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Abstract. Recent completeness results on the ZX-Calculus used a third-party language,
namely the ZW-Calculus. As a consequence, these proofs are elegant, but sadly non-cons-
tructive. We address this issue in the following. To do so, we first describe a generic normal
form for ZX-diagrams in any fragment that contains Clifford+T quantum mechanics. We
give sufficient conditions for an axiomatisation to be complete, and an algorithm to reach
the normal form. Finally, we apply these results to the Clifford+T fragment and the general
ZX-Calculus – for which we already know the completeness–, but also for any fragment of
rational angles: we show that the axiomatisation for Clifford+T is also complete for any
fragment of dyadic angles, and that a simple new rule (called cancellation) is necessary and
sufficient otherwise.

1 Introduction

The ZX-Calculus is a powerful graphical calculus devoted to quantum information processing,
introduced in 2008 by Coecke and Duncan [8]. The language relies on two fundamental structures
in quantum mechanics: the interacting observables and the phase group. Thanks to its flexibility,
the language has already been used in several topics such has the foundations of quantum mechanics
[3,12], measurement-based quantum computing [15,19,11], quantum error correction [13,14,7,5] ...

Quantum processes are described in the language as diagrams, providing a compact and down-
to-earth visualisation. Diagrams can be manipulated through the interactive proof assistant Quan-
tomatic [23,24]. As the quantum circuits, the diagrams are universal : whatever the considered
quantum operation, there exists a ZX-diagram that describes it. This representation is however
not unique: two distinct ZX-diagrams may represent the same evolution. As a consequence the
language is equipped with a set of equations. These equations preserve the represented evolution:
they are sound. The converse of soundness is completeness, and is much harder to get. It is achieved
when, whenever two diagrams represent the same evolution, they can be transformed into each
other using solely the transformation rules.

The question of the completeness of the ZX-calculus gave rise to a series of results on various
fragments of the language. A fragment corresponds to a restriction on the phase group structure:
the π

n -fragment is made of the diagrams involving angles in π
nZ only. The π

2 - and the π-fragments –
two non universal fragments of the language – have been proved complete [2]; and, more recently, a
complete axiomatisation has been provided for the π

4 -fragment [20], providing the first completeness
result for an (approximately) universal fragment since this fragment corresponds to the so-called
Clifford+T quantum mechanics. This has been then extended to a complete axiomatisation of the
general ZX-calculus [21,25].

All these recent completeness results for (approximately) universal ZX-calculi used different
versions of another graphical language called ZW-Calculus [9,17,18]. The language describes the
interactions between the only two non-equivalent kinds of entanglement between three qubits, pre-
cisely the GHZ and W states [16]. In its last version [18], the ZW-calculus is crucially parametrised
by a ring, and as a consequence admits a natural representation of matrices over this ring: the
ZW-diagram represent the structure of the matrix where some of the generators are parametrised
by the entries of the matrix. This representation of matrices led to a notion of ZW-diagrams in
normal forms on which the proof of completeness is built.

The ZX-calculus is instead parametrised by elements of a group, the so-called phase group
structure. As a consequence the representation of matrices (over a ring) is more involved. We



introduce in this paper the first normal forms for (approximately) universal fragments of the ZX-
calculus. This normal form is generic, depending on the considered fragment of the language.
We reprove the two completeness theorems of the ZX-calculus, namely for the π

4 -fragment and
the general calculus, but this time constructively, using the normal form in the ZX-Calculus, and
hence without using a third-party language. Moreover, we prove the completeness for any fragment
of rational angles: we show that for any fragment of dyadic angles (which allows for instance the
exact representation of the Quantum Fourier Transform [27]) is complete; we also show that for
any other fragment of rational angles, the following new and simple rule, called cancellation, is
necessary and sufficient for completeness:

∀α 6= π mod 2π, ZX ` D1 ⊗ α = D2 ⊗ α =⇒
(Cancel)

ZX ` D1 = D2

Related works. Two completeness results on diagrammatic languages have been established
recently [4,10], independently of the present work. In [4], a new language, the ZH-calculus is intro-
duced. The ZH-calculus is intuitively an angle-free ZX-calculus augmented with a generalisation
of the H-generator with an arbitrary number of inputs/outputs and parametrised by a complex
number. This language allows very nice and simple representation of some useful controlled opera-
tions. The authors give a completeness result based on normal forms. Like in the ZW-calculus, the
entries of a complex matrix can be directly represented in a ZH-diagram while the representation
of the scalars is the cornerstone – and the main technicality – of the normal forms in ZX-diagrams.
In [10], the authors show that a simpler axiomatisation of the ZX-calculus is enough to prove the
equivalence of 2-qubit Clifford+T circuits. Surprisingly, the proposed axiomatisation is based on
the use of diagrams which are not in the π

4 -fragment whereas all 2-qubit Clifford+T circuits are in
this fragment.

Structure of the paper. We first present the ZX-Calculus in Section 2. We then give the general
structure of the normal form in Section 3, and sufficient conditions for obtaining the completeness.
We apply this for the general ZX-Calculus in Section 4, for rational angles in Section 5 and in the
particular case of the dyadic angles in Section 6.

2 The ZX-Calculus

2.1 Diagrams and Standard Interpretation

A ZX-diagram D : k → l with k inputs and l outputs is generated by:

R
(n,m)
Z (α) : n→ m α

· · ·

· · ·

n

m

H : 1→ 1 I : 1→ 1 ε : 2→ 0

R
(n,m)
X (α) : n→ m α

· · ·

· · ·

n

m

e : 0→ 0 σ : 2→ 2 η : 0→ 2

where n,m ∈ N, α ∈ R, and the generator e is the empty diagram.

and the two compositions:

– Spacial Composition: for any D1 : a → b and D2 : c → d, D1 ⊗D2 : a+ c → b+ d consists in
placing D1 and D2 side by side, D2 on the right of D1.

– Sequential Composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in placing
D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.

The ZX-Calculus comes with a way of interpreting its diagrams as matrices: The standard
interpretation of the ZX-diagrams associates to any diagram D : n→ m a linear map JDK : C2n →

2



C2m inductively defined as follows:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K

r z
:= 1

r z
:= |0〉〈0|+ |1〉〈1|

t |

:= |+〉〈0|+ |−〉〈1|
r z

:=
∑

i,j∈{0,1}

|ij〉〈ji|

q y
:= |00〉+ |11〉 J K := 〈00|+ 〈11| Jα K = Jα K := 1 + eiα

For any n,m such that n+m > 0:
u

ww
v α

· · ·

· · ·

n

m

}

��
~ := |0m〉〈0n|+ eiα |1m〉〈1n|

u

www
v

α

· · ·

· · ·

n

m

}

���
~

:= |+m〉〈+n|+ eiα |−m〉〈−n|

where |+〉 := |0〉+|1〉√
2

, |−〉 := |0〉−|1〉√
2

and |in〉 := |
n︷ ︸︸ ︷

i · · · i〉.
To simplify, the red and green nodes will be represented empty when holding a 0 angle:

· · ·
0:=

· · · · · ·

· · ·
and 0:=

· · · · · ·

· · · · · ·

ZX-Diagrams are universal:

∀A ∈ C2n × C2m , ∃D : n→ m, JDK = A

This is true for general ZX-diagrams i.e. where angles are in R/2πZ. However, it is convenient to
consider restrictions of the language – called fragments – that are finitely generated. Let G be an
additive subgroup of R/2πZ. It is easy to see that the standard interpretation J.K maps diagrams

of the fragment G to matrices over RG := Z
[

1√
2
, eiG

]
, that is, the smallest subring of C that

contains the integers Z, 1√
2
, and the set {eiα | α ∈ G}.

However, in general, all matrices in RG are not expressible with a diagram of the fragment G.
For instance, πZ2 and π

2Z4 are not universal [1]. However, we will show in the following that if
π
4 ∈ G, then the fragment G is universal for matrices over RG.

Definition 1. Let G be the set of all additive subgroup G of R/2πZ such that π
4 ∈ G.

2.2 Calculus

Since the diagrammatic representation of a matrix is not unique with ZX-diagrams, the calculus
comes with a set of axioms that can be used to rewrite diagrams as equivalent ones (diagrams
that represent the same matrix). The axioms for the π

4 -fragment of the calculus are represented in
Figure 1.

To these axioms are added a set of transformation rules aggregated under the paradigm Only
Topology Matters. It means that the wires can be bent at will, and that the inputs/outputs of
the generators RZ , RX and H can be reordered at will. What matters is solely the connectivity
between two nodes. Such axioms are:

= = =
= =

= ==
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· ·
· = α+β

β

· · ·
α
· · ·

(S1)

· · ·
· · ·

· · ·

· · ·

=
(S2) −π

4

π
4

=
(E)

=
(B1)

=
(B2)

=
π

α

-α

πα

π(K)

π
2

π
2

-π
2

=
(EU)

α

· · ·

= α

· · ·

· · ·

· · ·
(H)

α α+π

=

2α+π

(SUP)

βα π

βγ

-γ

α
=

α

απ

β -γ

γ

β(C)

π
4

π
4

π
4

−π
2

π
4

π
4

π
4

=
π
4π

π
2

π
4

π
4

π

π
4(BW)

Fig. 1. Set of rules ZX for the ZX-Calculus with scalars. All of these rules also hold when flipped upside-
down, or with the colours red and green swapped. The right-hand side of (E) is an empty diagram. (...)

denote zero or more wires, while ( · · · ) denote one or more wires. ZXG is obtained when constraining the
angles α, β, γ ∈ G.

When one can transform one diagram D1 into another D2 using only the rules of the ZX-
Calculus, we write ZX ` D1 = D2, which can be done by applying axioms locally. Indeed, for any
diagrams D, D1 and D2, if ZX ` D1 = D2 then:

– ZX ` D1 ◦D = D2 ◦D
– ZX ` D ◦D1 = D ◦D2

– ZX ` D1 ⊗D = D2 ⊗D
– ZX ` D ⊗D1 = D ⊗D2

The local application of axioms is sound : it preserves the represented matrix. The converse of
soundness is completeness. The language is complete if we can transform two diagrams into one
another as long as they represent the same matrix. In other words, the language is complete if it
captures all the power of quantum mechanics.

We call π
q -fragment the restriction of the language where angle α can only be a multiple of π

q

in RZ and RX , and we write the resulting set of axioms with subscript (.)π
q

. More generally, if G

is an additive subgroup of R/2πZ, then we denote the resulting set of axioms (.)G. By convention,
when there is no subscript, we refer to the general ZX-Calculus, e.g. ZX := ZXR.

The set of axioms given in Figure 1 is known to be complete for the π
4 -fragment, the first

approximately universal fragment of the ZX-Calculus [20]. It is also known that one only has to
add the axiom (A) (Figure 2) to make the ZX-Calculus complete in general [21]. When considering
a set of rules augmented with an additional axiom, we use the superscript notation. For instance,
the complete set of rules for the general ZX-Calculus is denoted ZXA.
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θ2θ1

α-α β -β

=

γ
-γ

2eiθ3 cos(γ) = eiθ1 cos(α) + eiθ2 cos(β)

π
2

π
4

π
4

θ3

π
4 π

4

(A)

Fig. 2. Additional axiom for the completeness
of the ZX-Calculus in general.

:=
π
4

π
4

π
2

−π
4

−π
4

Fig. 3. Triangle node

Introduced in [20] as a syntactic sugar and used as a generator in [25,26,28] is the so-called

triangle: . It stands for a ZX-diagram of the π
4 -fragment (Figure 3), and is used in numerous

lemmas as it represents a non-trivial quantum process with integer coefficients: |0〉〈0|+|1〉〈1|+|0〉〈1|.

3 Controlled States and Normal Form

3.1 The Transistor and its Algebra

We first define another syntactic sugar, which will be used in the normal form:

Definition 2. We define the transistor as the three legged diagram:

:= =

−π
2
π
4

−π
4

π
2

π

π
4

−π
4

Thanks to Lemmas 45 and 46, one can check that:

= and =π

It can be seen as a control of a switch: if |0〉 is plugged on the left, the right wire is intact, but if |1〉
is plugged on the left, the right wire is “opened” by the operation. A classical transistor has

a similar mechanics: if some electrical current is applied on the control side, it allows for current
to pass through the vertical wire, otherwise it acts as an open switch. If we want to assimilate |0〉
to “no current” and |1〉 to “current”, we actually have to apply NOT on the control wire.

Proposition 1.

π ,
π

 forms a commutative monoid:

ZXπ
4
`

 π = π

 ,

 π =

π
 ,

 π

=

π

π

π


5



Proposition 2.

π ,
π

 and

(
,

)
form a bialgebra:

ZXπ
4
`

(
π

=

)
,


π

=
π π

 ,

 π =

 ,


π π

=
π



Remark 1. π can be seen as an AND gate (notice that when plugging
kπ `π

, the result

is
k`π

, when k, ` ∈ {0, 1}). As such, it has been used in [20,28] to create the Toffoli gate. The
previous two propositions where observed as tensor network transformations with AND gates in
[6].

3.2 Controlled states

In this section, we present the cornerstone of the normal forms: the controlled states. Controlled
states form a particular family of ZX diagrams with a single input and n outputs, their interpre-
tation should map |0〉 to the uniform superposition

∑
x∈{0,1}n |x〉. Intuitively, a controlled state

D : 1→ n is just an encoding for the state JDK |1〉.

Definition 3 (Controlled states). A ZX-diagram D : 1 → n is a controlled state if JDK |0〉 =∑
x∈{0,1}n |x〉.

A controlled state with no output is called a controlled scalar:

Definition 4 (Controlled scalars). A ZX-diagram D : 1→ 0 is a controlled scalar if JDK |0〉 =
1.

For instance is a controlled scalar encoding 1
2 :

s {
|x〉 =

{
1 if x = 0
1
2 if x = 1

.

We introduce other examples of controlled scalars, parameterised by integer polynomials:

Definition 5. For any G ∈ G and any α ∈ G, let Γα : Z[X]→ ZXG be the map which associates

to any polynomial P a ZX-diagram Γα(P ) : 1 → 0, inductively defined as 0 7→ , and

∀a ∈ N \ {0},∀b ∈ {0, 1},∀k ∈ N, and ∀P ∈ Z[X] such that deg(P ) < k,

(−1)baXk + P 7→

)a
bπ

+kα(
bπ
−kα

Γα(P )

where

( )a
:=

... a



For any integer polynomial P , the corresponding diagram Γα(P ) is a controlled scalar encoding
the scalar P (eiα):

Lemma 1. ∀G ∈ G, ∀α ∈ G, and ∀P ∈ Z[X], JΓα(P )K |x〉 =

{
1 if x = 0

P (eiα) if x = 1
.

6



Whereas it is not obvious in the ZX-calculus to add two given diagrams, a fundamental property
of controlled states is that they can be freely added and multiplied (according to the entrywise
product a.k.a. the Hadamard product or Schur product) as follows:

Lemma 2 (Sum and Product). For any controlled states D0, D1 : 1→ n,

Dsum :=
D1D0

· · ·
· · ·· · ·

Dprod := D1D0

· · ·
· · ·· · ·

are controlled states such that JDsumK |1〉 = JD0K |1〉 + JD1K |1〉 and JDprodK |1〉 = (JD0K |1〉) •
(JD1K |1〉), where . • . is the entrywise product.

3.3 Normal forms

Among the family of controlled state diagrams, we define those which are in normal form. Our
definition of normal form is generic in the sense that it is defined with respect to a given set
of controlled scalars. Intuitively the choice of these controlled scalars depends on the considered
fragment of the language, as detailed in the next sections.

Definition 6 (Controlled Normal Form). Given a set S of controlled scalars, the diagrams in
normal controlled form with respect to S (S-CNF) are inductively defined as follows:

– ∀D ∈ S, D is in S-CNF;

– ∀D0, D1 in S-CNF,
D0
···
···
···
D1

is in S-CNF.

A diagram D in S-CNF is depicted D
···

.

One can double check that diagrams in controlled normal form are actually controlled states:
if D : 1→ n is in S-CNF, JDK |0〉 =

∑
x∈{0,1}n |x〉 (Lemma 85 in appendix).

We are now ready to give a definition of diagrams in normal form, based on the diagrams in
controlled normal forms:

Definition 7 (Normal Form). Given a set S of controlled scalars, for any n,m ∈ N, and any

D : 1→ n+m in S-CNF,

π

D
···

···

n

m

is in normal form with respect to S (S-NF).

3.4 Universality

While the main application of the notion of normal form is to prove completeness results (in the
next sections), our first application is to prove the universality of ZXG for any G ∈ G. First notice
that the universality of ZXG can be reduced to the existence of an appropriate set of controlled
scalars:

Lemma 3 (Sufficient condition for universality). Given G ∈ G, if ∃S ⊆ ZXG a set of
controlled scalars such that the map η : S → RG = D 7→ JDK |1〉 is surjective, then ZXG is
universal.

7



Theorem 1. For any G ∈ G, ZXG is universal:

∀n,m ∈ N,∀M ∈ R2n×2m

G ,∃D ∈ ZXG, JDK = M

Proof. Let S ⊆ ZXG be the set of all controlled scalars. According to Lemma 3 it suffices to show
that η : S → RG is onto. Let x ∈ RG, there exist p ∈ N, α0, . . . , αk ∈ G, and P0 . . . Pk ∈ Z[X] such

that x = 1
2p

∑k
j=0 Pj(e

iαj ). Since Γαj (Pj) encodes Pj(e
iαj ), encodes 1

2 and they can be

added and multiplied according to Lemma 2, there exists a diagram D ∈ S such that JDK |1〉 = x.
ut

3.5 A sufficient condition for completeness

The controlled states give a generic internal structure for a diagram in normal form, by separating
the coefficients of the process – related to the considered fragment – from the way they are combined
– which is done in the π

4 -fragment. Hence, all the sound operations on the structure of the normal
forms should be doable using the set of rules ZX by [20]. The completeness for broader fragments
is then reduced to the capacity to apply elementary operations on coefficients:

Theorem 2 (Sufficient condition for completeness). Given G ∈ G, ZXG is complete if ∃S ⊆
ZXG a set of controlled scalars such that η : S → RG = D 7→ JDK |1〉 is bijective, and the following
equations hold: ∀α ∈ G,∀x, y ∈ RG,

αη-1(eiα)
=

=

η-1(x) η-1(y)
η-1(xy) =

η-1(x) η-1(y)

η-1(x+y)

Before proving Theorem 2, notice that all the above equations are involving diagrams with a
single input and no output, thus for any fragment the completeness reduces to the completeness
for diagrams with 1 input and no output, or equivalently to diagrams representing 1-qubit state
preparations which have no input and a single output:

Corollary 1. For any G ∈ G, ZXG is complete if and only if it is complete for 1-qubit state
preparations, i.e. for all diagrams with no input and a single output.

Notice that thanks to the hypothesis of Theorem 2, one can associate to any state |ϕ〉 ∈ R2n

G

a diagram Λ(|ϕ〉) in S-CNF, and to any evolution M ∈ R2n×2m

G , a diagram λ(M) in S-NF:

Definition 8. With the hypothesis of Theorem 2, let Λ :
⋃
n∈N
R2n

G → S-CNF and λ :
⋃

n,m∈N
R2n×2m

G →

S-NF be defined as follows:

– Λ(x) := η−1(x) if x ∈ RG,

– Λ(|0〉 ⊗ |ψ0〉+ |1〉 ⊗ |ψ1〉) :=
Λ|ψ0〉
···
···
···
Λ|ψ1〉

– λ

 ∑
x∈{0,1}n
y∈{0,1}m

αx,y |y〉 〈x|

 :=

π

D
···

···

n

m

, where D = Λ

 ∑
x∈{0,1}n
y∈{0,1}m

αx,y |x〉 |y〉


The proof of Theorem 2 consists in showing that any diagram can be transformed into a

diagram in S-normal form. The proof is inductive: every generator of the language can be set in
S-normal form, moreover both the parallel and sequential compositions of S-normal forms can be
transformed into diagrams in S-normal form.

8



Lemma 4. With the hypothesis of Theorem 2, for any D0, D1 in S-NF, D0⊗D1 can be transformed
into a diagram in S-NF.

Lemma 5. With the hypothesis of Theorem 2, for any D0 : n → m and D1 : m → k in S-NF,
D1 ◦D0 : n→ k can be transformed into a diagram in S-NF.

Lemma 6. With the hypothesis of Theorem 2, each generator can be transformed into a diagram
in S-NF.

The Lemmas are proven in appendix.

In the next sections, we will consider several fragments of the ZX-calculus for which we will
exhibit a diagrammatic representation of controlled states. For some fragments, the above equa-
tions are provable, implying the completeness of the ZX-calculus for these fragments. For other
fragments, we will need the help of some additional axioms to prove the above equations, implying
the completeness of a ZX-calculus augmented with these additional axioms.

4 Normal Forms with Arbitrary Angles

In the case of the general ZX-Calculus, we know [21] that the language is complete with the set
of rules in Figure 1 enriched with the axiom (A). Hence, we choose our set of rules to be precisely
this set, denoted ZXA.

Definition 9. Let ΛR : C→ ZX[1, 0] be the map defined as:

– ΛR(0) =

– ∀ρ > 0,∀θ ∈ [0, 2π), ΛR(ρeiθ) :=
π

β

θ

n := max (0, dlog2(ρ)e)
β := arccos( ρ

2n
)

γ := arccos( 1
2n

)

(

-β

)

γ
-γ

⊗n

and SR := {ΛR(x) | x ∈ C}.

Lemma 7. For any x ∈ C, ΛR(x) is a controlled scalar, and JΛR(x)K |1〉 = x.

Lemma 8. The map ηR : SR → RG = D → JDK |1〉 is bijective, and ΛR = η-1R . Moreover:

ZXA `
(

αΛR(eiα)
=

)
,

 =

ΛR(x) ΛR(y)
ΛR(xy)

 ,

 =

ΛR(x) ΛR(y)

ΛR(x+y)


Theorem 3. The general ZX-Calculus with set of rules ZXA is complete, and any ZX-diagram
can be put into a normal form with respect to SR.

5 Completeness and Normal Forms with Rational Angles

In this section, we consider the case where the angles are rational multiples of π, i.e. fragments
G ∈ GQ := {G ∈ G | G ⊆ Qπ}. Among the rational angles, dyadic angles, i.e. GD := {G ∈ G | G ⊆
Dπ}, where D := { p2q | p, q ∈ N} enjoys some particular properties, and are considered in details
in the next section.

9



5.1 Incompleteness and a new rule for cancelling scalars

An interesting set of equations come from the controlled scalars parametrised by integer polyno-
mials, more precisely from those parametrised by cyclotomic polynomials. Indeed for any n > 0,r

Γ 2π
n

(φn)
z
|1〉 = φn(e

i2π
n ) = 0 (where φn is the nth cyclotomic polynomial), thus

r
Γ 2π
n

(Φn)
z

=
t |

. However, the corresponding equations are not provable in ZX when n = 8p with p an

odd prime number, implying the incompleteness of any fragment of rational angles which contains
at least one angle of the form π

4p :

Lemma 9 (Incompleteness). For any G ∈ GQ \ GD, there exists an odd prime number p such
that Γ π

4p
(Φ8p) ∈ ZXG and

ZX π
4p
6` Γ π

4p
(Φ8p) =

Notice that a similar proof of incompleteness can be derived using cyclotomic supplementarity
instead: For any G ∈ GQ \GD, there exists an odd prime number p such that (SUPp) is not provable
in ZXG:

ZXG 6` =

α+ 2π
p

α+
p−1
p 2π

α

· · ·

pα+

(p−1)π

· · ·
(SUPp)

Hence the ZX-calculus needs to be completed to deal with rational angles. One possible way

of doing this is to add the previous set of equations as axioms: Γ π
4p

(Φ8p) = . This would

translate as: ( )p
π
4p = with p prime

and – as we will see in the following – would be enough for completeness. However, instead of
adding one or several new equations, we propose to add a simple and very natural rule to the
language, the cancellation rule which allows one to simplify non zero scalars:

Definition 10 (Cancellation rule). The cancellation rule (cancel) is defined as such. For any
diagrams of the ZX-Calculus D1 and D2:

∀α 6= π mod 2π, ZX ` D1 ⊗ α = D2 ⊗ α =⇒
(cancel)

ZX ` D1 = D2

With this new rule (cancel), the equation Γ π
4n

(Φ8n) = on cyclotomic polynomials is

provable:

Lemma 10. For any n > 0, ZXcancel
π
4n

` Γ π
4n

(Φ8n) =

We show in the next subsection that the ZX-Calculus augmented with the new cancellation
rule makes the ZX-calculus complete for rational angles.

5.2 Normal forms

First, let G ∈ GQ \ GD be finite. Then, there exists n such that G is generated by π
4n (i.e. G =

{kπ4n | k ∈ N}), and for any x in RG, there exists a polynomial P ∈ D[X] such that x = P (ei
π
4n ).

10



This representation is not ideal. First of all, we can factor the powers of 1
2 and write P as 1

2pQ
where Q ∈ Z[X]. The power p can be uniquely chosen if we ensure that Q is not a multiple of 2 if
p > 0 i.e. ∀Q′ ∈ Z[X], p > 0 =⇒ Q 6= 2Q′.

This expression is still not unique, because the evaluation of two different polynomials in
ei

π
4n can yield the same value (e.g. (ei

π
4n )8n = 1). To palliate this problem, we need to work in

Z[X]/φ8n(X) where φ8n is the 8nth cyclotomic polynomial. Indeed, φ8n is the unique irreducible

polynomial with e
2iπ
8n as root. Then, applying the Euclidean division of Q by φ8n:

Q = Q′φ8n +R (DIV)

where R and Q′ are uniquely chosen so that deg(R) < deg(φ8n) = ϕ(8n). Then, Q(ei
π
4n ) = R(ei

π
4n ).

Definition 11. Let Λ π
4n

: N× Z[X]→ ZX[1→ 0] be the map such that

Λ π
4n

(p, P ) :=

Γ π
4n
P

...

⊗2p

p

We then define S π
4n

:=

Λ π
4n

(p, P )
P ∈ Z[X], p ∈ N,
deg(P ) < ϕ(8n),
∀Q ∈ Z[X], p > 0 =⇒ P 6= 2Q


Remark 2. Notice that if P = 0, only Λ π

4n
(0, 0) is part of S π

4n
. Indeed, if P = 0, then P = 2× 0 =

2P , so the last constraint imposes that p = 0.

Lemma 11.
q
Λ π

4n
(p, P )

y
|1〉 = 1

2pP (ei
π
4n )

Since every element of RG is uniquely defined as 1
2pP (ei

π
4n ) where deg(P ) < ϕ(8n), and ∀Q ∈

Z[X], p > 0 =⇒ P 6= 2Q:

Lemma 12. The map η π
4n

: S π
4n
→ RG = D → JDK |1〉 is bijective.

We now need to meet the conditions of Theorem 2. First we notice that we can operate the
sum and the product on controlled polynomials:

Lemma 13. For any polynomials P and Q in Z[X]:

ZX π
4n
`

 =

Γ π
4n
P Γ π

4n
Q

Γ π
4n
P+Q

 ,

 Γ π
4n
P Γ π

4n
Q

=
Γ π

4n
PQ


Two problems arise when trying to do the same with diagrams of S π

4n
. First of all, the sum

of two diagrams in normal form can have a parity issue. For instance 1
2 (2 + X) + 1

2 (X + 2X2) =
1
2 (2 + 2X + 2X2) which shall be reduced to 1 +X +X2. This is dealt with thanks to the following
lemma:

Lemma 14.

ZX π
4n
`

Γ π
4n

2P

=

Γ π
4n
P

Secondly, the product of two polynomials may well end up with a degree larger than ϕ(8n).
However, since we can operate the sum and product of controlled polynomials thanks to Lemma

11



13, we can derive the controlled version of the Euclidean division (DIV). Combined with Lemma
10, we get, assuming P = Qφ8n +R:

ZXcancel
π
4n

`
Γ π

4n
P

=
13

(DIV)

Γ π
4n
Q Γ π

4n
φ8n Γ π

4n
R

=
10

Γ π
4n
RΓ π

4n
Q

= · · · =
Γ π

4n
R

All in all, any controlled scalar in the form Λ π
4n
P can be reduced to a diagram in S π

4n
.

Lemma 15.

ZXcancel
π
4n

`
(

αη-1π
4n

(eiα)
=

)
,

 =

η-1π
4n

(x) η-1π
4n

(y)
η-1π
4n

(xy)

,
 =

η-1π
4n

(x) η-1π
4n

(y)

η-1π
4n

(x+y)


Theorem 4. The π

4n -fragment of the ZX-Calculus with set of rules ZXcancel
π
4n

is complete, and any
ZX-diagram can be put into a normal form with respect to S π

4n
.

Corollary 2. For any G ∈ GQ (finite or not), the fragment G with set of rules ZXcancel
G is complete,

and any ZX-diagram can be put into a normal form with respect to SG :=
⋃
π
4n∈G

S π
4n

.

6 Normal Forms with dyadic angles

In this section we focus on a particular case of dyadic angles, i.e. a subgroup of Dπ which contains
π
4 (i.e. G ∈ GD). In the previous section, we introduced the cancellation rule which makes the
ZX-calculus complete for rational angles.

Notice that, given a fragment G ∈ G, the cancellation rule can be derived from the other rules
if for every α ∈ G, α 6= 0 mod π, there exists an inverse of α , i.e. a diagram D ∈ ZXG[0→ 0] s.t.
JD ⊗ α K = 1, and moreover this equation is provable: ZXG ` D⊗ α = . This is the case in any
fragment of dyadic angles:

Lemma 16. For any n ≥ 1, and any k ∈ {−2n + 1, · · · , 2n+1 − 1}, kπ
2n has an inverse. There

exist 0 ≤ m < n and p ∈ Z such that:

kπ
2n

2p-1
2n-m π
+π

(2p-1)π

2n-m-1
(2p-1)π

2n-m-2
2p-1
2
π· · · =

Theorem 5. For n ≥ 2, the π
2n -fragment of the ZX-Calculus with set of rules ZX π

2n
is complete,

and any ZX-diagram can be put into a normal form with respect to S π
2n

= S π
4×2n-2

.

Corollary 3. For any G ∈ GD (finite or not), the fragment G with set of rules ZXG is complete,
and any ZX-diagram can be put into a normal form with respect to SG :=

⋃
π
2n ∈G

S π
2n

.
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Fragments Complete Axiomatisation

G ⊆ Dπ ZXG

G ⊆ Qπ ZXcancel
G

General ZXA

Fig. 4. Considered fragments and their complete axiomatisations

7 Discussion

We now have a constructive proof for the completeness of the π
4 -fragment and of the general

ZX-Calculus. Additionally, we used the “generic” normal form to prove the completeness of the
π
2n -fragment for any n. When n ≥ 2, the π

2n -fragment uses the set of rules ZX. In the general
case, (A) is added to this set, and it has been proven to be necessary. We remind the complete
axiomatisations used for the different fragments reviewed in this article in Figure 4.

We proved that any π
4n -fragment is complete with the set of axioms ZX augmented with the

meta-rule (cancel). We leave as open the existence of a set of axioms that makes the π
4n -fragments

complete without the use of a meta-rule. Such a potential (family of) axiom(s) has been identified
as the cyclotomic supplementarity [22]. This can provide the inverse of α but only for some values
of α. For instance, in the π

12 -fragment:

2π
3

4π
3 = 2π

3
4π
3 =

(SUP3)
=

Finally, it is to be noticed that all the fragments considered in this paper contains the angle π
4 ,

as some axioms of 1 contains π
4 . However the results presented in this paper can be generalised to

fragments which do not contain π
4 using the ∆ZX [28], where the triangle is part of the syntax.
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A Appendix

A.1 Dirac Notation and the Choi-Jamio lkowski Isomorphism

The state of a qubit is a vector in the 2 dimensional Hilbert space C2n . |0〉 :=
(

1
0

)
and |1〉 :=

(
0
1

)
form the so-called standard basis of C2n . We use the notation |+〉 := |0〉+|1〉√

2
and |−〉 := |0〉−|1〉√

2
.
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The two states |+〉 , |−〉 also form a basis, the so-called diagonal basis. Any qubit state |φ〉 ∈ C2

can be decomposed in the standard basis:

|φ〉 = α |0〉+ β |1〉

A valid quantum state is normalised, i.e. |α|2 + |β|2 = 1. Notice that in the present paper we
consider normalised but also unnormalised quantum states.

More generally, the state of a register of n qubits is a vector |φ〉 ∈ C2n . For any x = x0 . . . xn−1 ∈
{0, 1}n, let |x〉 := |x0〉 ⊗ . . . ⊗ |xn−1〉 where · ⊗ · is the Kronecker product, in other words |x〉 is

a vector in which all entries are 0 except the entry number
∑n−1
i=0 xi2

n−1−i, which is 1. Similarly,
|+n〉 := |+〉 ⊗ . . . ⊗ |+〉 and |−n〉 = |−〉 ⊗ . . . ⊗ |−〉. The set of states {|x〉 | x ∈ {0, 1}n} forms a
basis, thus any n-qubit state |φ〉 ∈ C2n can be described as

|φ〉 =
∑

x∈{0,1}n
αx |x〉

Notice that a zero-qubit state (when n = 0) is a scalar i.e. an element of C. We define |ε〉 = 1,
where ε denotes the empty word.

The adjoint of a state |φ〉 =
∑
x∈{0,1}n αx |x〉 ∈ C2n is 〈φ| := (|φ〉)† =

∑
x∈{0,1}n α

∗
x 〈x| ∈

C2n → 1, where ∀x ∈ {0, 1}n 〈x| is the unique linear map such that ∀y ∈ {0, 1}n, 〈x| |y〉 = δx,y.
Given a linear mapM : C2n → C2m , for any x ∈ {0, 1}n,M maps |x〉 toM |x〉 =

∑
y∈{0,1}m αx,y |y〉.

Using the Dirac notation, M can be represented as follows:

M =
∑

x∈{0,1}n,y∈{0,1}m
αx,y |y〉〈x|

The Choi-Jamio lkowski isomorphism, or state/map duality is the following isomorphism be-
tween linear maps and quantum states:∑

x∈{0,1}n,y∈{0,1}m
αx,y |y〉〈x| 7→

∑
x∈{0,1}n,y∈{0,1}m

αx,y |xy〉

A.2 Already Proven Lemmas

Lemma 17.

=

Lemma 18.

α

π

β

π

α+β

π

=

Lemma 19.

α
=

Lemma 20.

=

Lemma 21.

=
π π

π

· · · · · ·

Lemma 22.

π =

Lemma 23.

−π
4
−π
4

−π
4
−π
4

π = −π
2

π

Lemma 24.

π
4

ππ
2 =

−π
2
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Lemma 25.

=

π
2

π
2

π
2 −π

4

π

Lemma 26.

π

=

Lemma 27.

=

Lemma 28.

=

Lemma 29.

βα

π

βα

=

β

β

π

α

α

Lemma 30.

=

Lemma 31.

=

π

Lemma 32.

=

Lemma 33.

=

π
π

Lemma 34.

=

π

Lemma 35.

=
π

π

Lemma 36.

=
π

Lemma 37.

π =
π

Lemma 38.

π

π

= =
π

π

Lemma 39.

=

Lemma 40.

π

=

and

=
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Lemma 41.

=

Lemma 42.

=

π

π

A.3 New Lemmas with ZX

Lemma 43.

2α

π

=

α

α

−α

Lemma 44.

=

Lemma 45.

=

Lemma 46.

π

=

Lemma 47.

=

Lemma 48.

=

Lemma 49.

= π

Lemma 50.

=

π

π

Lemma 51.

=

Lemma 52.

=

Lemma 53.

=

Lemma 54.

=

and

=
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Lemma 55.

π

=

π

Lemma 56.

=

Lemma 57.

π

=

Lemma 58.

=

Lemma 59.

= π

Lemma 60.

α -α

=

α

Lemma 61.

π

α α

=

α

π

Lemma 62.

α α

=

α

Lemma 63.

π

=

· · · · · ·

=

· · ·

and

· ·
·

· · ·

=

···
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Lemma 64.

=

π

=
π

π

Lemma 65.

π

=

Lemma 66.

= π

Lemma 67.

=

Lemma 68.

=

and

=

Lemma 69.

α

-α -α

α

= α

-α

Lemma 70.

α α

π

-β

β

-β

β
=

α

π β

-β

Lemma 71.

= and
π

=

Lemma 72.

π = π

Lemma 73.

=
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Lemma 74.

=

Lemma 75.

α -α

=

-αα

Lemma 76.

π
= π

Lemma 77.

)a( α
-α

)b
-β

( β
=

( )a
)b( β

α

-α

-β

Lemma 78. The following result is not only
true for any ΓαP but for any finite sum of them.
Hence we extend the previously defined Γ as:

:=

Γα′P
′ ΓαkPk

ΓαP

where α = α0, · · · , αk, α′ = α0, · · · , αk-1, P =
P0, · · · , Pk, P ′ = P0, · · · , Pk-1. Then:

ΓαP

ΓαP

=

ΓαP

Lemma 79.

ΓαP
=

Lemma 80.

π

Γα(P ) Γα(P )

=
π

Γα(P )

A.4 Lemmas with ZXA

Lemma 81.

α

θ2

-α β

θ1

-β

=
θ3

γ -γ

with 2eiθ3 cos(γ) = eiθ1 cos(α) + eiθ2 cos(β).

Lemma 82.

β
-β

α
-α

=

γ -γ

with cos(γ) = cos(α) cos(β).

Lemma 83. We can deduce an equality similar
to the rule (A):

eiθ3 cos(γ) = eiθ1 cos(α) + eiθ2 cos(β)

-γ

π
4

β

π
π
4θ2

=

γ

-α

θ3π
4

π
4π

2

-βα

θ1
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Lemma 84. Let ρ ∈ R+. Then, for any
n1, n2 ≥ max (0, dlog2(ρ)e):

· · ·
β1

)
γ1 ⊗n1

π

· · ·

(

-β1-γ1

=

· · ·

⊗n2

)
π

· · ·
γ2

(
β2

-γ2 -β2

β2 = arccos ρ
2n2

γ2 = arccos 1
2n2

β1 = arccos ρ
2n1

γ1 = arccos 1
2n1

Corollary 4. For any n ∈ N, with γ =
arccos 1

2n :

γ γ

π (
⊗n
)

-γ -γ

=

A.5 Proof of the New Lemmas

Proof (Lemma 43).
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=
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π

=
(B1)
(S2)
(S1)
(H)
21

−π
4

−π
4

−απ
4α

α−π
2

π
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π

π
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π
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π
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Proof (Lemma 44).

=
(B1)

=
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35
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π

π

=
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Proof (Lemma 45).
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π
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π
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π
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π
2

−π
2 =

(S1)
(S2)
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Proof (Lemma 46).

π

=
27

=
28

=
45

=
(S1)

=
20
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Proof (Lemma 47).

=
(S2)
(S1)
35
21
(H)

π

π
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(S2)
44

π
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π

π

=
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(S1)
(S2)
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Proof (Lemma 48).

= =
(B2)
(S1)
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39

(S1)

=
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(S2)
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ut
Proof (Lemma 49).

= =
27

π

= π

ut
Proof (Lemma 50).

=
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20

=
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=
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=
21

π
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Proof (Lemma 51).

=
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π
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π =
35
(H)

π
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=
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π =
36 π

π
=
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π

π
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Proof (Lemma 52).

=
50

π

π

=

π

π

π

=
40

π

π

=
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Proof (Lemma 53).

=
(B2)
20

=
52

=
51

=
52

=
51
52
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Proof (Lemma 54). First:

= =
(B1)

=
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=
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Then:

=
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Proof (Lemma 55).
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=
21
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Proof (Lemma 56).

=
52
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Proof (Lemma 57).
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π
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Proof (Lemma 58).

= =
40
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(B2)

π

=
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Proof (Lemma 59).
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=
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π = π
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Proof (Lemma 60).
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=
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-α π
=
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ππ
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π
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Proof (Lemma 61).

π

α α
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α

α
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58
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=
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Proof (Lemma 62).

α α

=
44

α α

=
(S1)
(B1)

αα

=

α α

=
61

α

= · · · =

α

ut

Proof (Lemma 63). Let n be the number of triangles in the first two diagrams.
• n = 0: The first equality is 22, the second is equivalent to the third, and easily derivable:

=
(S2)
(S1)

=
27

=
32

26



• n = 1: The first equality is 26, the second is 41 and the third is 45.
• n = 2: First,

π
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π
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π
4

π
4
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π
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π
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π
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=
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4

π
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π
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π
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π

π
4

−π
2

=
29

π

−π
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π
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=
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π
π
4

π
=
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π
4

π

−π
2
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2 π

4

π

π
4

π
4

π
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=
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35

Then:

=
40

π

=
35
28

π

=
42

ππ

π

=
21
(H)
(K)

π

π

π

π

π

=
40
(K)
35

π

π

π
=
37

(S1)

π

=

Finally:

= = =

• n: Suppose we have the result for n− 1 and n = 2. Then:

π

· · ·

=

· · ·

π
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=

· · ·

=

· · ·

The same trick is used for the two other equalities. ut

Proof (Lemma 68). first
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Proof (Lemma 69).
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Proof (Lemma 70).
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Proof (Lemma 64).
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Proof (Lemma 65).
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Proof (Lemma 66).
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Proof (Lemma 67).
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Proof (Lemma 71).
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=
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=
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Proof (Lemma 72).
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Proof (Lemma 73).
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Proof (Lemma 74).
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Proof (Lemma 75).
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Proof (Lemma 76).
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Proof (Lemma 77). First, if a = 1 = b:
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Proof (Lemma 78).
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π
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=
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=
40
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=
63
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Proof (Lemma 79). First if P = 0:

=

Then, if P (X) = P ′(X) + (−1)baXk:
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(B1)
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( )a
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′
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ut

Proof (Lemma 80).
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Proof (Lemma 81).

ZXA `
θ3

γ -γ

=
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=
(B2)

α

θ2
π
2
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4

β

π
4

-α -β

θ1

π
4

−π
4
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α

θ2

-α β

θ1
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Proof (Lemma 82).

β
-β

α
-α

=
75

-αα

-β

β =
69

α -α

-β
β

-β
β

=
75

ββ

α

-β -β

-α

=
62
68

β−α-α−βα−βα+β

=
28
39

β−αα+β -α−β α−β

=
68

α−β β−αα+β -α−β

=
75

α−β
α+β

-α−β
β−α

=
81

γ -γ

=
68

γ -γ

with cos(γ) = 1
2 (cos(α− β) + cos(α+ β)) = cos(α) cos(β). ut

Proof (Lemmas 83, 84 and Corollary 4). These lemmas were already proven in [21], but now the
proofs are constructive since 82 has a constructive proof. ut

A.6 Monoid and Bialgebra

Proof (Proposition 1).

– Commutativity: Lemma 50
– Unit: (S1), Lemma 45
– Associativity: Lemma 53

ut

Proof (Proposition 2).
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– Associativity and unit: (S1) and (S2)
– Coassociativity and couint: Proposition 1
– Unit and counit: Lemmas 19 and 17
– Multiplication and counit: Lemma 21 and (B1)
– Comultiplication and unit: Lemma 54
– Multiplication and comultiplication: Lemmas 21 and 58

ut

A.7 Preliminary Results for Completeness

Lemma 85.

Λ |ψ〉
· · ·

= · · ·

Proof. First, let |ψ0〉 and |ψ1〉 ∈ R2n such that |ψ〉 = |0〉 |ψ0〉+ |1〉 |ψ1〉. Then:

ZX∗G ` Λ |ψ〉
· · ·

=

Λ |ψ1〉

· · ·
· · ·

Λ |ψ0〉
· · ·

=
(B1)
(S1)
(S2) · · ·

Λ |ψ1〉Λ |ψ0〉

· · ·
· · ·

=
54

Λ |ψ0〉
· · ·· · ·
Λ |ψ1〉

· · ·

=
(B1)

· · ·
Λ |ψ1〉
· · ·

Λ |ψ0〉

· · ·

=
Ind
(S1)

· · ·· · ·
· · ·

It then remains to prove the result for the base cases Λx. Any x can be decomposed as a sum of
eiα where αs are in the fragment. Then:

ZX∗G `
Λeiα

=
α

=
19

=
17

and:

ZX∗G ` Λ(x+y)
=

Λx Λy

=
(B1)
30

ΛyΛx

=
17

(B1)
Λx Λy

=

ut
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Lemma 86.

=

Λx Λx

Λx

Proof. Let x be in RG for some fragment G. Then there exist p, α = (αk)k and P = (Pk)k such
that x = 1

2p

∑
k

P (eiαk). The conditions for Theorem 2 imply that:

ZX∗G `
Λx

=

ΓαP

...

⊗2p

p

Then:

ZX∗G ` ΓαkPk ΓαkPk

⊗4p

...
...

=
68

ΓαkPk ΓαkPk

⊗2p

...

=
(B2)

ΓαkPk

ΓαkPk

...

⊗2p

=
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ΓαkPk

...
⊗2p

ut

Lemma 87. With ZX∗G a set of axioms that verifies the conditions in Theorem 2:

ZX∗G `

 =
Λ0

 ,

 =
Λ2

 ,

 =
Λ 1

2

 ,


−π
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π
4

=
Λ 1√

2

 ,


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π
4
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π
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
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π

=
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
Λ 1√

2

π

=


Proof (Lemma 87). Since ZX∗G ` ZXπ

4
:

ZX∗G `
Λ0

=
Λ(1−1)

=

π

=
21

(B1)
(S1) π

π
=
34
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ZX∗G `
Λ2

=
Λ(1+1)

= =
(B1)
(S1)
(S2)

ZX∗G ` =

Λ 1
2 Λ2

=

Λ 1
2

=
44 Λ 1

2
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−π
4

π
4

=
75

−π
4

π
4
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Λ 1
2

Λei
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π
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Λ e
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4 +e

−i π
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=
Λ 1√

2

ZX∗G `
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π

=

π

=
31

=
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(S1)

ZX∗G ` Λ 1√
2

π
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−π
4

π
4

π

=
(S1)
(K)

π
−π
4

π
2

=
24
19

π
−π
4

π
4

π

=
18
19

=
17

ut

A.8 Necessary Propositions for Theorem 2

In this section, we consider a set of diagrams S such that the map η : S → RG = D 7→ JDK |1〉 is
bijective, and a set of axioms ZX∗G that meets the conditions of Theorem 2.

Let us try to derive the results on the composition of diagrams in S-NF, and see what it
requires from diagrams in S-CNF. Let D1 and D2 be two diagrams in S-NF. First for the spacial
composition:

· · ·
D2

· · ·· · ·

· · ·
D1 =

π

Λ JD1K
· · ·

· · ·

· · ·

· · ·

π

Λ JD1K

=
(B1)
21

· · ·
Λ JD1K

· · ·

· · ·
· · ·

Λ JD1K

π

=
ii)

Λ |ψ〉

· · ·

π

· · ·

· · ·

· · ·
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=
i)

· · ·

π

· · ·
Λ |ψ′〉

This proof requires that, i) a diagram in S-CNF with a permutation on the output wires can
be set in S-CNF:

Proposition 3 (Permutation). For any |ψ〉 ∈ R2n , and any permutation σ on n wires:

ZXG `
Λ |ψ〉

σ
· · ·

· · ·

=

· · ·
Λ JσK |ψ〉

ii) that two diagrams in S-CNF joint by their control wire by a green node can be set S-CNF:

Proposition 4 (Tensor Product). For any (|ψ0〉 , |ψ1〉) ∈ R2n ×R2m :

ZX∗G ` · · ·
Λ |ψ0〉 Λ |ψ1〉

=
· · · · · ·

Λ(|ψ0〉 ⊗ |ψ1〉)

Then, for the sequential composition:

· · ·
D2

· · ·

· · ·
D1

=

π

Λ JD1K
· · ·

· · ·
· · ·

π

Λ JD2K

=
(B1)
21

· · ·
Λ JD2K

· · · · · ·
Λ JD1K

π

=
ii)

· · ·
π

Λ |ψ〉

· · ·

=
iii)

· · ·
π

· · ·

Λ |ψ′〉

Here, we need again Proposition 4, but we also seem to need that a diagram in S-CNF with a
cup ε applied on two of its outputs can be set in S-CNF. It is actually true only if controlled by
|1〉:

Proposition 5 (Trace). For any diagram D : 0→ n+ 1:

ZX∗G `
Λ JDK

· · · · · · · · ·
=

· · ·

Λ
t

D

· · · · · · · · ·

|

π
π

To do so, we decompose the cup as: = , so that we can prove:

Proposition 6 (R
(2,1)
Z ). For any D : 0→ n+ 2:

ZX∗G `
Λ JDK

· · · · · · · · ·
=

Λ
t

D

· · ·· · · · · ·

|

· · ·
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Proposition 7 (R
(1,0)
Z ). For any diagram D : 0→ n+ 1:

ZX∗G ` · · · · · ·
=

· · ·

Λ 1
2

t

· · · · · ·
Λ JDK

|

Λ JDK

Then, Lemmas 4 and 5 derive from Propositions 3, 4 and 5.

Proof (Proposition 3). Any permutation can be decomposed in a sequence of adjacent transposi-
tions, which in ZX translates as swaps σ. If |ψ〉 is a state on 0 or 1 qubit, the only permutation
allowed is the identity. Otherwise, let |ψ〉 = |0〉 |ψ0〉+ |1〉 |ψ1〉 = |00〉 |ψ00〉+ |01〉 |ψ01〉+ |10〉 |ψ10〉+
|11〉 |ψ11〉. If the first wire is not affected by the swap:

Λ |ψ〉
· · · · · ·

=

Λ |ψ0〉

· · ·

Λ |ψ1〉

· · ·

=

· · ·· · ·
Λ |ψ0〉

· · · · · ·
Λ |ψ1〉

· · ·· · ·

which can be set in normal form by induction. If a swap occurs on the two first outputs:

· · ·
Λ |ψ〉 =

64

Λ |ψ00〉 Λ |ψ10〉

π π

Λ |ψ11〉

π

Λ |ψ01〉

π

=
58

Λ |ψ00〉

π

Λ |ψ10〉

π

Λ |ψ11〉

π

π

Λ |ψ01〉

π

=
50

π

Λ |ψ11〉Λ |ψ10〉Λ |ψ01〉

π

π

Λ |ψ00〉

π

π
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=

Λ |ψ00〉

π

π

Λ |ψ11〉

π

π

π

Λ |ψ10〉 Λ |ψ01〉

=
58

Λ |ψ10〉 Λ |ψ11〉Λ |ψ00〉

π

π
π

π

Λ |ψ01〉

ut

Lemma 88.

· · ·

Λ |ψ〉Λ |ψ〉

=

Λ |ψ〉
· · ·

Proof (Lemma 88). By induction on the number n of outputs of |ψ〉:
• n = 0:

ΛxΛx

=

ΛxΛx

=
86

Λx
=

Λx

• n ≥ 1: In this case, let |ψ〉 = |0〉 |ψ0〉+ |1〉 |ψ1〉, and

· · ·

Λ |ψ〉Λ |ψ〉

=
64

Λ |ψ0〉 Λ |ψ1〉

π

· · ·

π

Λ |ψ1〉 Λ |ψ0〉

π
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=
58
53

· · ·

π

π

Λ |ψ1〉

π

Λ |ψ0〉Λ |ψ1〉

π

π

Λ |ψ0〉

=
64
58

Λ |ψ1〉Λ |ψ0〉

π

Λ |ψ0〉

· · ·

π

π

Λ |ψ1〉

=
64

· · ·

Λ |ψ0〉 Λ |ψ1〉Λ |ψ0〉 Λ |ψ1〉

=
Ind

Λ |ψ0〉

· · ·

Λ |ψ1〉

=
(B1)
(S1)

Λ |ψ0〉

· · ·

Λ |ψ1〉

=
54

(S1)
Λ |ψ0〉 Λ |ψ1〉

· · ·

=
(S1)
(S2)

Λ |ψ〉
· · ·

ut

Proof (Proposition 4). By induction on the number of outputs of |ψ0〉 and |ψ1〉:
• If both states are scalars, this case is handled by the condition in Theorem 2.

43



• If one of the two states has at least one output – say |ψ0〉 = |0〉 |ψ00〉+ |1〉 |ψ01〉:

· · ·
Λ |ψ0〉 Λ |ψ1〉

· · ·

=

· · ·

Λ |ψ00〉 Λ |ψ01〉 Λ |ψ1〉
· · ·

=
88

Λ |ψ00〉

· · ·

Λ |ψ01〉

· · ·

Λ |ψ1〉 Λ |ψ1〉

=

· · · · · ·

Λ |ψ1〉Λ |ψ01〉Λ |ψ1〉Λ |ψ00〉

=
Ind

Λ |ψ00〉 |ψ1〉

· · ·

Λ |ψ01〉 |ψ1〉

= Λ |ψ0〉 |ψ1〉
· · ·

ut

Proof (Proposition 6). By induction on the number n of outputs of |ψ〉.
• n = 2: First notice:

=
64

π

π π

=
58

ππ

π
π

=
56
57

π

=
(S1)
64

44



Then, if |ψ〉 = a |00〉+ b |01〉+ c |10〉+ |11〉:

Λa Λb Λc Λd

=

Λa Λb Λc Λd

=
85

Λa Λd

which is in normal form.

• n ≥ 3: Using Proposition 3, we can impose to be applied on the two last wires. Then:

Λ |ψ〉
· · ·

=
Λ |ψ0〉

· · ·

Λ |ψ1〉
=

(S1) Λ |ψ0〉 Λ |ψ1〉

· · ·

ut

Proof (Proposition 7). By induction of the number n of wires of |ψ〉:
• n = 1: Let |ψ〉 = a |0〉+ b |1〉. Then:

Λ |ψ〉 =

ΛbΛa

=

Λa Λb

=
(B1)

Λa Λb

=

Λ 1
2 Λa+b

=
Λa+b

2

• n ≥ 2: First, using Proposition 3 if needs be,

Λ |ψ〉
· · · · · ·

= Λ |ψ〉
· · ·

· · ·

= Λ |ψ′〉
· · ·
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then,

Λ |ψ〉
· · ·

=

Λ |ψ00〉 Λ |ψ11〉Λ |ψ01〉 Λ |ψ10〉

· · ·

=
73

· · ·

Λ |ψ01〉Λ |ψ10〉 Λ |ψ11〉Λ |ψ00〉

ut

Proof (Proposition 5).

Λ JDK

· · · · · · · · ·

π

=
(S2)
(S1) · · ·

Λ JDK

· · ·

π

· · ·

=
6

· · ·

Λ
t

D

· · ·· · · · · ·

|

π

· · ·

=
7

· · ·

Λ 1
2

t
D

· · · · · · · · ·

|

π

=
87
21

(B1)

π

· · ·

Λ 1
2

t
D

· · · · · · · · ·

|

Λ2

=
4

· · ·

Λ
t

D

· · · · · · · · ·

|

π

ut

Proof (Lemma 6). We will prove the result for states, for the three-legged green dot, the Hadamard
node and the empty diagram. All the other generators can be built from them and the Propositions
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3, 4, 6,5 and 7: First, notice that:

ZX∗G ` Λ |0〉 = =
66

(S1)
(S2)

π
and Λ |1〉 = =

67
(S1)
(S2)

Then:

ZX∗G `
α

=
63

α

=
(S2)
(S1)
21

π π

π

α

=

Λ |0〉 Λ |0〉

π

Λ |1〉Λ |1〉

Λeiα =
4

Λ |00〉

π

Λeiα |11〉

=

π

Λ
s

α
{

and:

ZX∗G ` =
(EU)

−π
2

π
2

π
2

=
43

π

π

=
35

(S2)
(S1)

π

π

π π

=
54
71

(B1)

ππ

π

=
(B1)
21

π

π

= Λ
√

2
s {

π

=
87
21

(B1)
Λ
√

2
s {

π

Λ 1√
2

=
4

π

Λ
s {
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and:

ZX∗G ` =
17
19

π
=

Λ
r z

π

Then:

ZX∗G ` =
(S1)
(S2)

=

π

Λ
s {

=
5

Λ
s {

π

ZX∗G ` =
(S2)
(S1)

=

π

Λ
s {

=
7

Λ 1
2

s {

π

=
87
21

(B1)

π

Λ 1
2

s {

Λ2

=
4

Λ
s {

π

ZX∗G ` = =

π

Λ
s {

π

Λ
s {

=
21

(B1)

π

Λ
s {

Λ
s { =

4

π

Λ
s {

=
3

Λ
r z

π

Any green dot with arity larger than 3 can be decomposed as a 3-legged dots thanks to (S1), and
any red dot is a green dot with Hadamard gates on its adjacent wires. Then, any diagram can be
built from the states by simple topological transformations. E.g:

ZX∗G `

 = = Λ
r z

π
 ,

 = =
Λ

r z

π


ut

A.9 Completeness for the General ZX-Calculus

Proof (Theorem 3). Λ is a representation of controlled states: By definition, ZXA proves the
induction part. Let x = ρeiθ. Then:

Λx
=

π

β

θ (

-β

)

γ
-γ

⊗n

=
(B1)
17

(S1)
(S2)

)

γ

π

(
⊗n

-γ

=
(S2)
(S1)
(B1)

(

π
-γ

)

γ

⊗n

-γ
γ
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=
4

=
17

and:

u

v
Λx

π
}

~ =

u

www
v π

β

θ (

-β

)

γ
-γ

⊗n
π

}

���
~

=
(S1)
(B1)
(S2)
21

u

wwww
v

β

)

π
-β

(
⊗n

θ

π
}

����
~

=
(K)
18

(S1)

u

ww
v
θ-β

π
( )

⊗n

2β

}

��
~

= ei(θ−β) 2n

2
(1 + e2iβ) = 2n cos(β)eiθ = ρeiθ = x

If x = 0, these results are obvious. The conditions for applying Theorem 2 are respected:
• If either x = 0 or y = 0, the sum and product are obvious. Otherwise, let x = ρ1e

iθ1 and
y = ρ2e

iθ2 :

Λx Λy

=

β1

)

γ1

π θ1

-β1

(
⊗n1

-γ1

( )
⊗n2

θ2

γ2

β2

π

-β2

-γ2
=
84

⊗n1

θ2π

)

γ1

( )

β1

θ1

γ1
-γ1-γ1

π

-β′2-β1
β′2

(
⊗n1

=
21
35
69

π

-β′2

⊗n1

θ2

-γ1

⊗n1

(

(

θ1

β1

)
γ1

-β1

)

β′2

π

γ1
-γ1

-γ1
γ1

=
4

θ1

γ1
-γ1

θ2

β′2

(

-β1

⊗n1

-β′2
β1

)

π

=
83

(

β3

-γ1

⊗n1

γ1

)

θ3

-β3

π

=
Λ(x+ y)

with

∀k ∈ {1, 2}, βk = arccos(
ρk
2nk

) γk = arccos(
1

2nk
) β′2 = arccos(

ρ2

2n1
)

θ3 = arg(ρ1e
iθ1 + ρ2e

iθ2)

β3 = arccos(eiθ1−θ3 cosβ1 + eiθ2−θ3 cosβ2) = arccos(
ρ1e

iθ1 + ρ2e
iθ2

eiθ32n
)

•

Λx Λy

=

⊗n2⊗n1

θ2

)

β1

γ1
(

θ1

-β1
β2

)

π

(
γ2

-γ2-γ1
π

-β2

=
(S1)
21

⊗n1+n2

-β2

-γ1

β2
-γ2

γ2

( )

β1

θ1+θ2

γ1
-β1

π

49



=
82

-β3

)
θ1+θ2

(
⊗n1+n2

β3
-γ3

γ3

π

=
Λ(xy)

where

∀k ∈ {1, 2}, nk = max (0, dlog2(ρk)e) , βk = arccos(
ρk
2nk

), γk = arccos(
1

2nk
)

β3 = arccos(
ρ

2n1+n2
), γ3 = arccos(

1

2n1+n2
)

•

Λeiα
= α

( )
⊗0

π

=
α

• and of course ZXA ` ZX.
Hence, we can use Theorem 2. ut

A.10 Completeness for the π
4n

-fragments

Proof (Lemma 9). Let p be an odd prime number and ` an integer ≥ 1. The formula of the cyclo-

tomic polynomial for a number with at most one odd prime factor gives: φ8p`(x) =
p−1∑
k=0

(−1)kx4kp`−1

.

Moreover, (−1)ke
i π

4p`
×4kp`−1

= ei
p+1
p kπ. After telescoping:

Γ π
4p`

φ8p`

=

p−1
p
π


p

Since p and 4 are coprime, there exists k such that kpπ4 = π
4 . Let us then consider the interpretation

[.]kp which multiplies all the angles by kp: D1 ⊗D2 7→ [D1]kp ⊗ [D2]kp, D1 ◦D2 7→ [D1]kp ◦ [D2]kp,

R
(n,m)
Z (α) 7→ R

(n,m)
Z (kpα), R

(n,m)
X (α) 7→ R

(n,m)
X (kpα), Id otherwise. It is routine to show that the

rules of ZX hold under this interpretation, but:

p−1
p
π


p
7→ )

p
( 6= ← [

ut
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Proof (Lemma 13). First, if x, y ∈ N:

)y
sπ−kω

(
rπ−kω

rπ+kω sπ+kω()x
=
62
39

(s−r)π)y
sπ−kω

rπ−kω (

)x( rπ+kω

=
62
39

)x( rπ+kω

sπ−kω sπ−kω

(s−r)π)y(
=
62

)x
(s−r)π

rπ+kω(
( )y

sπ−kω

If r = s:

)xrπ+kω(
( )y

rπ−kω

=
(S2)

)x+y

rπ−kω

( rπ+kω

Otherwise, if r 6= s and x ≥ y:

)x
π

rπ+kω(
( )y

sπ−kω

=
(S2)
(S1)

)x
π

y

rπ−kω

( rπ+kω

π

=
38

( )x−yrπ+kω

rπ−kω

The case r 6= s and x ≤ y is similar. In the end:

)y
sπ−kω

(
rπ−kω

rπ+kω sπ+kω()x
=

( )ztπ+kω

tπ−kω

with (−1)tz = (−1)rx + (−1)sy. The result for the sum immediately follows by induction (if 0 is
involved, the result is obvious). For the product, first, if P (X) = P ′(X) + (−1)baXk:

Γα(P )

cπ+`α
= )a(

Γα(P ′)

bπ+kα

bπ−kα

cπ+`α

=
(S1)

( )a(b+c)π+(k+`)α

Γα(P ′)

(b+c)π−(k+`)α

cπ+`α

=

(
Γα((-1)cX`P ′)

)a(b+c)π+(k+`)α

(b+c)π−(k+`)α
=

Γα((-1)cX`P )
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and

Γα0

cπ+`α
= cπ+`α = =

Γα((-1)cX`×0)

. Then, if Q is non-null:

Γ π
4n
P Γ π

4n
Q

=

Γ π
4n
Q′

(
bπ−k π

4n

)a
Γ π

4n
P

bπ+k π
4n

=
(78)

bπ−k π
4n

Γ π
4n
P

Γ π
4n
Q′

bπ+k π
4n

Γ π
4n
P

...

Γ π
4n
P

=
62

Γ π
4n
P

bπ+k π
4n

...
Γ π

4n
P

Γ π
4n
PQ′

bπ+k π
4n

=
Γπ
4n

(-1)bXkP

Γ π
4n
PQ′

...

Γπ
4n

(-1)bXkP

=

Γπ
4n
PQ′+(-1)bXkP

...

Γπ
4n

(-1)bXkP

=
Γπ
4n
PQ′+(-1)baXkP

=
Γ π

4n
PQ

and if Q = 0, the result is obvious. ut

Proof (Proposition 10). First of all, we can easily derive for any N :

ZX π
4n
`

π

=
Γα(X

N -1)
π+Nα

=

-Nα

π+Nα
π

=⇒ ZX π
4n
`

=
π

π+α

Γαφ1

Now, assume p is prime. Then, φ1(X)φd(X) =
∏
d|p
φd(X) = Xp − 1. Since sums and products of

control polynomials are derivable in ZX, it means:

ZX π
4n
`

Γαφp Γαφ1

=
π

π+pα

⇐⇒

Γαφp Γαφ1

π

Γαφ1

=
π

π+pα

Γαφ1

π

⇐⇒
80

π

Γαφp Γαφ1

=
π

π+pα

Γαφ1

π
=⇒ Γ2rπ

p
φp

π+ 2rπ
p

π

π

=

π

ππ

π+ 2rπ
p

π
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⇐⇒
34

π+ 2rπ
p

π

Γ2rπ
p
φp

π
= π

π

π+ 2rπ
p

π

⇐⇒
(K)
(B1)
31

π

π+ 2rπ
p

Γ2rπ
p
φp

π

=

π+ 2rπ
p

π

π

⇐⇒
18
17 π+ 2rπ

p

Γ2rπ
p
φp

=

π+ 2rπ
p

=⇒ ZX
(cancel)
π
4n

`
Γ2rπ
p
φp

=

Now, if p is still prime, the case of pk is handled with the equation φpk(X) = φp(X
pk−1

) which
translates as:

ZX π
4n
`

Γαφpk
=

Γα(pk-1)φp
=⇒ ZX

(cancel)
π
4n

` Γ2rπ
pk
φpk

=
Γ2rπ
p
φp

=

Finally, in the general case, let 8n =
∏
i p
ki
i with all pi primes. Then, φ8n(X) = gcd

i

(
φ
p
ki
i

(Xp
ki−1

i )
)

.

By Bézout’s identity, φ8n(X) =
∑
i

Qi(X)φ
p
ki
i

(Xp
ki−1

i ) where the Qi are some unitary polynomials.

This translates as:

ZX π
4n
`

Γαφ8n

=

ΓαQ1
Γαφpk11

ΓαQi Γαφ
p
ki
i

· · · · · ·

· · · ···

=⇒ ZX
(cancel)
π
4n

`
Γπ
4n
φ8n

=

Γπ
4n
Qi Γπ

4n
φ
p
ki
i

Γπ
4n
φ
p
k1
1

· · ·

···

Γπ
4n
Q1

· · ·

· · ·

= · · ·

· · ·
Γπ
4n
QiΓπ

4n
Q1

···

· · ·

= · · ·

Γπ
4n
Q1

· · ·
Γπ
4n
Qi

· · ·

···
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= · · · = =

ut

Proof (Theorem 4). The product is obvious when we have Lemmas 13 and 10. For the sum, let
x = 1

2pP (ei
π
4n ), y = 1

2qQ(ei
π
4n ). W.l.o.g., assume p ≤ q. Then:

ZX∗G `

Λx Λy

=
Λ 1

2p
Λ 1

2q

Γπ
4n
P Γπ

4n
Q

=
44

Λ 1
2q

Λ 1
2qΛ2q-p

Γπ
4n
QΓπ

4n
P

=
13
68

Λ 1
2q

Γπ
4n
QΓπ

4n
2q-pP

=
13

Λ 1
2q

Γπ
4n

2q-pP+Q

=
47

Λ(2q-pP+Q)(e
iπ
4n )

Λ 1
2q

=
Λ(x+ y)

The ante-penultimate diagram may not directly be in normal form, for there may be S such that
2q−pP +Q = 2S, but this is dealt with with Lemma 47. ut

A.11 Completeness for the π
2n -fragment

Proof (Lemma 16). If k ∈ {−2n + 1, · · · , 2n+1 − 1}, then there exist 0 ≤ m < n and p ∈ Z such
that k = 2m(2p− 1)i.e. kπ

2n = 2p−1
2n−mπ where 2n−m ≥ 2. Then:

kπ
2n

2p-1
2n-m π

+π
(2p-1)π

2n-m-1
(2p-1)π

2n-m-2
2p-1
2
π· · · =

2p−1
2 π

...

2p−1

2n−m−1 π

2p−1

2n−m−2 π

2p−1

2n−m−1 π+π

= · · ·

= 2p−1
2 π

2p−1
2 π+π

= =

ut

Proof (Corollaries 2 and 3). Let G be a subgroup of Qπ, and D1 and D2 be two diagrams of the
fragment G, such that JD1K = JD2K. If G is finite, Theorem 4 directly gives the result. Otherwise,
there exists n ∈ N such that π

4n ∈ G and both diagrams are in the π
4n -fragment of the ZX-

Calculus. By completeness (Theorem 4): ZXcancel
π
4n

` D1 = D2, and since ZXcancel
G ` ZXcancel

π
4n

,

ZXcancel
G ` D1 = D2.
The proof for the Dπ fragment is similar, except we use the completeness of π

2n -fragment
(Theorem 5), and the set of axioms ZX. ut
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