable random variables Sα(1, 0, 0). Define

α̂n(X1, . . . , Xn) =
γ

γ + 1
n

∑n
i=1 log |Xi|

.

Then, α̂n
a.s.−−→ α when n→ +∞. Moreover, with f(x) = π2

6x2
+ π2

12 ,
√
n(α̂n − α)γ

α̂2
n

√
f(α̂n)

d−→ N (0, 1). (2.5)
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Proof. The proof of this result may be found in the appendix.

In general, σ is unknown and we must use a joint estimation of both parameters. Let
W ∼ Sα(σ, 0, 0), then W

σ ∼ Sα(1, 0, 0) and we deduce the log-moment of W by using the

log-moment of Z. We get E[log |W |] =
(

1
α − 1

)
γ + log σ and Var(log |W |) = π2

6α2 + π2

12 .

Theorem 2.4. Let (X1, . . . , Xn) be a sequence of independent and identically distributed
(iid) symmetric stable random variables Sα(σ, 0, 0). Define

α̂
(n)
LOG(X1, . . . , Xn) =

max

 6

π2(n− 1)

n∑
i=1

[
log |Xi| −

1

n

n∑
k=1

log |Xk|

]2

− 1

2
,
1

4

−1/2

and

σ̂
(n)
LOG(X1, . . . , Xn) = exp

(
1

n

n∑
i=1

log |Xi| −

(
1

α̂
(n)
LOG

− 1

)
γ

)
.

Then,

(α̂
(n)
LOG, σ̂

(n)
LOG)

a.s.−−→ (α, σ) when n→ +∞. (2.6)

Moreover,

√
n

((
α̂

(n)
LOG

σ̂
(n)
LOG

)
−
(
α
σ

))
d−→ N (0, Fα,σGα,σΣα,σ

tGα,σ
tFα,σ), (2.7)

where

Fα,σ =

(
σ γσ/α2

0 1

)
, (2.8)

Gα,σ =

(
1 0

6
((

1
α − 1

)
γ + log σ

)
α3/π2 −3α3/π2

)
, (2.9)

Σα,σ =

(
Var(log |X1|) Cov(log |X1|, (log |X1|)2)

Cov(log |X1|, (log |X1|)2) Var((log |X1|)2)

)
. (2.10)

Proof. The proof of this result may be found in the appendix.

2.2 Numerical performance of the individual estimators

The Koutrouvelis estimator (see [4] and [5]) is based on exploiting the explicit expression
of the iterated logarithm of the characteristic function φ. In the symmetric case, it takes
the particularly simple form

log(log(|φ(t)|2) = log(2σα) + α log |t|. (2.11)

The empirical characteristic function given by φ̂n(t) = 1
n

∑n
j=1 e

itXj based on i.i.d obser-
vations (Xj) is a consistent estimator of φ. We estimate these parameters by regressing

y = log(log(|φ̂n(t)|2) on w = log |t| in the model

yk = m+ αwk + εk (2.12)
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where m = log(2σα), tk = πk
25 for k ∈ {1, . . . ,K} with K depending on the parameter

α and on the sample size, and εk denotes an error term. In our simulations, we use
an easier version of the Koutrouvelis regression method which is more adapted for the
symmetric case (see [17]). We describe the algorithm:

• Define an admissible error (tol = 0.05 in the simulation) and the maximum number
of iterations (itermax = 10).

• A regression applied to the Mc Culloch quantile method [12] provides initial esti-
mates α̂(n) and σ̂(n), where n denotes the length of the observed sample.

• While the number of iterations is less than itermax and |ŝ− 1| > tol (starting from
the second iteration):

– find the number K of points in the regression depending on α̂(n) as in the
classical Koutrouvelis regression,

– define w = (wk)k∈{1...K} and y = (yk)k∈{1...K} by wk = log |πk/25|,

yk = log(− log

(∣∣∣∣φ̂n( πk

25σ̂(n)

)∣∣∣∣2
)

),

– compute the new α̂(n) given by

α̂(n) = min

(∑K
k=1(wk −mean(w))(yk −mean(y))∑K

k=1(wk −mean(w))2
, 2

)

– set ŝ = exp
(

mean(y−α̂(n)w)−log(2)

α̂(n)

)
– set σ̂(n) = σ̂(n)ŝ

This modified version of Koutrouvelis gives performances (in terms of mean squared
errors) similar to the original. However, it is much faster because this version does
not necessitate the estimation of the parameters β and µ, which requires the numerical
inversion of matrices of size n× n.

In general, the Koutrouvelis regression method has a smaller mean squared error than
other classical estimation methods based on empirical quantiles (Fama-Roll method [3],
Mc Culloch’s method [12]). A comparative of the performances of these classical methods
is performed in [17]. For each pair of values (α, σ), r independent samples of size n of
iid stable random variables were generated. The empirical mean squared error of the
sampling distribution of α and σ is given by

MSEα =
1

r

r∑
i=1

(α̂i − α)2, MSEσ =
1

r

r∑
i=1

(σ̂i − σ)2,

where α̂ (resp σ̂) is an estimator of α (resp σ).
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In the sequel, we use the abbreviation ”KOUT” and ”LOG” to refer respectively to
the Koutrouvelis and log-moment estimator. For each α, the behaviors of α̂KOUT and
α̂LOG are similar for all value of σ (Table 1) whereas, for each value of σ, σ̂KOUT and
σ̂LOG improve when α is increasing (Table 2). Besides, when α is fixed, σ̂KOUT and
σ̂LOG have the same behavior for all σ. For this reason, only the case where σ equals 1
is represented in Table 2.

α =0.2 α =0.6 α =1 α =1.4 α =1.8

σ =10
LOG 9.06 10−5 9.06 10−4 4.67 10−3 1.97 10−2 3.10 10−2

KOUT 4.70 10−4 2.35 10−3 3.75 10−3 8.20 10−3 4.17 10−3

σ =1
LOG 8.07 10−5 1.06 10−3 4.47 10−3 2.20 10−2 3.19 10−2

KOUT 4.27 10−4 2.11 10−3 3.91 10−3 7.58 10−3 4.28 10−3

σ =0.1
LOG 8.93 10−5 9.59 10−4 4.43 10−3 2.20 10−2 2.97 10−2

KOUT 4.66 10−4 1.96 10−3 4.22 103 7.58 10−3 4.29 10−3

Table 1: Mean squared error for α̂LOG and α̂KOUT (r = 500 and n = 500).

α =0.2 α =0.6 α =1 α =1.4 α =1.8

σ =10
LOG 7.10 9.86 10−1 6.08 10−1 6.07 10−1 5.43 10−1

KOUT 11.5 9.92 10−1 4.82 10−1 3.56 10−1 1.72 10−1

σ =1
LOG 8.20 10−2 9.45 10−3 6.52 10−3 6.98 10−3 5.77 10−3

KOUT 1.18 10−1 9.82 10−3 4.44 10−3 3.83 10−3 1.56 10−3

σ =0.1
LOG 6.73 10−4 8.77 10−5 6.71 10−5 6.54 10−5 5.89 10−5

KOUT 8.63 10−4 8.60 10−5 4.75 10−5 3.35 10−5 1.82 10−5

Table 2: Mean squared error for σ̂LOG and σ̂KOUT (r = 500 and n = 500).

With a simulation study, we compare the empirical mean squared errors of α
and σ for the methods introduced earlier. We represent the logarithmic ratio of
mean squared errors on α and σ for the log-moment and the regression meth-
ods and several samples of size r × n. For each sample of r × n observa-
tions, α and σ are fixed (α ∈ {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8} and log(σ) ∈
{−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}) (see Figure 1). Tables 1-2 and Figures 1-2
show that the log-moment estimator performs better than the Koutrouvelis one when
α < 1, while the converse is true for α > 1, with the differences in performance increasing
for extreme values of α.
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Figure 1: Log of the ratio between the α mean squared error for Koutrouvelis estimator
and log estimator r = 1000 and n = 100 in Figure (a), n = 500 in Figure (b), n = 2000
in Figure (c).
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Figure 2: Empirical density functions for Log-moment (LOG) and Koutrouvelis regres-
sion (KOUT) estimators of α in the first column and σ in the second column for r = 500
and n = 500.
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2.3 Combined estimator

As seen previously, the Koutrouvelis regression estimator is preferred when α > 1
whereas the log-estimator becomes significantly better than the Koutrouvelis estima-
tor, as α (≤ 1) decreases. We want to construct an estimator of α which will be at least
as good as the best estimator, for each α, for small samples (n ≈ 100). To do this, we
use a combined estimator whose general procedure of construction is described in [7]. In
our special case, θ = (α, σ)> are the parameters to estimate and we have access to the
estimators α̂KOUT , α̂LOG and σ̂KOUT

1.
We consider averaging estimators of θ of the form

θ̂λ = λ>

 α̂KOUT
α̂LOG
σ̂KOUT

 , λ ∈ Λ, (2.13)

where λ> denotes the transpose of λ and Λ ⊂M3×2(R) .

A convenient way to measure the performance of θ̂λ is to compare it to θ̂?, defined
as the best linear combination θ̂λ obtained for a non-random vector λ ∈ Λ. Specifically,

θ̂? is the linear combination λ?>

 α̂KOUT
α̂LOG
σ̂KOUT

 minimizing the mean square error (MSE),

i.e. λ? = argmin
λ∈Λ

E[‖ θ̂λ − θ ‖2].

Clearly, the larger the set Λ is, the better it will be. However, choosing the whole
space Λ = R3×2 is generally not exploitable. We must impose some conditions on the
set Λ in order to have an explicit form for λ?.

Define
J =

(
1 0
1 0
0 1

)
,

and consider the maximal constraint set

Λmax = {λ ∈ R3×2/λ>J = I2} =
{(

a b
1−a −b

0 1

)
/(a, b) ∈ R2

}
with I2 the identity matrix. The mean squared error E[‖ θ̂λ − θ ‖2] is minimized on the
set Λmax for a unique solution

λ? = Σ−1J(J>Σ−1J)−1, (2.14)

where Σ is the Gram matrix

Σ = E

((
α̂KOUT−α
α̂LOG−α
σ̂KOUT−σ

)(
α̂KOUT−α
α̂LOG−α
σ̂KOUT−σ

)>)
. (2.15)

1Since σ̂KOUT and σ̂LOG have similar performances, we use only one in the combination.
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Since the matrix Σ is unknown, the averaging estimator θ̂max is obtained by replacing
Σ by its estimation Σ̂: 

λ̂max = Σ̂−1J(J>Σ̂−1J)−1

θ̂max = λ̂>max

 α̂KOUT
α̂LOG
σ̂KOUT

 (2.16)

A way to estimate Σ is to use Monte Carlo simulations. Let us compute a first estimation
of the parameters by α̂0 =

α̂KOUT + α̂LOG
2

σ̂0 = σ̂KOUT

(2.17)

We simulate B samples of size n of a symmetric stable distribution with parameters

α̂0 and σ̂0. Then, the three estimators are computed, which gives α̂
(b)
KOUT , α̂

(b)
LOG and

σ̂
(b)
KOUT for b = 1 . . . B, and each entry of Σ is estimated by its empirical counterpart.

Experiments show that errors entailed by the estimation of Σ are negligible compared
to the advantage of having several estimators for small samples. Note that similar
estimators could be built by combining more than 2 estimators for α. For example,
it would be possible to add the Mc Culloch quantile estimator. Thus would increases
the size of the covariance matrix whose estimation will be worse and entail the risk of
constructing a combined estimator never better than each individual ones. The weight
for the log estimator in the combination is represented in Figure 3. We represent in
Table 3 the mean squared errors for several values of α. For each value, we remark that
the combination between Koutrouvelis and log estimators is always better than each
estimator separately. This is confirmed by the plots in Figure 4 comparing the empirical
distributions of each estimator.
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Figure 3: Weight (average) for the LOG-moment estimator α̂LOG in the combined esti-
mator depending on α. The upper (resp. lower) bound of the interval correspond to the
95% quantile (resp. 5%) for r = 500 replications of the combination with n = 100 and
B = 1000.

α 0.2 0.3 0.4 0.5 0.6 0.7

KOUT 2.4 10−3 3.1 10−3 5.0 10−3 8.3 10−3 1.3 10−2 1.5 10−2

LOG 5.0 10−4 9.1 10−4 1.9 10−3 3.4 10−3 5.6 10−3 7.6 10−3

COMB 4.0 10−6 7.2 10−4 1.5 10−3 2.9 10−3 5.2 10−3 6.8 10−3

α 0.8 0.9 1 1.1 1.2 1.3

KOUT 1.4 10−2 1.5 10−2 1.8 10−2 1.9 10−2 2.8 10−2 3.4 10−2

LOG 1.2 10−3 2.0 10−2 3.3 10−2 4.6 10−2 5.9 10−2 7.8 10−2

COMB 8.3 10−3 1.1 10−2 1.5 10−2 1.8 10−2 2.6 10−2 3.1 10−2

α 1.4 1.5 1.6 1.7 1.8 1.9

KOUT 4.0 10−2 4.1 10−2 4.1 10−2 2.8 10−2 1.9 10−2 1.1 10−2

LOG 8.5 10−2 8.8 10−2 9.9 10−2 8.7 10−2 7.4 10−2 7.6 10−2

COMB 3.3 10−2 3.4 10−2 3.5 10−2 2.5 10−2 1.9 10−2 1.1 10−2

Table 3: Mean squared errors for Koutrouvelis regression (KOUT), Log-moment (LOG)
and the combined (COMB) estimators of α for r = 500, n = 100, B = 1000 and σ = 1.
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Figure 4: Empirical density functions for Log-moment (LOG), Koutrouvelis regression
(KOUT) and the combined (COMB) estimators of α for r = 500, n = 100, B = 1000
and σ = 1.
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3 Skewed stable distributions

3.1 Adaptation of estimators for the skewed case

In the case X ∼ Sα(σ, β, 0), we have

E[log |X|] =

(
1

α
− 1

)
γ + log σ − log | cos θ|

α

E[(log |X| − E[log |X|])2] = Var(log |X|) =
π2

6α2
+
π2

12
− θ2

α2

where γ is Euler constant and θ = arctan
(
β tan απ

2

)
. (see [6] prop. 4).

Let (X1, . . . , X2n) be a sequence of 2n independent and identically distributed (iid)
stable random variables Sα(σ, β, 0). We use the centro-symmetrization introduced in
[6] to the observed data to obtain n iid symmetric stable random variables Sα(2σ, 0, 0)

(X2k −X2k−1)k∈{1,...,n}. Then, we estimate α by taking then α̂
(n)
LOG(X2 −X1, . . . , X2n −

X2n−1), where α̂
(n)
LOG is introduced in Theorem 2.4. Note that we can also estimate β

using V ar[log |X|].
Another way to estimate α is to use the (2n − 1) random variables (Xk −

Xk−1)k∈{2,...,2n}. In this case, the drawback is the loss of the independence but we
preserve the same sample size. The mean squared errors of the first method do not
depend on β since (X2m − X2m−1) are symmetric and independent. Numerically, we
observe that the properties of second estimate also does not depend on β. Moreover
numerical results given Table 4 show that the two estimates have similar performance
for α ≤ 1.

2n α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

100
n obs. i.i.d 1.01 10−3 4.44 10−3 1.27 10−2 3.30 10−2 10.7 10−2

2n− 1 obs. dep. 0.970 10−3 4.14 10−3 1.08 10−2 2.44 10−2 6.08 10−2

500
n obs. i.i.d 1.80 10−4 7.90 10−4 2.10 10−3 4.68 10−3 1.01 10−2

2n− 1 obs. dep. 1.75 10−4 7.58 10−4 1.86 10−3 3.81 10−3 7.33 10−3

1000
n obs. i.i.d 9.12 10−5 3.86 10−4 9.90 10−4 2.23 10−3 4.79 10−3

2n− 1 obs. dep. 8.94 10−5 3.69 10−4 8.88 10−4 1.84 10−3 3.48 10−3

Table 4: Mean squared errors for α using log-moments for 2n random variables i.i.d.
Sα(1, β, 0).

Koutrouvelis method does not vary with skewed distributions because the modulus
of the characteristic function depends only on α and σ (see performances in Tables 1 and
3). We combine the log moment after symmetrization (named after LOG sym.) with
the Koutrouvelis estimator in the same way that with symmetric variables (see Section
2.3) to obtain a new estimator whose numerical performances are reported on Table 5.
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α 0.2 0.4 0.6 0.8 1

COMB 2.39 10−3 2.21 10−3 5.88 10−3 9.08 10−3 1.67 10−2

KOUT 6.14 10−3 4.92 10−3 1.10 10−2 1.36 10−2 1.72 10−2

LOG sym. 1.90 10−3 4.36 10−3 1.34 10−2 2.67 10−2 7.29 10−2

α 1.2 1.4 1.6 1.8

COMB 2.70 10−2 3.53 10−2 3.54 10−2 2.20 10−2

KOUT 2.71 10−2 4.15 10−2 4.16 10−2 2.41 10−2

LOG sym. 1.24 10−1 1.38 10−1 1.29 10−1 1.10 10−1

Table 5: Mean squared errors for the combined (COMB), Koutrouvelis regression
(KOUT) and Log-moment (LOG) estimators of α for r = 500, n = 100, B = 1000,
β = 0.6 and σ = 1.

For skewed data (see Table 5), the combined estimators still have good performance
but we loose in term of mean square errors comparing to the symmetric case.

3.2 Test of symmetry

We propose a test for checking the skewness of dataset. We want to test H0 : ”β = 0”
against H1 : ”β 6= 0” using the properties of the estimators studied in previous section

Let (X1, . . . , X2n) be a sequence of 2n independent and identically distributed (iid)
stable random variables Sα(σ, β, 0). Under the null hypothesis H0, both estimates
α̂LOG((X2k)k) and α̂LOG((X2k −X2k−1)k) are consistent, and so the difference between
this estimators tends to zero. For skewed variables, this convergence does not occur
since α̂LOG((X2k)k) does not converge any more to α. These facts suggest to construct
a test based on the difference of these estimators. Denote

L1 := E [log |Z|] =

(
1

α
− 1

)
γ + log σ

L2 := E
[
(log |Z| − E [log |Z|])2

]
=

π2

6α2
+
π2

12

L3 := E
[
(log |Z| − E [log |Z|])3

]
= 2ζ(3)

(
1

α3
− 1

)
L4 := E

[
(log |Z| − E [log |Z|])4

]
= π4

(
3

20α4
+

1

12α2
+

19

240

)
C := Cov((log |X2| − E[log |X2|])2, (log |X2 −X1| − E[log |X2 −X1|])2)

= E
[
(log |X2| − E log |X2|)2(log |X2 −X1| − E log |X2 −X1|)2

]
− L2

2

where Z is an Sα(σ, 0, 0) random variable, ζ is the Riemann zeta function ζ(s) =
∑∞

n=1
1
ns

and ζ(3) = 1.2020569 . . . .

Proposition 3.1. For w ∈ (0, 1), define the critical region

Rw =

n
(
α̂LOG({X2k}k)− α̂LOG({X2k −X2k−1}k)

)2
18α̂LOG

6

π4 (L̂4 − L̂2
2
− Ĉ)

> tw
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where tw is the 1− w quantile of the Chi-squared distribution with 1 degree of freedom,
and where L̂4, L̂2 and Ĉ are respectively the the empirical moments of L4, L2 and C. We
decide to reject the null hypothesis if (X1, . . . , X2n) ∈ Rw. The test has an asymptotically
significance level equal to w and is asymptotically consistent under H1.

Proof. Under the null hypothesis,

√
n

(
1

n

n∑
k=1

(
(Yk − Yn)2

(Zk − Zn)2

)
−
(
L2

L2

))
d−→ N

((
0
0

)
,

(
L4 − L2

2 C
C L4 − L2

2

))
Then by multidimensional delta method, we get

√
n

((
α̂LOG((X2k)k)

α̂LOG((X2k −X2k−1)k)

)
−
(
α
α

))
d−→ N

((
0
0

)
,
9α6

π4

(
L4 − L2

2 C
C L4 − L2

2

))
and

√
n
α̂LOG((X2k)k)− α̂LOG((X2k −X2k−1)k)√

18α6

π4 (L4 − L2
2 − C)

d−→ N (0, 1).

Finally, applying Slutsky Theorem and the consistency of L̂4, L̂2 and Ĉ , we obtain that
the asymptotical significance level is equal to w.

Under H1, we have

α̂LOG((X2k)k)− α̂LOG((X2k −X2k−1)k)
a.s.−−→ πα√

π2 − 6θ2
− α 6= 0

with θ = arctan
(
β tan απ

2

)
. Then, under the alternative β 6= 0 we have a consistent test,

P (Rw) −−−→
n→∞

1.

In Table 6, we use Monte Carlo experiment to evaluate the probability to reject the
null hypothesis H0. For small values of α, the empirical significance level converges
slowly to w : this is due to the form of the density that is concentrated around zero,
and the poor quality of the estimation of the coefficient L4 − L2

2 − C. The estimation
converges rather slowly to this coefficient (which increases when α decreases).

α = 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2n = 200 0.065 0.074 0.084 0.087 0.088 0.097 0.088 0.06 0.042

2n = 1000 0.0953 0.1019 0.0971 0.89 0.074 0.065 0.067 0.061 0.035

2n = 104 0.18 0.16 0.10 0.071 0.051 0.050 0.048 0.051 0.053

Table 6: Probabilities to reject the null hypothesis under H0 for several sizes of samples
and different values of α. The significance level is w = 5%.
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(b) 2n = 200, α = 0.8
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(c) 2n = 1000, α = 1.2
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(d) 2n = 1000, α = 0.8

Figure 5: Representation of the empirical cumulative distribution function of the p-
value for different values of β, β = 0 (black), β = 0.2 (red), β = 0.4 (dark blue), β = 0.6
(green), β = 0.8 (pink) and β = 1 (light blue). In (a), we add in dotted lines the value
for β ∈ {−1,−0.8,−0.6,−0.4,−0.2} which correspond exactly to the positive ones.

In Figure 5, we can see that the power increases when β goes away from 0 or when
the sample sizes increases. This convergence under the alternative hypothesis depends
on the values of α and β. We observe that the p-value take the value 1 with non-null
probability for small size of samples. This jump due to the truncation in the log-moment
estimator defined in Theorem 2.4 asymptotically disappears.

4 Case of non-identically distributed stable variables

In applications, it may be the case that one needs to analyze non-stationnary phenomena.
For instance, it seems plausible that financial logs which display jumps will see the
intensity of these jump depend on external events, such as crises (see next section for
an illustration on the S&P 500). Sometimes, the variation of α will be slow, and it is
of interest to investigate under which conditions our estimator still behaves correctly in
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situations where the data at hand deviate slightly from the iid hypothesis. In the sequel,
we examine two cases: deterministic and random small perturbations of α, leading
to random variables which are not identically distributed. We do not dispense here
with the independence assumption, although this would be a desirable extension. This
generalization will be the topic of a future work.

4.1 Deterministic perturbations

Let (Xi) be a sequence of independent variables and X random variable independent of
(Xi) such that

Xi ∼ Sαi(σi, 0, 0) and X ∼ Sα(σ, 0, 0).

We denote Yi = log |Xi|, Y = log |X|. Assume that, for each integer i, αi = α + εi and
σi = σ + ηi with εi and ηi deterministic such that

|εi|
α
≤ cα < 1 and

|ηi|
σ
≤ cσ < 1.

Proposition 4.1. Under the conditions

1

n

n∑
i=1

|εi| −−−→
n→∞

0 and
1

n

n∑
i=1

|ηi| −−−→
n→∞

0,

one has
α̂

(n)
LOG

a.s.−−−→
n→∞

α.

where α̂
(n)
LOG is defined in Theorem 2.4.

Proof. See Appendix.

Proposition 4.2. Let Σα,σ be the covariance matrix between Y and Y 2:

Σα,σ =
(

Var(Y ) Cov(Y,Y 2)

Cov(Y,Y 2) Var(Y 2)

)
(4.1)

and set
Hα,σ =

(
6(( 1

α
−1)γ+log σ)α3/π2

−3α3/π2

)
(4.2)

With the conditions

1√
n

n∑
i=1

|εi| −−−→
n→∞

0 and
1√
n

n∑
i=1

|ηi| −−−→
n→∞

0,

the following central limit theorem holds for α̂
(n)
LOG:

√
n
(
α̂

(n)
LOG − α

)
d−→ N (0, tHα,σΣα,σHα,σ) (4.3)

Proof. See Appendix.
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4.2 Random perturbations

Let (Xi) be a sequence of independent variables and X random variable independent of
(Xi) such that Xi ∼ Sαi(σ, 0, 0) and X ∼ Sα(σ, 0, 0). Assume that, for each integer i,
αi = α + εi, with εi a random variable, and that there is a constant cα < 1 such that
P (αi ∈ [α(1− cα), α(1 + cα)]) = 1. We denote Yi = log |Xi|, Y = log |X|.

Proposition 4.3. Under the conditions

1

n

n∑
i=1

E[|εi|] −−−→
n→∞

0

we have
α̂

(n)
LOG

a.s.−−−→
n→∞

α.

If, in addition,
1√
n

n∑
i=1

E[|εi|] −−−→
n→∞

0, then the following central limit theorem holds:

√
n
(
α̂

(n)
LOG − α

)
d−→ N (0, Hα,σΣα,σ

tHα,σ)

where Σα,σ and Hα,σ are defined in (4.1) and (4.2).

Proof. See Appendix.

5 Some applications for the combined estimator

5.1 Numerical results on synthetic data: multistable Lévy motion

We now put our log-moment and combined estimators to use in the case of the multistable
Lévy motion defined in [2] (see also [9] for further properties of this process). The basic
idea is the allow the stability index evolve with time, so that the jump intensity, which
is governed by α, varies along a trajectory. Such a feature is commonly encountered in
times series observed in fiels such as finance or biomedicine. Let us briefly recall the
definition of such processes.

Let α : [0, 1] → (0, 2) be continuously differentiable. We note r<s> = sign(r)|r|s for
r ∈ R and s ∈ R. Symmetric multistable Lévy motion is defined by

Mα(t) = Cα(t)

∑
(X,Y )∈Π

1(0,t](X)Y <−1/α(t)> (5.1)

where Cθ =

(∫ ∞
0

u−θ sin(u)du

)−1/θ

and Π is a Poisson point process on R+ × R with

plane Lebesgue measure L2 as mean measure. This process is simulated by using the
field

X(t, u) = Cα(u)

∑
(X,Y )∈Π

1(0,t](X)Y <−1/α(u)>.
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For each u ∈ (0, 1), X(., u) is an α(u)-stable process with independent increments which
can be implemented using the RSTAB program available in [16] or in [14]. The interval
[0,1] is discretised in N equal parts and X(., u) is implemented by the cumulative sum
of N independent stable variables with α(u) as characteristic exponent.
In Figure 6, we display sample paths of multistable processes for several α functions.
Then, we estimate these functions at all point t0 thanks to the combined estimator with
a window of n observations around t0.
In Figure 7, we iterate 100 times the simulation and the estimation for a multistable
process with α(t) = 1.5 − 0.48 sin(2π(t + 1/4)). For each point where the function
α is estimated, we obtain the empirical distribution of the combined estimator. This
procedure is repeated for several sizes of window (100, 200, 1000 and 2000). We observe
that the standard error which correspond to the standard deviation for the combined
estimator is decreasing when the size of the window n increases whereas the bias is
increasing for n large. Finally, the mean squared error is decreasing when n increases
until n = 1000 and then increases for larger value. Figure 8 represents the bias, standard
error and mean square error as function of t for various values of the window size.
The mean squared error as a function of α is reported in Figure 9. The mean squared
error does not vary much according to the value of α in [1, 2] when n is fixed.
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Figure 6: Trajectories of multistable processes on (0,1) with N = 20000 points in the
first column. The functions α(t) (red) and α̂COMB(t) (black) are represented in the
second column with n = 2000.
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Figure 7: Box-plots of the estimator α̂COMB
(n)

for 100 replications of a multistable
process with characteristic exponent α(t) = 1.5 − 0.48 sin(2π(t + 1/4)), represented in
red. The box-plots represent the behavior of the estimator for several sizes n of window.
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Figure 8: Representation of the bias (a), standard error (b) and mean square error (c)
as function of t for n = 100 (black solid line), n = 200 (red dashed), n = 1000 (green
dotted) and n = 2000 (blue dotted and dashed mix.). The statistics are evaluated on
the same trajectories in Figure 7.
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Figure 9: Mean squared error according to the value of α of the combined estimation for
a multistable process with α(t) = 1.5−0.48 sin(2π(t+1/4)). The statistics are evaluated
on the same trajectories as Figure 7.

As these figures show, reasonable estimates are obtained on these experiments, due
to the fact that the variations of α are ”slow” compared to the sampling frequency:
this feature ensures that centering a window around any given t0 and treating all points
inside this window as having the same α value is an acceptable approximation as far as
estimation is concerned.

5.2 Application on financial logs

This last section deals with real data. We want to apply the combined estimator to esti-
mate the characteristic exponent of the financial index Standard & Poor’s 500 (abbrevi-
ated as the S&P 500, see Figure 10). This is an American stock market index based on
the 500 companies having largest capitalization. The stock market returns of the finan-
cial index S&P 500, which correspond to the renormalized growth rate ((Yt+1 − Yt)/Yt)t,
are supposed to be independent stable random variables. In Figure 11, we first test the
symmetry of the data in sliding window of size 1000 using the test defined in Proposition
3.1. We represent the empirical distribution function for the p-value of S&P 500 returns
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since 1996. The cumulative distribution function is very close to the uniform one. Then,
the null hypothesis of symmetric data is not reject for S&P 500 returns since 1996. As a
consequence, the parameter is estimated by applying the estimator defined in Theorem
2.4 in sliding window of several sizes during the period 1996-2017 (see Figure 12).
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Figure 10: Evolution of the financial index S&P 500 as function of t (a) and its return
(b), between 1996 and 2017.
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Figure 11: Representation of the empirical cumulative distribution function of the p-
value for S&P 500 returns between 1996 and 2017 (Figure (a)) and between 1928 and
1936 ( Figure (b)) with sliding window of size 1000.
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Figure 12: Values of the combined estimator α̂COMB
(n)

for the S&P 500 characteristic
exponent α in sliding window of several sizes n for working days between 1996 and 2017.

We reject the hypothesis of symmetry between 1929 and 1936 (see Figure 11). In
Figure 13, the estimation of the characteristic exponent is done between 1929 and 1936
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using the skewed combined estimator defined in Section 3. A sudden drop is observed
at the end of 1929. This change corresponds to the Wall Street financial crash of 1929.
The estimation for symmetric data (in red) is added in the figure to see the difference
between the two estimations, particularly during the crisis.
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Figure 13: Values of the skewed combined estimator α̂COMB
(n)

(in black) and the sym-
metric combined estimator (in red) for the S&P 500 characteristic exponent α around
the Wall Street financial crash of 1929 (sliding window of size n = 200 observations).

6 Appendix

Proof of Proposition 2.1
Let Z be a stable random variable∼ Sα(1, 0, 0). Since:

• Z has bounded density,

• lim
λ→+∞

λαP (Z > λ) = Cα,

• lim
λ→+∞

λαP (Z < −λ) = Cα,

(see [14], Property 1.2.15), we deduce for all p > 0,

E[| log |Z||p] =

∫ ∞
0

P(| log |Z||p > x)dx <∞.

Proof of Proposition 2.2
We use the formula of Property 1.2.17 and 1.2.15 in [14] to compute E[|Z|t] for 0 < t < α:

E[|Z|t] =
2t−1Γ(1− t/α)

t
∫ +∞

0
sin2(u)
ut+1 du

=
2t−1Γ(1− t/α)∫ +∞

0
sin(2u)
ut du

=
(1− t)Γ(1− t/α)

Γ(2− t) cos(πt/2)

Furthermore, if 0 < t < 1, we have:

E[|Z|t] =
Γ(1− t/α)

Γ(1− t) cos(πt/2)
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Proof of Theorem 2.3
By the strong law of large numbers for the random variables (log |Xi|)i with finite ex-
pectation (Proposition 2.1), and the continuous mapping theorem for g(x) = γ

γ+x , we

get α̂n
a.s.−−−→
n→∞

α. Then we apply the central limit theorem and the delta method with

the function f(x) = π2

6x2
+ π2

12 to obtain

√
n(α̂n − α)γ

α̂2
n

√
f(α̂n)

d−→ N (0, 1)

Proof of Theorem 2.4
We prove this theorem by using the strong law of large numbers, continuous mapping
theorem, multidimensional central limit theorem and delta method. We need the third
and the fourth log-moment of a stable law Z ∼ Sα(1, 0, 0) for the covariance matrix. We
have

E
[
(log |Z| − E [log |Z|])3

]
= 2ζ(3)

(
1

α3
− 1

)
and we get

E[(log |Z|)3] =
4γ3 + 2γπ2 + 8ζ(3)

4α3
+
−12γ3 − 2γπ2

4α2
+

12γ3 + γπ2

4α
+
−4γ3 − γπ2 − 8ζ(3)

4

and

E
[
(log |Z| − E [log |Z|])4

]
= π4

(
3

20α4
+

1

12α2
+

19

240

)
E[(log |Z|)4] =

240γ4 + 240γ2π2 + 36π4 + 1920ζ(3)γ

240α4
+
−960γ4 − 480γ2π2 − 1920ζ(3)γ

240α3

+
1440γ4 + 360γ2π2 + 20π4

240α2
+
−960γ4 − 240γ2π2 − 1920ζ(3)γ

240α

+
240γ4 + 120γ2π2 + 19π4 + 1920ζ(3)γ

240

where ζ is the Riemann zeta function ζ(s) =
∑∞

n=1
1
ns and ζ(3) = 1.2020569 . . . .

Proof of Proposition 4.1
By the Kolmogorov strong law of large numbers for non-identically distributed random
variables (Theorem 2.3.10 in [15]), we get

1

n

n∑
i=1

Y 2
i −

(
1

n

n∑
i=1

Yi

)2

−

 1

n

n∑
i=1

E[Y 2
i ]−

(
1

n

n∑
i=1

E[Yi]

)2
 a.s.−−→ 0

as
1

n

n∑
i=1

E[Yi]− E[Y ] =
γ

n

n∑
i=1

(
1

αi
− 1

α

)
+

1

n

n∑
i=1

(log σi − log σ)

=
γ

n

n∑
i=1

−εi
(α?i )

2
+

1

n

n∑
i=1

ηi
σ?i
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and

1

n

n∑
i=1

E[Y 2
i ]− E[Y 2]

=
γ2 + π2/6

n

n∑
i=1

(
1

α2
i

− 1

α2

)
− 2γ2

n

n∑
i=1

(
1

αi
− 1

α

)

+
2γ

n

n∑
i=1

((
1

αi
− 1

)
log σi −

(
1

α
− 1

)
log σ

)
+

1

n

n∑
i=1

(
(log σi)

2 − (log σ)2
)

=
γ2 + π2/6

n

n∑
i=1

−2εi

α̃i
3 −

2γ2

n

n∑
i=1

−εi
(α?i )

2
+

2γ

n

n∑
i=1

(
1

σ̌i

(
1

α̌i
− 1

)
ηi −

log(σ̌i)

(α̌i)2
εi

)

+
1

n

n∑
i=1

2 log σ̃i
σ̃i

ηi

where α̃i, α
?
i , α̌i (respectively σ̃i, σ

?
i , σ̌i) have ranged between α and αi (respectively σ

and σi). ∣∣∣∣∣ 1n
n∑
i=1

E[Yi]− E[Y ]

∣∣∣∣∣ ≤ γ

α2(1− cα)2

1

n

n∑
i=1

|εi|+
1

σ(1− cσ)

1

n

n∑
i=1

|ηi|∣∣∣∣∣ 1n
n∑
i=1

E[Y 2
i ]− E[Y 2]

∣∣∣∣∣
≤
(

2γ2 + π2/3

α3(1− cα)3
+

2γ2

α2(1− cα)2
+

2γmax(| log(σ − σcσ)|, | log(σ + σcσ)|)
α2(1− cα)2

)
1

n

n∑
i=1

|εi|

+

(
2γ

σ(1− cσ)

(
1

α(1− cα)
+ 1

)
+

2 max(| log(σ − σcσ)|, | log(σ + σcσ)|)
σ(1− cσ)

)
1

n

n∑
i=1

|ηi|

Under the conditions:

• 1

n

n∑
i=1

|εi| → 0

• 1

n

n∑
i=1

|ηi| → 0

we have
1

n

n∑
i=1

E[Y 2
i ] −−−→

n→∞
E[Y 2] and

1

n

n∑
i=1

E[Yi] −−−→
n→∞

E[Y ].

By the continuous mapping theorem with g(x, y) = π√
max(6(y−x2)−π2

2
,π

2

4
)
, we obtain

α̂n − α
a.s.−−→ 0.
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Proof of Proposition 4.2

Define the covariance-matrix Σ
(n)
α,σ as follows:

Σ(n)
α,σ :=

(
1
n

∑n
i=1 Var(Yi)

1
n

∑n
i=1 Cov(Yi,Y

2
i )

1
n

∑n
i=1 Cov(Yi,Y

2
i ) 1

n

∑n
i=1 Var(Y 2

i )

)
. With the conditions of Proposition 4.1, we have

Σ(n)
α,σ −−−→n→∞

Σα,σ :=
(

Var(Y ) Cov(Y,Y 2)

Cov(Y,Y 2) Var(Y 2)

)
By the central limit theorem for non-identically distributed random variables (Theorem

3.3.9 in [15]), as supk E

[∣∣∣∣ Yk
(Yk)

2

∣∣∣∣4
]
<∞, we have,

√
n

((
1
n

∑n
i=1 Yi

1
n

∑n
i=1 Y

2
i

)
−
(

1
n

∑n
i=1E[Yi]

1
n

∑n
i=1E[Y 2

i ]

))
d−→ N (0,Σα,σ)

Under conditions of Proposition 4.2, we get

√
n

(
1

n

n∑
i=1

E[Y 2
i ]− E[Y 2]

)
−−−→
n→∞

0

and
√
n

(
1

n

n∑
i=1

E[Yi]− E[Y ]

)
−−−→
n→∞

0,

then
√
n

((
1
n

∑n
i=1 Yi

1
n

∑n
i=1 Y

2
i

)
−
(

E[Y ]
E[Y 2]

))
d−→ N (0,Σα,σ).

By applying the delta-method with g(x, y) = π√
max(6(y−x2)−π2

2
,π

2

4
)
, we obtain the result.

Proof of Proposition 4.3
By the strong law of large numbers for non-identically distributed random variables
(Theorem 2.3.10 in [15]), we get

1

n

n∑
i=1

Y 2
i −

(
1

n

n∑
i=1

Yi

)2

−

 1

n

n∑
i=1

E[Y 2
i ]−

(
1

n

n∑
i=1

E[Yi]

)2
 a.s.−−→ 0

With the same calculation, we have

1

n

n∑
i=1

E[Y 2
i ]− E[Y 2] =

γ2 + π2/6

n

n∑
i=1

E

[
1

α2
i

− 1

α2

]
+
−2γ2 + 2 log(σ)

n

n∑
i=1

E

[
1

αi
− 1

α

]

=
γ2 + π2/6

n

n∑
i=1

E

[
−2εi
(α̃i)3

]
+
−2γ2 + 2 log(σ)

n

n∑
i=1

E

[
−εi

(α?i )
2

]

30



and
1

n

n∑
i=1

E[Yi]− E[Y ] =
γ

n

n∑
i=1

E

[
1

αi
− 1

α

]
=
γ

n

n∑
i=1

E

[
−εi

(α?i )
2

]
with α?i and α̃i ∈ (min(α, αi),max(α, αi)). As α?i and α̃i are almost surely included in
[α(1− cα), α(1 + cα)], we get∣∣∣∣∣ 1n

n∑
i=1

E[Y 2
i ]− E[Y 2]

∣∣∣∣∣ ≤
(

γ2 + π2/6

(α(1− cα))3
+
| − 2γ2 + 2 log(σ)|

(α(1− cα))2

)
1

n

n∑
i=1

E[|εi|]

and ∣∣∣∣∣ 1n
n∑
i=1

E[Yi]− E[Y ]

∣∣∣∣∣ ≤ γ

(α(1− cα))2

1

n

n∑
i=1

E[|εi|]

if we suppose
1

n

n∑
i=1

E[|εi|]→ 0, we get

1

n

n∑
i=1

E[Y 2
i ] −−−→

n→∞
E[Y 2] and

1

n

n∑
i=1

E[Yi] −−−→
n→∞

E[Y ].

The central limit theorem is proved as Prop. 4.2.
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