

Structural organization of casein micelles concentrated layer during cross-flow ultrafiltration

Floriane Doudiès

M. Loginov, N. Hengl, F. Pignon, N. Leconte, F. Garnier-Lambrouin, J. Pérez, L. Sharpnack, M. Granger-Delacroix, M. Belna, G. Gésan-Guiziou

Milk filtration

Skimmed milk:

Casein micelles are large globular aggregates of caseins with calcium phosphate, they are porous, deformable, compressible and dynamic particles (50-500nm)

Micro- and ultrafiltration of skimmed milk are largely used in the dairy sector (≈ 40% of the membrane area installed in food sector)

ultrafiltration \rightarrow proteins concentration (cheese manufacture, standardization) microfiltration \rightarrow proteins fractionation (high added value ingredients)

Membrane fouling by casein micelles

Formation of fouling gel layer:

- limitation of the filtration performance

reduces permeate flux, decreases permeate quality (low transmisson of soluble proteins)

- difficulties of cleaning operation

large consumption of water, detergents and energy...

Objective

The structural organization and behaviour of concentrated casein micelles in fouling layer during cross-flow ultrafiltration

- to analyse fouling layer development during filtration step and redispersion during pressure relaxation step
- to focus on the effect of temperature
- to perform *in situ* Small-Angle X-ray Scattering (SAXS) cross-flow filtration

In-situ SAXS cross-flow filtration

Jin et al., J.Memb. Sci., 2014

Permeate

SAXS by casein micelles in static

SAXS analysis of fouling layer

Quantification of fouling layer

Concentration of sol-gel transition: 12°C – 150 g/l 25°C – 174 g/l 42°C – 181 g/l (from Nöbel et al., Int. Dairy J., 2016)

Filtration protocol

Suspension:

50 g/L of casein micelles in milk ultrafiltrate

Temperature: 12, 25 or 42°C

Filtration cycle: 2 steps

TMP = 1.1 barv = 3cm/s

Permeate flux decreases over time for each temperature

With temperature decreasing, fouling layer less permeable

Fouling rate and intensity due to the **lower filtrate viscosity and higher filtrate flux**

Pressure relaxation step

TMP = 0.1 bar v = 3cm/s and 10cm/s

Relaxation step allowed to remove a part of polarized layer without using chemical products, ultrasound...

But, relaxation time is comparable with accumulation time, relatively slow

Removed mass rises with temperature

Relaxation

TMP = 0.1 bar v = 3cm/s and 10cm/s

Gel removal follows same trend as total accumulated matter removal: starts simultaneously with pressure decrease, at the very beginning of relaxation step

At 12°C, less accumulation than at 42°C but it is removed with difficulty

Gel behaviour after pressure release

Impact of temperature on gel relaxation

Concentration profiles during relaxation at different temperatures (same Y-axis scale)

Three types of fouling

Observed at moderate gel concentration (12°C) Not observed at highest concentration (42°C) → Nature of fouling (repulsive gel/attractive gel) depends on temperature

Lower steric barrier density – more open surface for interactions (gelling)?

Conclusions

- In-situ SAXS cross-flow filtration allowed analysis of casein micelles fouling layer with an unique resolution of $20\mu m$ during filtration step and relaxation step
- Fouling rate and fouling intensity (quantity of accumulated micelles and gel thickness) increase with temperature due to the lower filtrate viscosity and higher filtrate flux
- Important part of fouling can be reduced by simple pressure relaxation
- The fouling by casein micelles is removed through the swelling-dissolution mechanism
- A limited efficiency of pressure relaxation at 12°C can be explained by transformation of repulsive gel (swells and dissolves) into attractive gel (swells but does not dissolve)
- In the future:
- 1) local microstructure
- 2) rheological characterization of gels at different temperatures

3) study of cross-flow, time and transmembrane pressure effects on gel properties in fouling layer

Thank you for your attention!

Calibration

1) Zero membrane placement

Calibration at different scattering vectors

Filtration kinetics

25

20

15

10

5

0

0

Flux (L·m⁻²·h⁻¹)

TMP = 1.1 barv = 3 cm/s

—42°C

——12°C

--25°C

150

Time (min)

100

50

Accumulation mass **impacts** permeate flux

Viscosity corrects difference of flux observed for different temperatures

11