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A Generic Normal Form for ZX-Diagrams and Application to the Rational Angle Completeness

Recent completeness results on the ZX-Calculus used a third-party language, namely the ZW-Calculus. As a consequence, these proofs are elegant, but sadly non-constructive. We address this issue in the following. To do so, we first describe a generic normal form for ZX-diagrams in any fragment that contains Clifford+T quantum mechanics. We give sufficient conditions for an axiomatisation to be complete, and an algorithm to reach the normal form. Finally, we apply these results to the Clifford+T fragment and the general ZX-Calculus -for which we already know the completeness-, but also for any fragment of rational angles: we show that the axiomatisation for Clifford+T is also complete for any fragment of dyadic angles, and that a simple new rule (called cancellation) is necessary and sufficient otherwise.

Introduction

The ZX-Calculus is a powerful graphical calculus devoted to quantum information processing, introduced in 2008 by Coecke and Duncan [START_REF] Coecke | Interacting quantum observables: categorical algebra and diagrammatics[END_REF]. The language relies on two fundamental structures in quantum mechanics: the interacting observables and the phase group. Thanks to its flexibility, the language has already been used in several topics such has the foundations of quantum mechanics [START_REF] Backens | A complete graphical calculus for Spekkens' toy bit theory[END_REF][START_REF] Duncan | Interacting Frobenius Algebras Are Hopf[END_REF], measurement-based quantum computing [START_REF] Duncan | Rewriting measurement-based quantum computations with generalised flow[END_REF][START_REF] Horsman | Quantum picturalism for topological cluster-state computing[END_REF][START_REF] Duncan | A graphical approach to measurement-based quantum computing[END_REF], quantum error correction [START_REF] Duncan | Verifying the Smallest Interesting Colour Code with Quantomatic[END_REF][START_REF] Duncan | Verifying the Steane code with Quantomatic[END_REF][START_REF] Chancellor | Graphical Structures for Design and Verification of Quantum Error Correction[END_REF][START_REF] De | The ZX calculus is a language for surface code lattice surgery[END_REF] ... Quantum processes are described in the language as diagrams, providing a compact and downto-earth visualisation. Diagrams can be manipulated through the interactive proof assistant Quantomatic [START_REF] Kissinger | Quantomatic[END_REF][START_REF] Kissinger | Quantomatic: A Proof Assistant for Diagrammatic Reasoning[END_REF]. As the quantum circuits, the diagrams are universal : whatever the considered quantum operation, there exists a ZX-diagram that describes it. This representation is however not unique: two distinct ZX-diagrams may represent the same evolution. As a consequence the language is equipped with a set of equations. These equations preserve the represented evolution: they are sound. The converse of soundness is completeness, and is much harder to get. It is achieved when, whenever two diagrams represent the same evolution, they can be transformed into each other using solely the transformation rules.

The question of the completeness of the ZX-calculus gave rise to a series of results on various fragments of the language. A fragment corresponds to a restriction on the phase group structure: the π n -fragment is made of the diagrams involving angles in π n Z only. The π 2 -and the π-fragmentstwo non universal fragments of the language -have been proved complete [START_REF] Backens | The ZX-calculus is complete for stabilizer quantum mechanics[END_REF]; and, more recently, a complete axiomatisation has been provided for the π 4 -fragment [START_REF] Jeandel | A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics[END_REF], providing the first completeness result for an (approximately) universal fragment since this fragment corresponds to the so-called Clifford+T quantum mechanics. This has been then extended to a complete axiomatisation of the general ZX-calculus [START_REF] Jeandel | Diagrammatic Reasoning beyond Clif-ford+T Quantum Mechanics[END_REF][START_REF] Kang | A universal completion of the ZX-calculus[END_REF].

All these recent completeness results for (approximately) universal ZX-calculi used different versions of another graphical language called ZW-Calculus [START_REF] Coecke | The Compositional Structure of Multipartite Quantum Entanglement[END_REF][START_REF] Hadzihasanovic | A Diagrammatic Axiomatisation for Qubit Entanglement[END_REF][START_REF] Hadzihasanovic | The algebra of entanglement and the geometry of composition[END_REF]. The language describes the interactions between the only two non-equivalent kinds of entanglement between three qubits, precisely the GHZ and W states [START_REF] Dür | Three qubits can be entangled in two inequivalent ways[END_REF]. In its last version [START_REF] Hadzihasanovic | The algebra of entanglement and the geometry of composition[END_REF], the ZW-calculus is crucially parametrised by a ring, and as a consequence admits a natural representation of matrices over this ring: the ZW-diagram represent the structure of the matrix where some of the generators are parametrised by the entries of the matrix. This representation of matrices led to a notion of ZW-diagrams in normal forms on which the proof of completeness is built.

The ZX-calculus is instead parametrised by elements of a group, the so-called phase group structure. As a consequence the representation of matrices (over a ring) is more involved. We introduce in this paper the first normal forms for (approximately) universal fragments of the ZXcalculus. This normal form is generic, depending on the considered fragment of the language. We reprove the two completeness theorems of the ZX-calculus, namely for the π 4 -fragment and the general calculus, but this time constructively, using the normal form in the ZX-Calculus, and hence without using a third-party language. Moreover, we prove the completeness for any fragment of rational angles: we show that for any fragment of dyadic angles (which allows for instance the exact representation of the Quantum Fourier Transform [START_REF] Michael | Quantum Computation and Quantum Information: 10th Anniversary Edition[END_REF]) is complete; we also show that for any other fragment of rational angles, the following new and simple rule, called cancellation, is necessary and sufficient for completeness:

∀α = π mod 2π, ZX D 1 ⊗ α = D 2 ⊗ α =⇒ (Cancel) ZX D 1 = D 2
Related works. Two completeness results on diagrammatic languages have been established recently [START_REF] Backens | ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity[END_REF][START_REF] Coecke | ZX-Rules for 2-qubit Clifford+T Quantum Circuits[END_REF], independently of the present work. In [START_REF] Backens | ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity[END_REF], a new language, the ZH-calculus is introduced. The ZH-calculus is intuitively an angle-free ZX-calculus augmented with a generalisation of the H-generator with an arbitrary number of inputs/outputs and parametrised by a complex number. This language allows very nice and simple representation of some useful controlled operations. The authors give a completeness result based on normal forms. Like in the ZW-calculus, the entries of a complex matrix can be directly represented in a ZH-diagram while the representation of the scalars is the cornerstone -and the main technicality -of the normal forms in ZX-diagrams. In [START_REF] Coecke | ZX-Rules for 2-qubit Clifford+T Quantum Circuits[END_REF], the authors show that a simpler axiomatisation of the ZX-calculus is enough to prove the equivalence of 2-qubit Clifford+T circuits. Surprisingly, the proposed axiomatisation is based on the use of diagrams which are not in the π 4 -fragment whereas all 2-qubit Clifford+T circuits are in this fragment. Structure of the paper. We first present the ZX-Calculus in Section 2. We then give the general structure of the normal form in Section 3, and sufficient conditions for obtaining the completeness. We apply this for the general ZX-Calculus in Section 4, for rational angles in Section 5 and in the particular case of the dyadic angles in Section 6.

The ZX-Calculus

Diagrams and Standard Interpretation

A ZX-diagram D : k → l with k inputs and l outputs is generated by: R The ZX-Calculus comes with a way of interpreting its diagrams as matrices: The standard interpretation of the ZX-diagrams associates to any diagram D : n → m a linear map D : C 2 n → C 2 m inductively defined as follows:

(n,m) Z (α) : n → m α • • • • • • n m H : 1 → 1 I : 1 → 1 : 2 → 0 R (n,m) X (α) : n → m α • • • • • • n m e : 0 → 0 σ : 2 → 2 η : 0 → 2 where n, m ∈ N, α ∈ R,
.

D 1 ⊗ D 2 := D 1 ⊗ D 2 D 2 • D 1 := D 2 • D 1 := 1 := |0 0| + |1 1| := |+ 0| + |-1| := i,j∈{0,1} |ij ji| := |00 + |11 := 00| + 11| α = α := 1 + e iα
For any n, m such that n + m > 0:

α • • • • • • n m := |0 m 0 n | + e iα |1 m 1 n | α • • • • • • n m := |+ m + n | + e iα |-m -n |
where

|+ := |0 +|1 √ 2 , |-:= |0 -|1 √ 2 and |i n := | n i • • • i .
To simplify, the red and green nodes will be represented empty when holding a 0 angle:

• • • 0 := • • • • • • • • • and 0 := • • • • • • • • • • • • ZX-Diagrams are universal: ∀A ∈ C 2 n × C 2 m , ∃D : n → m, D = A
This is true for general ZX-diagrams i.e. where angles are in R/2πZ. However, it is convenient to consider restrictions of the language -called fragments -that are finitely generated. Let G be an additive subgroup of R/2πZ. It is easy to see that the standard interpretation . maps diagrams of the fragment G to matrices over R G := Z 1 √ 2 , e iG , that is, the smallest subring of C that contains the integers Z, 1 √ 2 , and the set {e iα | α ∈ G}. However, in general, all matrices in R G are not expressible with a diagram of the fragment G. For instance, πZ 2 and π 2 Z 4 are not universal [START_REF] Aaronson | Improved simulation of stabilizer circuits[END_REF]. However, we will show in the following that if π 4 ∈ G, then the fragment G is universal for matrices over R G . Definition 1. Let G be the set of all additive subgroup G of R/2πZ such that π 4 ∈ G.

Calculus

Since the diagrammatic representation of a matrix is not unique with ZX-diagrams, the calculus comes with a set of axioms that can be used to rewrite diagrams as equivalent ones (diagrams that represent the same matrix). The axioms for the π 4 -fragment of the calculus are represented in Figure 1.

To these axioms are added a set of transformation rules aggregated under the paradigm Only Topology Matters. It means that the wires can be bent at will, and that the inputs/outputs of the generators R Z , R X and H can be reordered at will. What matters is solely the connectivity between two nodes. Such axioms are:

= = = = = = = = • • • = α+β β • • • α • • • (S1) • • • • • • • • • • • • = (S2) -π 4 π 4 = (E) = (B1) = (B2) = π α -α π α π (K) π 2 π 2 -π 2 = (EU) α • • • = α • • • • • • • • • (H) α α+π = 2α+π (SUP) β α π β γ -γ α = α α π β -γ γ β (C) π 4 π 4 π 4 -π 2 π 4 π 4 π 4 = π 4 π π 2 π 4 π 4 π π 4
(BW) When one can transform one diagram D 1 into another D 2 using only the rules of the ZX-Calculus, we write ZX D 1 = D 2 , which can be done by applying axioms locally. Indeed, for any diagrams D, D 1 and D 2 , if ZX D 1 = D 2 then:

-ZX D 1 • D = D 2 • D -ZX D • D 1 = D • D 2 -ZX D 1 ⊗ D = D 2 ⊗ D -ZX D ⊗ D 1 = D ⊗ D 2
The local application of axioms is sound : it preserves the represented matrix. The converse of soundness is completeness. The language is complete if we can transform two diagrams into one another as long as they represent the same matrix. In other words, the language is complete if it captures all the power of quantum mechanics.

We call π q -fragment the restriction of the language where angle α can only be a multiple of π q in R Z and R X , and we write the resulting set of axioms with subscript (.) π q . More generally, if G is an additive subgroup of R/2πZ, then we denote the resulting set of axioms (.) G . By convention, when there is no subscript, we refer to the general ZX-Calculus, e.g. ZX := ZX R .

The set of axioms given in Figure 1 is known to be complete for the π 4 -fragment, the first approximately universal fragment of the ZX-Calculus [START_REF] Jeandel | A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics[END_REF]. It is also known that one only has to add the axiom (A) (Figure 2) to make the ZX-Calculus complete in general [START_REF] Jeandel | Diagrammatic Reasoning beyond Clif-ford+T Quantum Mechanics[END_REF]. When considering a set of rules augmented with an additional axiom, we use the superscript notation. For instance, the complete set of rules for the general ZX-Calculus is denoted ZX A . Introduced in [START_REF] Jeandel | A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics[END_REF] as a syntactic sugar and used as a generator in [START_REF] Kang | A universal completion of the ZX-calculus[END_REF][START_REF] Kang | Completeness of the ZX-calculus for Pure Qubit Clifford+T Quantum Mechanics[END_REF][START_REF] Vilmart | A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond[END_REF] is the so-called triangle:

. It stands for a ZX-diagram of the π 4 -fragment (Figure 3), and is used in numerous lemmas as it represents a non-trivial quantum process with integer coefficients: |0 0|+|1 1|+|0 1|.

3 Controlled States and Normal Form

The Transistor and its Algebra

We first define another syntactic sugar, which will be used in the normal form:

Definition 2. We define the transistor as the three legged diagram:

:= = -π 2 π 4 -π 4 π 2 π π 4 -π 4 
Thanks 

ZX π 4   π = π   ,    π = π    ,        π = π π π        Proposition 2.    π , π  
 and , form a bialgebra:

ZX π 4 π = ,    π = π π    ,     π =     ,      π π = π     
Remark 1. π can be seen as an AND gate (notice that when plugging kπ π

, the result is k π

, when k, ∈ {0, 1}). As such, it has been used in [START_REF] Jeandel | A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics[END_REF][START_REF] Vilmart | A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond[END_REF] to create the Toffoli gate. The previous two propositions where observed as tensor network transformations with AND gates in [START_REF] Biamonte | Categorical Tensor Network States[END_REF].

Controlled states

In this section, we present the cornerstone of the normal forms: the controlled states. Controlled states form a particular family of ZX diagrams with a single input and n outputs, their interpretation should map |0 to the uniform superposition x∈{0,1} n |x . Intuitively, a controlled state D : 1 → n is just an encoding for the state D |1 .

Definition 3 (Controlled states)

. A ZX-diagram D : 1 → n is a controlled state if D |0 = x∈{0,1} n |x .
A controlled state with no output is called a controlled scalar:

Definition 4 (Controlled scalars). A ZX-diagram D : 1 → 0 is a controlled scalar if D |0 = 1.
For instance is a controlled scalar encoding

1 2 : |x = 1 if x = 0 1 2 if x = 1 .
We introduce other examples of controlled scalars, parameterised by integer polynomials: For any integer polynomial P , the corresponding diagram Γ α (P ) is a controlled scalar encoding the scalar P (e iα ):

Lemma 1. ∀G ∈ G, ∀α ∈ G, and ∀P ∈ Z[X], Γ α (P ) |x = 1 if x = 0 P (e iα ) if x = 1 .
Whereas it is not obvious in the ZX-calculus to add two given diagrams, a fundamental property of controlled states is that they can be freely added and multiplied (according to the entrywise product a.k.a. the Hadamard product or Schur product) as follows:

Lemma 2 (Sum and Product). For any controlled states D 0 , D 1 : 1 → n,

D sum := D1 D0 • • • • • • • • • D prod := D1 D0 • • • • • • • • • are controlled states such that D sum |1 = D 0 |1 + D 1 |1 and D prod |1 = ( D 0 |1 ) • ( D 1 |1 ),
where . • . is the entrywise product.

Normal forms

Among the family of controlled state diagrams, we define those which are in normal form. Our definition of normal form is generic in the sense that it is defined with respect to a given set of controlled scalars. Intuitively the choice of these controlled scalars depends on the considered fragment of the language, as detailed in the next sections.

Definition 6 (Controlled Normal Form). Given a set S of controlled scalars, the diagrams in normal controlled form with respect to S (S-CNF) are inductively defined as follows:

-∀D ∈ S, D is in S-CNF; -∀D 0 , D 1 in S-CNF, D0 ••• ••• ••• D1 is in S-CNF. A diagram D in S-CNF is depicted D ••• .
One can double check that diagrams in controlled normal form are actually controlled states:

if D : 1 → n is in S-CNF, D |0 = x∈{0,1} n |x (Lemma 85 in appendix).
We are now ready to give a definition of diagrams in normal form, based on the diagrams in controlled normal forms: Definition 7 (Normal Form). Given a set S of controlled scalars, for any n, m ∈ N, and any

D : 1 → n + m in S-CNF, π D ••• ••• n m
is in normal form with respect to S (S-NF).

Universality

While the main application of the notion of normal form is to prove completeness results (in the next sections), our first application is to prove the universality of ZX G for any G ∈ G. First notice that the universality of ZX G can be reduced to the existence of an appropriate set of controlled scalars:

Lemma 3 (Sufficient condition for universality). Given G ∈ G, if ∃S ⊆ ZX G a set of controlled scalars such that the map η : S → R G = D → D |1 is surjective, then ZX G is universal. Theorem 1. For any G ∈ G, ZX G is universal: ∀n, m ∈ N, ∀M ∈ R 2 n ×2 m G , ∃D ∈ ZX G , D = M
Proof. Let S ⊆ ZX G be the set of all controlled scalars. According to Lemma 3 it suffices to show that η : S → R G is onto. Let x ∈ R G , there exist p ∈ N, α 0 , . . . , α k ∈ G, and P 0 . . . P k ∈ Z[X] such that x = 1 2 p k j=0 P j (e iαj ). Since Γ αj (P j ) encodes P j (e iαj ), encodes 1 2 and they can be added and multiplied according to Lemma 2, there exists a diagram D ∈ S such that D |1 = x.

A sufficient condition for completeness

The controlled states give a generic internal structure for a diagram in normal form, by separating the coefficients of the process -related to the considered fragment -from the way they are combined -which is done in the π 4 -fragment. Hence, all the sound operations on the structure of the normal forms should be doable using the set of rules ZX by [START_REF] Jeandel | A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics[END_REF]. The completeness for broader fragments is then reduced to the capacity to apply elementary operations on coefficients:

Theorem 2 (Sufficient condition for completeness). Given G ∈ G, ZX G is complete if ∃S ⊆ ZX G a set of controlled scalars such that η : S → R G = D → D |1 is bijective, and the following equations hold: ∀α ∈ G, ∀x, y ∈ R G , α η -1 (e iα ) = = η -1 (x) η -1 (y) η -1 (xy) = η -1 (x) η -1 (y) η -1 (x+y)
Before proving Theorem 2, notice that all the above equations are involving diagrams with a single input and no output, thus for any fragment the completeness reduces to the completeness for diagrams with 1 input and no output, or equivalently to diagrams representing 1-qubit state preparations which have no input and a single output: Corollary 1. For any G ∈ G, ZX G is complete if and only if it is complete for 1-qubit state preparations, i.e. for all diagrams with no input and a single output.

Notice that thanks to the hypothesis of Theorem 2, one can associate to any state |ϕ ∈ R 2 n G a diagram Λ(|ϕ ) in S-CNF, and to any evolution

M ∈ R 2 n ×2 m G , a diagram λ(M ) in S-NF: Definition 8. With the hypothesis of Theorem 2, let Λ : n∈N R 2 n G → S-CNF and λ : n,m∈N R 2 n ×2 m G →
S-NF be defined as follows:

-

Λ(x) := η -1 (x) if x ∈ R G , -Λ(|0 ⊗ |ψ 0 + |1 ⊗ |ψ 1 ) := Λ|ψ0 ••• ••• ••• Λ|ψ1 -λ    x∈{0,1} n y∈{0,1} m α x,y |y x|    := π D ••• ••• n m , where D = Λ    x∈{0,1} n y∈{0,1} m α x,y |x |y   
The proof of Theorem 2 consists in showing that any diagram can be transformed into a diagram in S-normal form. The proof is inductive: every generator of the language can be set in S-normal form, moreover both the parallel and sequential compositions of S-normal forms can be transformed into diagrams in S-normal form. The Lemmas are proven in appendix. In the next sections, we will consider several fragments of the ZX-calculus for which we will exhibit a diagrammatic representation of controlled states. For some fragments, the above equations are provable, implying the completeness of the ZX-calculus for these fragments. For other fragments, we will need the help of some additional axioms to prove the above equations, implying the completeness of a ZX-calculus augmented with these additional axioms.

Normal Forms with Arbitrary Angles

In the case of the general ZX-Calculus, we know [START_REF] Jeandel | Diagrammatic Reasoning beyond Clif-ford+T Quantum Mechanics[END_REF] that the language is complete with the set of rules in Figure 1 enriched with the axiom (A). Hence, we choose our set of rules to be precisely this set, denoted ZX A . Definition 9. Let Λ R : C → ZX[1, 0] be the map defined as:

-Λ R (0) = -∀ρ > 0, ∀θ ∈ [0, 2π), Λ R (ρe iθ ) := π β θ   n := max (0, log 2 (ρ) ) β := arccos( ρ 2 n ) γ := arccos( 1 2 n )   ( -β ) γ -γ ⊗n and S R := {Λ R (x) | x ∈ C}. Lemma 7. For any x ∈ C, Λ R (x) is a controlled scalar, and Λ R (x) |1 = x. Lemma 8. The map η R : S R → R G = D → D |1 is bijective, and Λ R = η -1
R . Moreover:

ZX A α Λ R (e iα ) = ,     = Λ R (x) Λ R (y) Λ R (xy)     ,         = Λ R (x) Λ R (y) Λ R (x+y)         Theorem 3.
The general ZX-Calculus with set of rules ZX A is complete, and any ZX-diagram can be put into a normal form with respect to S R .

Completeness and Normal Forms with Rational Angles

In this section, we consider the case where the angles are rational multiples of π, i. 

Incompleteness and a new rule for cancelling scalars

An interesting set of equations come from the controlled scalars parametrised by integer polynomials, more precisely from those parametrised by cyclotomic polynomials. Indeed for any n > 0,

Γ 2π n (φ n ) |1 = φ n (e i2π n ) = 0 (where φ n is the n th cyclotomic polynomial), thus Γ 2π n (Φ n ) =
. However, the corresponding equations are not provable in ZX when n = 8p with p an odd prime number, implying the incompleteness of any fragment of rational angles which contains at least one angle of the form π 4p :

Lemma 9 (Incompleteness). For any G ∈ G Q \ G D , there exists an odd prime number p such that Γ π 4p (Φ 8p ) ∈ ZX G and

ZX π 4p Γ π 4p (Φ 8p ) =
Notice that a similar proof of incompleteness can be derived using cyclotomic supplementarity instead: For any G ∈ G Q \ G D , there exists an odd prime number p such that (SUP p ) is not provable in ZX G :

ZX G = α+ 2π p α+ p-1 p 2π α • • • pα+ (p-1)π • • • (SUP p )
Hence the ZX-calculus needs to be completed to deal with rational angles. One possible way of doing this is to add the previous set of equations as axioms: Γ π 4p (Φ 8p ) = . This would translate as:

p π 4p
= with p prime and -as we will see in the following -would be enough for completeness. However, instead of adding one or several new equations, we propose to add a simple and very natural rule to the language, the cancellation rule which allows one to simplify non zero scalars:

Definition 10 (Cancellation rule). The cancellation rule (cancel) is defined as such. For any diagrams of the ZX-Calculus D 1 and D 2 :

∀α = π mod 2π, ZX D 1 ⊗ α = D 2 ⊗ α =⇒ (cancel) ZX D 1 = D 2
With this new rule (cancel), the equation Γ π 4n (Φ 8n ) = on cyclotomic polynomials is provable:

Lemma 10. For any n > 0, ZX cancel π 4n Γ π 4n (Φ 8n ) =
We show in the next subsection that the ZX-Calculus augmented with the new cancellation rule makes the ZX-calculus complete for rational angles.

Normal forms

First, let G ∈ G Q \ G D be finite. Then, there exists n such that G is generated by π 4n (i.e. G = { kπ 4n | k ∈ N}), and for any x in R G , there exists a polynomial P ∈ D[X] such that x = P (e i π 4n ).

This representation is not ideal. First of all, we can factor the powers of 1 2 and write P as

1 2 p Q where Q ∈ Z[X]. The power p can be uniquely chosen if we ensure that Q is not a multiple of 2 if p > 0 i.e. ∀Q ∈ Z[X], p > 0 =⇒ Q = 2Q .
This expression is still not unique, because the evaluation of two different polynomials in e i π 4n can yield the same value (e.g. (e i π 4n ) 8n = 1). To palliate this problem, we need to work in Z[X]/φ 8n (X) where φ 8n is the 8n th cyclotomic polynomial. Indeed, φ 8n is the unique irreducible polynomial with e 2iπ 8n as root. Then, applying the Euclidean division of Q by φ 8n :

Q = Q φ 8n + R (DIV)
where R and Q are uniquely chosen so that deg(R) < deg(φ 8n ) = ϕ(8n). Then, Q(e i π 4n ) = R(e i π 4n ).

Definition 11. Let Λ π 4n : N × Z[X] → ZX[1 → 0] be the map such that Λ π 4n (p, P ) := Γ π 4n P . . . ⊗2p p
We then define S π 4n :=

   Λ π 4n (p, P ) P ∈ Z[X], p ∈ N, deg(P ) < ϕ(8n), ∀Q ∈ Z[X], p > 0 =⇒ P = 2Q    Remark 2.
Notice that if P = 0, only Λ π 4n (0, 0) is part of S π 4n . Indeed, if P = 0, then P = 2 × 0 = 2P , so the last constraint imposes that p = 0.

Lemma 11. Λ π 4n (p, P ) |1 = 1 2 p P (e i π 4n )
Since every element of R G is uniquely defined as 1 2 p P (e i π 4n ) where deg(P ) < ϕ(8n), and ∀Q ∈ Z[X], p > 0 =⇒ P = 2Q: Lemma 12. The map η π 4n : S π 4n → R G = D → D |1 is bijective. We now need to meet the conditions of Theorem 2. First we notice that we can operate the sum and the product on controlled polynomials: Lemma 13. For any polynomials P and Q in Z[X]:

ZX π 4n        = Γ π 4n P Γ π 4n Q Γ π 4n P +Q        ,      Γ π 4n P Γ π 4n Q = Γ π 4n P Q     
Two problems arise when trying to do the same with diagrams of S π 4n . First of all, the sum of two diagrams in normal form can have a parity issue. For instance 1 2 (2 + X)

+ 1 2 (X + 2X 2 ) = 1 2 (2 + 2X + 2X
2 ) which shall be reduced to 1 + X + X 2 . This is dealt with thanks to the following lemma:

Lemma 14.

ZX π 4n Γ π 4n 2P = Γ π 4n P
Secondly, the product of two polynomials may well end up with a degree larger than ϕ(8n). However, since we can operate the sum and product of controlled polynomials thanks to Lemma 13, we can derive the controlled version of the Euclidean division (DIV). Combined with Lemma 10, we get, assuming P = Qφ 8n + R:

ZX cancel π 4n Γ π 4n P = 13 (DIV) Γ π 4n Q Γ π 4n φ8n Γ π 4n R = 10 Γ π 4n R Γ π 4n Q = • • • = Γ π 4n R
All in all, any controlled scalar in the form Λ π 4n P can be reduced to a diagram in S π 4n .

Lemma 15. 

ZX cancel π 4n α η -1 π 4n (e iα ) = ,     = η -1 π 4n (x) η -1 π 4n (y) η -1 π 4n (xy)     ,         = η -1 π 4n (x) η -1 π 4n (y) η -1 π 4n (x+y)         Theorem 

Normal Forms with dyadic angles

In this section we focus on a particular case of dyadic angles, i.e. a subgroup of Dπ which contains π 4 (i.e. G ∈ G D ). In the previous section, we introduced the cancellation rule which makes the ZX-calculus complete for rational angles. Notice that, given a fragment G ∈ G, the cancellation rule can be derived from the other rules if for every α ∈ G, α = 0 mod π, there exists an inverse of α , i.e. a diagram D ∈ ZX G [0 → 0] s.t. D ⊗ α = 1, and moreover this equation is provable: ZX G D ⊗ α = . This is the case in any fragment of dyadic angles: Lemma 16. For any n ≥ 1, and any

k ∈ {-2 n + 1, • • • , 2 n+1 -1}, kπ 2 n
has an inverse. There exist 0 ≤ m < n and p ∈ Z such that: Fragments Complete Axiomatisation

kπ 2 n 2p-1 2 n-m π +π (2p-1)π 2 n-m-1 (2p-1)π 2 n-m-2 2p-1 2 π • • • = Theorem 5. For n ≥ 2,
G ⊆ Dπ ZXG G ⊆ Qπ ZX cancel G General ZX A
Fig. 4. Considered fragments and their complete axiomatisations

Discussion

We now have a constructive proof for the completeness of the π 4 -fragment and of the general ZX-Calculus. Additionally, we used the "generic" normal form to prove the completeness of the π 2 n -fragment for any n. When n ≥ 2, the π 2 n -fragment uses the set of rules ZX. In the general case, (A) is added to this set, and it has been proven to be necessary. We remind the complete axiomatisations used for the different fragments reviewed in this article in Figure 4.

We proved that any π 4n -fragment is complete with the set of axioms ZX augmented with the meta-rule (cancel). We leave as open the existence of a set of axioms that makes the π 4n -fragments complete without the use of a meta-rule. Such a potential (family of) axiom(s) has been identified as the cyclotomic supplementarity [START_REF] Jeandel | ZX-Calculus: Cyclotomic Supplementarity and Incompleteness for Clifford+T Quantum Mechanics[END_REF]. This can provide the inverse of α but only for some values of α. For instance, in the π 12 -fragment:

2π 3 4π 3 = 2π 3 4π 3 = (SUP3)
= Finally, it is to be noticed that all the fragments considered in this paper contains the angle π 4 , as some axioms of 1 contains π 4 . However the results presented in this paper can be generalised to fragments which do not contain π 4 using the ∆ZX [START_REF] Vilmart | A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond[END_REF], where the triangle is part of the syntax.

The two states |+ , |-also form a basis, the so-called diagonal basis. Any qubit state |φ ∈ C 2 can be decomposed in the standard basis:

|φ = α |0 + β |1
A valid quantum state is normalised, i.e. |α| 2 + |β| 2 = 1. Notice that in the present paper we consider normalised but also unnormalised quantum states.

More generally, the state of a register of n qubits is a vector |φ ∈ C 2 n . For any x = x 0 . . . x n-1 ∈ {0, 1} n , let |x := |x 0 ⊗ . . . ⊗ |x n-1 where • ⊗ • is the Kronecker product, in other words |x is a vector in which all entries are 0 except the entry number 

n-1 i=0 x i 2 n-1-i ,
M = x∈{0,1} n ,y∈{0,1} m α x,y |y x|
The Choi-Jamio lkowski isomorphism, or state/map duality is the following isomorphism between linear maps and quantum states: 

= • • • • • • = • • • and • • • • • • = • • • Lemma 64. = π = π π
Lemma 65. Lemma 78. The following result is not only true for any Γ α P but for any finite sum of them. Hence we extend the previously defined Γ as: Lemma 82.

:= Γ α P Γα k P k ΓαP where α = α 0 , • • • , α k , α = α 0 , • • • , α k-1 , P = P 0 , • • • , P k , P = P 0 , • • • , P k-
β -β α -α = γ -γ
with cos(γ) = cos(α) cos(β).

Lemma 83. We can deduce an equality similar to the rule (A):

e iθ3 cos(γ) = e iθ1 cos(α) + e iθ2 cos(β) -γ π 4 β π π 4 θ2 = γ -α θ3 π 4 π 4 π 2 -β α θ1
Lemma 84. Let ρ ∈ R+. Then, for any n 1 , n 2 ≥ max (0, log 2 (ρ) ): 2α +π

• • • β1 ) γ1 ⊗n1 π • • • ( -β1 -γ1 = • • • ⊗n2 ) π • • • γ2 ( β2 -γ2 -β2 β2 = arccos ρ 2 n 2 γ2 = arccos 1 2 n 2 β1 = arccos ρ 2 n 1 γ1 = arccos 1 2 n 1
π 4 π -π 2 = (H) (B2) (S1) 2α +π π 4 π 4 π -π 4 π 4 -π 2 = (S1) (H) (B2) α +π -π 2 -π 4 π 4 π 4 -π 4 π α α -α = 29 -π 4 π 4 α α-π 2 -α -π 4 α π 4 π π = (B1) (S2) (S1) (H) 21 -π 4 -π 4 -α π 4 α α-π 2 π π 4 π π = (B2) -π 4 π α π -α -π 4 π α-π 2 π 4 π 4 = (H) (S1) 22 α α-π 2 -α -π 4 -π 4 π π π 4 π 4 = 29 α-π 2 -π 4 π π 4 π π 4 α -α -π 4 = (H) 22 (S1) α -α π 4 α-π 2 -π 4 -π 2 π 4 π = (B2) (S1) -π 2 α-π 2 -α π 4 α π = (B1) (S1) -α α-π 2 α -π 2 π 4 π = 25 (B1) (S1) α α -α
Proof (Lemma 44).

= (B1) = (S1) 35 (S2) π π = 43 = (B1)
Proof (Lemma 45).

= (S2) (S1) 35 π π = (S1) 23 π π 4 π 4 π 4 π 4 π 2 -π 2 -π 2 π = 25 (S1) π -π 4 π π 4 -π 4 π 4 -π 2 π 4 -π 2 = (B2) -π 2 π -π 4 π 4 -π 2 π 4 π π 4 -π 4 = (EU) π 4 π 4 -π 4 -π 2 π 4 π -π 4 -π 2 π -π 2 = (H) (S1) π 4 π π 4 -π 2 -π 4 π -π 2 π 4 π π 4 = 29 -π 4 π 4 π 4 π -π 2 π π 4 π -π 2 π 4 = (H) π 4 π 4 π 4 π 4 π -π 4 -π 2 π -π 2 π = 21 25 (H) (S1) -π 4 π π 4 π 4 -π 4 -3π 4 
π 2 = (S1) π -π 4 π 4 π 4 π 2 π = 22 (S1) -π 4 π 4 π 2 π π 4 = (B2) π 2 π π 2 -π 4 = 24 π 2 -π 2 = (S1) (S2)
Proof (Lemma 46). Let n be the number of triangles in the first two diagrams.

• n = 0: The first equality is 22, the second is equivalent to the third, and easily derivable:

= (S2) (S1) = 27 = 32 • n = 1:
The first equality is 26, the second is 41 and the third is 45. • n: Suppose we have the result for n -1 and n = 2. Then:

• n = 2: First, π = 35 23 π π 2 -π 2 π 4 π 4 π π 4 π 4 -π 2 π = 25 (S1) π 4 π 4 -π 2 π 2 π π π 2 3π 4 π 4 = (H) π 4 π 3π 4 π 2 π 4 -π 2 -π 4 π π 2 = (B2) π -π 4 π π 4 π 2 -π 2 3π 4 π 4 π 2 = (S1) 21 (H) π 4 π -π 4 -π 2 π π 2 -π 4 π π 4 -π 2 = 29 π -π 2 π 4 π 2 π -π 4 -π 4 π π 4 -π 2 = (H) 20 -π 4 π 4 π 2 -π 2 3π 4 -π 2 π π 4 π = 25 π 4 π -π 2 -π 2 
π • • • = • • • π = • • • = • • •
The same trick is used for the two other equalities.

Proof (Lemma 68). first Proof (Lemma 81).

-α = (B1) (S1) α -α α -α = 60 -α 2α = 35 2α π -α = 43 -α -α α α = (S1) (S2) -α α Proof (Lemma 76). π = (S2) (S1) (B1) π = 74 π π = 54 (S1) (B1) (S2) π Proof (Lemma 77). First, if a = 1 = b: α -α -β β = (S1) (B1) -α β -β α = 62 α-β β -β = (S1) 39 α-β β -β = 62 β-α α -β = (B1) (S1) α -β -α β Then: ) a ( α -α ) b -β ( β 
= (S2) (S1)       a    b    β -β α -α =       b    a    β α -α -β = (S1) (S2) ( ) a ) b ( β α -α - 
Γ α P Γα k P k Γα k P k Γ α P = Γα k P k π Γ α P π π Γα k P k Γ α P a bp k π-p k α k bp k π+p k α k bp k π+p k α k a bp k π-p k α k = 62 39 Γα k P k Γα k P k π π Γ α P π Γ α P a bp k π-p k α k bp k π+p k α k a bp k π-p k α k bp k π+p k α k = 70 76 (K) 35 Γα k P k Γ α P π Γ α P π π Γα k P k bp k π+p k α k bp k π-p k α k a = • • • = 77 Γ α P π Γ α P π π Γα k P k = • • • = π π π ΓαP = ( 
ZX A θ3 γ -γ = (S1) (B1) -γ γ θ3 -π 4 -π 4 π 4 π 4 = (A) -α -β α π 4 π 4 θ2 π 2 β θ1 -π 4 -π 4 = (B2) π 4 π 2 θ1 -β β α -α θ2 π 4 -π 4 -π 4 = (B2) α θ2 π 2 -π 4 β π 4 -α -β θ1 π 4 -π 4 = α θ2 -α β θ1 -β
Proof (Lemma 82).

β -β α -α = 75 -α α -β β = 69 α -α -β β -β β = 75 β β α -β -β -α = 62 68 β-α -α-β α-β α+β = 28 39 β-α α+β -α-β α-β = 68 α-β β-α α+β -α-β = 75 α-β α+β -α-β β-α = 81 γ -γ = 68 γ -γ with cos(γ) = 1 2 (cos(α -β) + cos(α + β)) = cos(α) cos(β).
Proof (Lemmas 83, 84 and Corollary 4). These lemmas were already proven in [START_REF] Jeandel | Diagrammatic Reasoning beyond Clif-ford+T Quantum Mechanics[END_REF], but now the proofs are constructive since 82 has a constructive proof.

A.6 Monoid and Bialgebra

Proof (Proposition 1).

- 

• • • = • • • Proof. First, let |ψ 0 and |ψ 1 ∈ R 2 n such that |ψ = |0 |ψ 0 + |1 |ψ 1 . Then: ZX * G Λ |ψ • • • = Λ |ψ1 • • • • • • Λ |ψ0 • • • = (B1) (S1) (S2) • • • Λ |ψ1 Λ |ψ0 • • • • • • = 54 Λ |ψ0 • • • • • • Λ |ψ1 • • • = (B1) • • • Λ |ψ1 • • • Λ |ψ0 • • • = Ind (S1) • • • • • • • • • It then
ZX * G   = Λ0   ,   = Λ2   ,    = Λ 1 2    ,     -π 4 π 4 = Λ 1 √ 2     ,      -π 4 Λ -1 √ 2 π 4 = π      ,   Λ2 π =   ,   Λ 1 √ 2 π =   Proof (Lemma 87). Since ZX * G ZX π 4 : ZX * G Λ0 = Λ(1-1) = π = 21 (B1) (S1) π π = 34 ZX * G Λ2 = Λ(1+1) = = (B1) (S1) (S2) ZX * G = Λ 1 2 Λ2 = Λ 1 2 = 44 Λ 1 2 ZX * G -π 4 π 4 = 75 -π 4 π 4 = Λ 1 2 Λe i π 4 Λe -i π 4 = Λ e i π 4 +e -i π 4 2 = Λ 1 √ 2 ZX * G Λ2 π = π = 31 = 17 (S1) ZX * G Λ 1 √ 2 π = -π 4 
• • • D 2 • • • • • • • • • D 1 = π Λ D1 • • • • • • • • • • • • π Λ D1 = (B1) 21 • • • Λ D1 • • • • • • • • • Λ D1 π = ii) Λ |ψ • • • π • • • • • • • • • = i) • • • π • • • Λ |ψ
This proof requires that, i) a diagram in S-CNF with a permutation on the output wires can be set in S-CNF: Proposition 3 (Permutation). For any |ψ ∈ R 2 n , and any permutation σ on n wires:

ZX G Λ |ψ σ • • • • • • = • • • Λ σ |ψ
ii) that two diagrams in S-CNF joint by their control wire by a green node can be set S-CNF:

Proposition 4 (Tensor Product). For any

(|ψ 0 , |ψ 1 ) ∈ R 2 n × R 2 m : ZX * G • • • Λ |ψ0 Λ |ψ1 = • • • • • • Λ(|ψ0 ⊗ |ψ1 )
Then, for the sequential composition:

• • • D 2 • • • • • • D 1 = π Λ D1 • • • • • • • • • π Λ D2 = (B1) 21 • • • Λ D2 • • • • • • Λ D1 π = ii) • • • π Λ |ψ • • • = iii) • • • π • • • Λ |ψ
Here, we need again Proposition 4, but we also seem to need that a diagram in S-CNF with a cup applied on two of its outputs can be set in S-CNF. It is actually true only if controlled by |1 : Proposition 5 (Trace). For any diagram D : 0 → n + 1:

ZX * G Λ D • • • • • • • • • = • • • Λ D • • • • • • • • • π π
To do so, we decompose the cup as: = , so that we can prove:

Proposition 6 (R (2,1) Z
). For any D : 0 → n + 2:

ZX * G Λ D • • • • • • • • • = Λ D • • • • • • • • • • • • Proposition 7 (R (1,0) Z ). For any diagram D : 0 → n + 1: ZX * G • • • • • • = • • • Λ 1 2 • • • • • • Λ D Λ D
Then, Lemmas 4 and 5 derive from Propositions 3, 4 and 5.

Proof (Proposition 3). Any permutation can be decomposed in a sequence of adjacent transpositions, which in ZX translates as swaps σ. 

Λ |ψ • • • • • • = Λ |ψ 0 • • • Λ |ψ 1 • • • = • • • • • • Λ |ψ 0 • • • • • • Λ |ψ 1 • • • • • •
which can be set in normal form by induction. If a swap occurs on the two first outputs: 

• • • Λ |ψ = 64 Λ |ψ00 Λ |ψ10 π π Λ |ψ11 π Λ |ψ01 π = 58 Λ |ψ00 π Λ |ψ10 π Λ |ψ11 π π Λ |ψ01 π = 50 π Λ |ψ11 Λ |ψ10 Λ |ψ01 π π Λ |ψ00 π π = Λ |ψ00 π π Λ |ψ11 π π π Λ |ψ10 Λ |ψ01 = 58 Λ |ψ10 Λ |ψ11 Λ |ψ00 π π π π Λ |ψ01 Lemma 88. • • • Λ |ψ Λ |ψ = Λ |ψ • • • Proof (Lemma
• • • Λ |ψ Λ |ψ = 64 Λ |ψ0 Λ |ψ1 π • • • π Λ |ψ1 Λ |ψ0 π
• If one of the two states has at least one output -say |ψ 0 = |0 |ψ 00 + |1 |ψ 01 : then,

• • • Λ |ψ0 Λ |ψ1 • • • = • • • Λ |ψ00 Λ |ψ01 Λ |ψ1 • • • = 88 Λ |ψ00 • • • Λ |ψ01 • • • Λ |ψ1 Λ |ψ1 = • • • • • • Λ |ψ1 Λ |ψ01 Λ |ψ1 Λ |ψ00 = Ind Λ |ψ00 |ψ1 • • • Λ |ψ01 |ψ1 = Λ |ψ0 |ψ1 • • • Proof ( Proposition 
Λ |ψ • • • = Λ |ψ00 Λ |ψ11 Λ |ψ01 Λ |ψ10 • • • = 73 • • • Λ |ψ01 Λ |ψ10 Λ |ψ11 Λ |ψ00 Proof (Proposition 5). Λ D • • • • • • • • • π = (S2) (S1) • • • Λ D • • • π • • • = 6 • • • Λ D • • • • • • • • • π • • • = 7 • • • Λ 1 2 D • • • • • • • • • π = 87 21 (B1) π • • • Λ 1 2 D • • • • • • • • • Λ2 = 4 • • • Λ D • • • • • • • • • π
Proof (Lemma 6). We will prove the result for states, for the three-legged green dot, the Hadamard node and the empty diagram. All the other generators can be built from them and the Propositions Any green dot with arity larger than 3 can be decomposed as a 3-legged dots thanks to (S1), and any red dot is a green dot with Hadamard gates on its adjacent wires. Then, any diagram can be built from the states by simple topological transformations. E.g:

ZX * G     = = Λ π     ,     = = Λ π     
A.9 Completeness for the General ZX-Calculus Proof (Theorem 3). Λ is a representation of controlled states: By definition, ZX A proves the induction part. Let x = ρe iθ . Then: ) The case r = s and x ≤ y is similar. In the end: . Then, if Q is non-null: Finally, in the general case, let 8n = i p ki i with all p i primes. Then, φ 8n (X) = gcd

Λx = π β θ ( -β ) γ -γ ⊗n = (B1) 17 (S1) (S2) ) γ π ( ⊗n -γ = (S2) (S1) (B1)
β 2 π γ1 -γ1 -γ1 γ1 = 4 θ1 γ1 -γ1 θ2 β 2 ( -β1 ⊗n1 -β 2 β1 ) π = 83 ( β3 -γ1 ⊗n1 γ1 ) θ3 -β3 π = Λ(x + y) with ∀k ∈ {1, 2}, β k = arccos( ρ k 2 n k ) γ k = arccos( 1 2 n k ) β 2 = arccos( ρ 2 2 
Γ π 4n P Γ π 4n Q = Γ π 4n Q bπ-k π
i φ p k i i (X p k i -1 i ) .
By Bézout's identity, φ 8n (X) =

i Q i (X)φ p k i i (X p k i -1 i
) where the Q i are some unitary polynomials.

This translates as:

ZX π 4n Γαφ8n = ΓαQ1 Γαφ p k 1 1 ΓαQi Γαφ p k i i • • • • • • • • • • • • =⇒ ZX (cancel) π 4n Γπ 4n φ8n = Γπ 4n Qi Γπ 4n φ p k i i Γπ 4n φ p k 1 1 • • • • • • Γπ 4n Q1 • • • • • • = • • • • • • Γπ 4n Qi Γπ 4n Q1 • • • • • • = • • • Γπ 4n Q1 • • • Γπ 4n Qi • • • • • •

  and the generator e is the empty diagram. and the two compositions: -Spacial Composition: for any D 1 : a → b and D 2 : c → d, D 1 ⊗ D 2 : a + c → b + d consists in placing D 1 and D 2 side by side, D 2 on the right of D 1 . -Sequential Composition: for any D 1 : a → b and D 2 : b → c, D 2 • D 1 : a → c consists in placing D 1 on the top of D 2 , connecting the outputs of D 1 to the inputs of D 2 .

Fig. 1 .

 1 Fig. 1. Set of rules ZX for the ZX-Calculus with scalars. All of these rules also hold when flipped upsidedown, or with the colours red and green swapped. The right-hand side of (E) is an empty diagram. (...) denote zero or more wires, while ( • • • ) denote one or more wires. ZXG is obtained when constraining the angles α, β, γ ∈ G.

Fig. 2 . 4 Fig. 3 .

 243 Fig. 2. Additional axiom for the completeness of the ZX-Calculus in general.

Definition 5 .

 5 For any G ∈ G and any α ∈ G, let Γ α : Z[X] → ZX G be the map which associates to any polynomial P a ZX-diagram Γ α (P ) : 1 → 0, inductively defined as 0 → , and ∀a ∈ N \ {0}, ∀b ∈ {0, 1}, ∀k ∈ N, and ∀P ∈ Z[X] such that deg(P ) < k, (-1) b aX k + P →

Lemma 4 .

 4 With the hypothesis of Theorem 2, for any D 0 , D 1 in S-NF, D 0 ⊗D 1 can be transformed into a diagram in S-NF. Lemma 5. With the hypothesis of Theorem 2, for any D 0 : n → m and D 1 : m → k in S-NF, D 1 • D 0 : n → k can be transformed into a diagram in S-NF. Lemma 6. With the hypothesis of Theorem 2, each generator can be transformed into a diagram in S-NF.

  e. fragments G ∈ G Q := {G ∈ G | G ⊆ Qπ}. Among the rational angles, dyadic angles, i.e. G D := {G ∈ G | G ⊆ Dπ}, where D := { p

Corollary 2 .

 2 4. The π 4n -fragment of the ZX-Calculus with set of rules ZX cancel π 4n is complete, and any ZX-diagram can be put into a normal form with respect to S π 4n . For any G ∈ G Q (finite or not), the fragment G with set of rules ZX cancel G is complete, and any ZX-diagram can be put into a normal form with respect to S G := π 4n ∈G S π 4n .

the π 2 nCorollary 3 .

 23 -fragment of the ZX-Calculus with set of rules ZX π 2 n is complete, and any ZX-diagram can be put into a normal form with respect to S π 2 n = S π 4×2 n-2 . For any G ∈ G D (finite or not), the fragment G with set of rules ZX G is complete, and any ZX-diagram can be put into a normal form with respect to S G := π 2 n ∈G S π 2 n .

  x∈{0,1} n ,y∈{0,1} m α x,y |y x| → x∈{0,1} n ,y∈{0,1} m

  π

  with 2e iθ3 cos(γ) = e iθ1 cos(α) + e iθ2 cos(β).

Corollary 4 .

 4 For any n ∈ N, with γ = arccos1 

  α

  79). First if P = 0: = Then, if P (X) = P (X) + (-1) b aX k :

⊗2p

  remains to prove the result for the base cases Λx. Any x can be decomposed as a sum of e iα where αs are in the fragment. Then: Let x be in R G for some fragment G. Then there exist p, α = (α k ) k and P = (P k ) k such that x = 1 2 p k P (e iα k ). The conditions for Theorem 2 imply that:Lemma 87. With ZX * G a set of axioms that verifies the conditions in Theorem 2:

17 A. 8

 178 Necessary Propositions for Theorem 2In this section, we consider a set of diagrams S such that the map η :S → R G = D → D |1 is bijective,and a set of axioms ZX * G that meets the conditions of Theorem 2. Let us try to derive the results on the composition of diagrams in S-NF, and see what it requires from diagrams in S-CNF. Let D 1 and D 2 be two diagrams in S-NF. First for the spacial composition:

≥ 1 :

 1 88). By induction on the number n of outputs of |ψ : • n = 0: In this case, let |ψ = |0 |ψ 0 + |1 |ψ 1 , and

6 ).

 6 By induction on the number n of outputs of |ψ .• n = 2: First notice:

  e 2iβ ) = 2 n cos(β)e iθ = ρe iθ = x If x = 0, these results are obvious. The conditions for applying Theorem 2 are respected: • If either x = 0 or y = 0, the sum and product are obvious. Otherwise, let x = ρ 1 e iθ1 and y = ρ 2 e iθ2 :

n1 ) θ 3 •Since p and 4 are coprime, there exists k such that kp π 4 = π 4 .

 34 = arg(ρ 1 e iθ1 + ρ 2 e iθ2 ) β 3 = arccos(e iθ1-θ3 cos β 1 + e iθ2-θ3 cos β 2 ) = arccos( ρ 1 e iθ1 + ρ 2 e iθ2 e iθ3 2 n ) , 2}, n k = max (0, log 2 (ρ k ) ) , β k = arccos( and of course ZX A ZX. Hence, we can use Theorem 2.A.10 Completeness for the π 4n -fragments Proof (Lemma 9). Let p be an odd prime number and an integer ≥ 1. The formula of the cyclotomic polynomial for a number with at most one odd prime factor gives: φ 8p (x) = Let us then consider the interpretation[.] kp which multiplies all the angles by kp:D 1 ⊗ D 2 → [D 1 ] kp ⊗ [D 2 ] kp , D 1 • D 2 → [D 1 ] kp • [D 2 ] kp , R Id otherwise.It is routine to show that the rules of ZX hold under this interpretation, but: 13). First, if x, y ∈ N: r = s and x ≥ y:

  with (-1) t z = (-1) r x + (-1) s y. The result for the sum immediately follows by induction (if 0 is involved, the result is obvious). For the product, first, if P (X) = P (X) + (-1) b aX k : π+(k+ )α Γα(P ) (b+c)π-(k+ )α cπ+ α = Γα((-1) c X P ) a (b+c)π+(k+ )α (b+c)π-(k+ )α = Γα((-1) c X P )

  Γπ4n (-1) b X k P =Γπ 4n P Q +(-1) b X k P . . . Γπ 4n (-1) b X k P = Γπ 4n P Q +(-1) b aX k P = Γ π 4n P Qand if Q = 0, the result is obvious.Proof (Proposition 10). First of all, we can easily derive for anyN : p is prime. Then, φ 1 (X)φ d (X) = d|p φ d (X) = X p -1.Since sums and products of control polynomials are derivable in ZX, it means: p is still prime, the case of p k is handled with the equation φ p k (X) = φ p (X p k-1

  which is 1. Similarly, |+ n := |+ ⊗ . . . ⊗ |+ and |-n = |-⊗ . . . ⊗ |-. The set of states {|x | x ∈ {0, 1} n } forms a basis, thus any n-qubit state |φ ∈ C 2 n can be described as Notice that a zero-qubit state (when n = 0) is a scalar i.e. an element of C. We define | = 1, where denotes the empty word.The adjoint of a state|φ = x∈{0,1} n α x |x ∈ C 2 n is φ| := (|φ ) † = x∈{0,1} n α * x x| ∈ C 2 n → 1,where ∀x ∈ {0, 1} n x| is the unique linear map such that ∀y ∈ {0, 1} n , x| |y = δ x,y . Given a linear map M : C 2 n → C 2 m , for any x ∈ {0, 1} n , M maps |x to M |x = y∈{0,1} m α x,y |y . Using the Dirac notation, M can be represented as follows:

	|φ =	α x |x
	x∈{0,1} n	

  If |ψ is a state on 0 or 1 qubit, the only permutation allowed is the identity. Otherwise, let |ψ = |0 |ψ 0 + |1 |ψ 1 = |00 |ψ 00 + |01 |ψ 01 + |10 |ψ 10 + |11 |ψ 11 . If the first wire is not affected by the swap:

q | p, q ∈ N} enjoys some particular properties, and are considered in details in the next section.
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A Appendix

A.1 Dirac Notation and the Choi-Jamio lkowski Isomorphism

The state of a qubit is a vector in the 2 dimensional Hilbert space C [START_REF] Backens | ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity[END_REF]. By induction on the number of outputs of |ψ 0 and |ψ 1 :

• If both states are scalars, this case is handled by the condition in Theorem 2.

which is in normal form.

• n ≥ 3: Using Proposition 3, we can impose to be applied on the two last wires. Then:

. By induction of the number n of wires of |ψ :

• n ≥ 2: First, using Proposition 3 if needs be,

). The product is obvious when we have Lemmas 13 and 10. For the sum, let x = 1 2 p P (e i π 4n ), y = 1 2 q Q(e i π 4n ). W.l.o.g., assume p ≤ q. Then:

The ante-penultimate diagram may not directly be in normal form, for there may be S such that 2 q-p P + Q = 2S, but this is dealt with with Lemma 47.

A.11 Completeness for the π 2 n -fragment Proof (Lemma 16). If k ∈ {-2 n + 1, • • • , 2 n+1 -1}, then there exist 0 ≤ m < n and p ∈ Z such that k = 2 m (2p -1)i.e. kπ 2 n = 2p-1 2 n-m π where 2 n-m ≥ 2. Then:

Proof (Corollaries 2 and 3). Let G be a subgroup of Qπ, and D 1 and D 2 be two diagrams of the fragment G, such that D 1 = D 2 . If G is finite, Theorem 4 directly gives the result. Otherwise, there exists n ∈ N such that π 4n ∈ G and both diagrams are in the π 4n -fragment of the ZX-Calculus. By completeness (Theorem 4): ZX cancel