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The work presented in this paper addresses the issue of environmental monitoring. Specifi-
cally, it focuses on the use of acoustic systems for passive acoustic monitoring of ocean vitality
for fish populations. To this end, various indicators can be used to monitor marine areas such
as both the geographical and temporal evolution of fish populations. A discriminative model
is built using supervised machine learning (random-forest and support-vector machines).
Each acquisition is represented in a feature space, in which the patterns belonging to differ-
ent semantic classes are as separable as possible. The set of features proposed for describing
the acquisitions come from an extensive state of the art in various domains in which classifi-
cation of acoustic signals is performed, including speech, music, and environmental sounds.
Furthermore, this study proposes to extract features from three representations of the data
(time, frequency, and cepstral domains). The proposed classification scheme is tested on real
fish sounds recorded on several areas, and achieves 96.9% correct classification., compared to
72.5% when using reference state of the art features as descriptors. The classification scheme
is also validated on continuous underwater recordings, thereby illustrating that it can be used
to both detect and classify fish sounds in operational scenarios.
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I. INTRODUCTION

A. Passive Acoustic Monitoring

The global ecosystem of the Earth is ruled and influ-
enced by many factors, which include seas and oceans.
Water covers around 70% of the Earth’s surface, and
it thus has a major role in the regulation of the global
ecosystem. The economic value of the services provided
by the seas is also substantial, at some $33 trillion per
year according to (Costanza et al., 1997).

Zones of shallow waters (depth < 100m) in coastal
areas have therefore been widely studied since they have a
key role in marine environments. In particular, sea-grass
meadows that grow in shallow waters (< 40m) are of in-
terest. At a local scale, sea meadows are the habitat of
many fish species, as an environment that provides them
with a source of food, and where they can develop their
nurseries (Heck, 2003). At a larger scale, sea-grass mead-
ows are considered to be the lungs of the oceans, in terms
of their role in photosynthesis. These coastal areas are,
by definition, closer to land, and their ecosystems are par-
ticularly exposed and vulnerable to anthropogenic stress.
For these reasons, special attention needs to be paid to
the evolution of such areas, which requires deployment of
the necessary monitoring tools and devices. The devel-
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opment of an automatic monitoring system for sea-grass
meadows is the main purpose of this study. Specifically,
we focus on the monitoring of fish populations using pas-
sive acoustics.

The choice of considering acoustics signals as a proxy
for monitoring of sea-grass meadows instead of other ap-
proaches, such as satellite imagery or field surveys, can
be supported by three reasons. First, water is a par-
ticularly favorable environment for sound propagation.
Conversely, satellite or airborne imagery is of limited use
due to the difficulty in accessing the required underwa-
ter information. This arises from the limited visibility
with passive optical systems, and the lack of penetration
of electromagnetic waves through the water surface with
active acquisition systems. Secondly, using an acoustic-
based approach allows monitoring of large areas. Indeed,
large amounts of data, and even real-time recordings, are
relatively easy to acquire. As the cost of data collection
campaigns is relatively affordable, their use can be con-
sidered for monitoring over wide areas. Finally, acoustic-
based approaches are less invasive and costly than in situ
surveys of the sea floor. Thirdly, the presence of biodi-
versity can be seen as an indicator of the vitality of an
area since fishes and sea animals generally communicate
through acoustics. In this context, analyzing fish sounds
is a relevant choice for monitoring the biodiversity and
vitality of a given coastal area. We propose here to use
supervised machine-learning methods to build a classifi-
cation model for automatic classification of fish sounds.
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To this end, the acoustic signals need to be represented
as feature vectors before being assigned to one of several
classes of interest.

Despite the need for automatic monitoring of sea-
grass floors, the existing tools based on acoustics are not
adapted to handle the huge amounts of acquired data.
Nevertheless, studies on automatic classification of more
general acoustic data have been reported. Specifically,
studies on environmental sounds (i.e., natural, animal,
human sources), speech, and music have been conducted,
and reviewed. Among the very few studies dealing with
fish sounds classification, we can mention (Noda et al.,
2016; Vieira et al., 2015) and (Sattar et al., 2016) in which
results are promising even if the tools are not all tested
in an applicative context of underwater monitoring. The
classification of bioacoustics data is being developed in
the literature, such as the sounds of sea mammals (Za-
ugg et al., 2010), bats, frogs (Chen et al., 2012; Huang
et al., 2009), birds (Acevedo et al., 2009; Fagerlund, 2007;
Tyagi et al., 2006) and other animals (Mitrovic et al.,
2006). However, depending on the field and data acces-
sibility, the results have been relatively disparate. For
instance, studies on speech recognition are relatively ad-
vanced, while automatic identification of musical instru-
ments is at a more preliminary stage of development.
However, to the best of our knowledge, no functional tool
on automatic fish sounds classification has been reported
to this date, and thus we propose the present study as
an attempt to fill this gap.

The contributions of this study are as follows. (i)
Development of a supervised classification architecture
for automatic classification of fish sounds. (ii) Review
of the literature regarding the representation of environ-
mental sounds (i.e., natural, animal, human induced),
speech, and music, to propose a large and comprehen-
sive collection of features. (iii) Extraction of the con-
sidered features from three different representations of
the acoustic signals: i.e., in the temporal, spectral, and
cepstral domains, to yield a large set of descriptors that
can capture different information, such as temporal evo-
lution, predominant spectral frequency, and harmonicity
of transient signals. (iv) Demonstrate the effectiveness
of the proposed automatic classification system on a real
dataset composed of acoustic acquisitions of fish sounds.
We also conduct a comparative analysis on the features
used, and provide some indications for the selection of
the most relevant ones. (v) Testing of the proposed ar-
chitecture on continuous recordings from various marine
areas and at different times.

This paper is organized as follows. In Section I B,
a state-of-the-art classification of acoustic signals is pre-
sented. In particular, we focus on the features used to
represent the data. The fundamentals of machine learn-
ing are also summarized. Section II is devoted to the
presentation of the architecture of the proposed auto-
matic classification approach. In Section III, the data
gathering campaign is presented, and the data used for
this study are described. Then the experimental settings,
along with the results of the various experiments, are pre-

sented in Section IV. Finally, a discussion is conducted
in Section V, while the prospects and conclusions from
this study are reported in Section VI.

B. Related studies

In this Section, we review some studies from the lit-
erature on the classification of acoustic signals. In par-
ticular, we focus on the features used for classification of
environmental sounds (e.g., natural, animal, anthropic),
speech, and music, and on approaches that have been
proposed for their classification. Before introducing the
tools for the automatic analysis of acoustic data, we recall
the fundamentals of machine learning and signal repre-
sentations.

1. Machine learning fundamentals

Machine learning can be described as a set of meth-
ods and techniques from artificial intelligence that are
aimed at discriminating patterns (i.e., data samples1)
into various semantic classes. The concepts of distance
and similarity between patterns are crucial. The choice
of the space used to represent the data is therefore also
essential. Machine learning approaches aims at defin-
ing an automatic discriminative rule that can predict the
most likely class of a new observation based for instance
on a priori information on the classes as in the case of
supervised approaches. Machine learning methods are
currently widely spread, and are used in a broad range of
applications, including medical imaging, image process-
ing, speech processing, robotics, finance, and others.

Supervised learning algorithms employ a labeled
dataset, in which each observation is associated with
a thematic class (see sub-section III C for more details
of the labeling process done in this work). In this sce-
nario, supervised learning algorithms are trained on the
labeled data leading to define a decision rule which min-
imizes the classification error on the available labeled
examples. In many cases, the labeling step is carried
out by hand, which is the main limitation of supervised
learning approaches especially when data collections are
huge. Nonetheless, supervised learning allows powerful
prediction models to be built, and hence their exten-
sive use throughout the scientific community. Numerous
supervised-learning algorithms are used, including ran-
dom forest (RF) (Breiman, 2001), support vector ma-
chine (SVM) (Boser et al., 1992) and neural network (Mc-
Culloch and Pitts, 1943). For more details on machine
learning algorithms, please refer to (Duda et al., 2001)
and (Friedman et al., 2001).

In machine learning, as in many fields related to sig-
nal processing, the way signals are represented plays a
fundamental role in the analysis. Features are extracted
from the signals, shifting the representation of a numeri-
cal acoustic recording from a sequence of discrete samples
in the time domain to a set of descriptors combined in a
feature vector. The automatic classification rule is then
established in the feature space, the domain in which pat-
terns are represented where each dimension corresponds
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to one feature. Reduction of the data dimensionality
from the time signal length n in the original space to
the number of considered features d in the feature space,
in general can lead to better classification results. Theo-
retical results and reasons supporting this process can be
found in (Duda et al., 2001) or (Friedman et al., 2001).

2. Classification of bioacoustic signals

By surveying the scientific literature, one can notice
that a plethora of descriptors have been used as features
for bioacoustic signal classification. These features come
from different domains such as statistics, information the-
ory, signal and image-processing.

For signal statistics, the spectral centroid and band-
width have been used to classify frog sounds (Huang
et al., 2009). (Fagerlund, 2007) also used spectral cen-
troid and bandwidth, and for recognition of bird species,
they also included spectral roll-off frequency, spectral
flux, and spectral flatness and duration. For the clas-
sification of whales and boats, (Zaugg et al., 2010) used
energy centroids, standard deviation, skewness, and kur-
tosis, all of which were computed from the time and fre-
quency signals. (Acevedo et al., 2009) used the minimal
and maximal signal frequency (fmin and fmax, respec-
tively) in addition to the energy in different frequency
bands to classify frog and bird songs. A threshold cross-
ing rate was used by (Huang et al., 2009) and (Fager-
lund, 2007), and along the same lines, features based on
area ratios above or below a given threshold were used
by (Mitrovic et al., 2006) for the classification of bird,
cat, cow, and dog calls. Regarding underwater acous-
tics, (Noda et al., 2016) introduces the use of Shannon
entropy and call length for the recognition of fish sounds
(in controlled environment though).

Low-level coefficients and descriptors issued from
various transforms of the input signals have been also
considered. For example, (Tyagi et al., 2006) used dy-
namic time warping and spectral ensemble average voice
for bird recognition. (Chen et al., 2012) used multistage
average spectrum for frog detection. Linear predictive
coefficients have been also used in classification, as for
calls from birds (McIlraith and Card, 1997) or humpback
whales (Pace et al., 2010). (Chesmore, 2001) used fea-
ture matrices from time-domain signal coding for insect
and bird recognition.

Descriptors based on information theory have been
used in (Han et al., 2011), in which the authors im-
plemented Shannon and Rényi entropies to classify frog
calls, and in (Zaugg et al., 2010) for the discrimination
of whale and boat based on Shannon entropy.

Finally, some studies consider features extracted
from spectrograms, which can be pragmatically consid-
ered as images allowing one to take advantage of the large
set of image processing tools available. For bird vocaliza-
tion retrieval, for example, (Dong et al., 2013) extracted
features from spectrogram images using ridge detection
and points of interest. (Esfahanian et al., 2014) also
used image processing techniques for dolphin call clas-
sification. Bowhead whale are detected and localized in

(Thode et al., 2012), also using features extracted from
the spectrogram.

Finally, features can also be learned from the signals
instead of handcrafted, for example as done in (Sattar
et al., 2016) using principal component analysis for the
classification of a given call of plainfin midshipman into
three categories.

Pertaining to the classification procedure, several
machine learning techniques have been employed such
as SVM used in (Acevedo et al., 2009; Fagerlund, 2007;
Huang et al., 2009; Mitrovic et al., 2006; Noda et al.,
2016; Sattar et al., 2016), neural networks (NN) are em-
ployed in (Chesmore, 2001; McIlraith and Card, 1997;
Thode et al., 2012) and (Zaugg et al., 2010) while k-
nearest neighbor (kNN) are considered in (Esfahanian
et al., 2014; Han et al., 2011; Huang et al., 2009; Noda
et al., 2016). Some studies also propose to use deci-
sion trees or linear discriminant analysis (Acevedo et al.,
2009), distance measurements (Dong et al., 2013; Tyagi
et al., 2006) or k-means (Pace et al., 2010). (Noda et al.,
2016) also uses RF.

3. Natural or human-induced sounds classification

For natural or human-induced sounds classification,
very similar features to the ones previously presented
have been used. Statistical descriptors were used by (Guo
and Li, 2003) for multiple sounds retrieval, such as
the frequency centroid, bandwidth in various frequency
bands or pitch frequency and energy. To classify under-
water mechanical transients, (Tucker and Brown, 2005)
used a large number of perceptual features, which in-
cluded energy standard deviation, skewness and kurtosis
over the time or frequency axes. Image-processing tech-
niques are also found for the description of these signals,
such as by (Dennis et al., 2011) for classification of var-
ious sound events. For low-level transforms, to classify
acoustic noise radiated by boats, (Wang and Zeng, 2014)
extracted features based on Bark wavelet analysis and
Hilbert Huang transform. Linear predictive coefficients
have also been used by (Couvreur et al., 1998) for envi-
ronmental noise recognition.

Regarding the learning algorithms, SVM are used
in (Dennis et al., 2011; Guo and Li, 2003) and (Wang and
Zeng, 2014) along with distance measurements in (Guo
and Li, 2003). kNN are also found in (Tucker and Brown,
2005) and Hidden Markov Models are tested in (Cou-
vreur et al., 1998).

4. Music classification

Automatic classification for music sounds is found
in several various applicative domains (e.g., content re-
trieval, musical instrument identification, musical genre
identification), although here again, different features
have been used to describe signals of interest. Statistics
features have been used, such as by (Eronen and Klapuri,
2000) and (Fujinaga and MacMillan, 2000) for musical
instrument recognition and for timbre recognition. (Es-
maili et al., 2004) also used statistical features along with
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entropy for classification of musical genre. Image process-
ing methods have also been adopted, such as by (Yu and
Slotine, 2009) for spectrogram texture extraction to iden-
tify various musical instruments, and (Deshpande et al.,
2001), for musical genre classification.

Learning algorithms used with musical data are sim-
ilar to the ones used for the classification of biological,
human or natural sounds. In particular, kNN is used
in (Deshpande et al., 2001; Fujinaga and MacMillan,
2000; Yu and Slotine, 2009), SVM is used in (Deshpande
et al., 2001) and linear discriminant analysis in (Esmaili
et al., 2004).

5. Speech classification and Mel frequency cepstral co-
efficients

Speech classification has been mainly carried out
considering MFCC as features. MFCCs are based on
a double Fourier transform or discrete cosine transform
of the signal energy, thereby highlighting the harmonic
properties of an acoustic signal. They are designed to
describe sounds that are audible to humans, as they ac-
count for the perception of the human ear. MFCCs are
very popular as features in the speech community, and
they have been shown to be reliable for speech recog-
nition and for speaker identification. Studies on various
implementations of MFCCs have been conducted, such as
by (Zheng et al., 2001). The success of MFCCs in speech-
related studies is such that they are now considered as
a reference set of features for acoustic classification pur-
poses in general. The state of the art in automatic clas-
sification of fish sounds is very limited but both (Vieira
et al., 2015) and (Noda et al., 2016) have used MFCCs for
fish call recognition or fish individuals classification. In
bioacoustics, MFCCs have been used by (Bedoya et al.,
2014) for anuran sounds classification, by (Fagerlund,
2007) for bird call recognition, and by (Tyagi et al., 2006)
for bird species recognition. (Pace et al., 2010) used
MFCCs for humpback whale identification. (Lee et al.,
2006) and (Clemins and Johnson, 2006) modified MFCCs
to fit their data, and they used them to classify frogs and
crickets respectively, and for land mammal call identi-
fication. In acoustics, MFCCs were used by (Guo and
Li, 2003) and (Dennis et al., 2011) for multiple sounds
identification, and by (Lim et al., 2007) for identification
of underwater acoustic transients. They were also used
by (Wimmer et al., 2010) for the identification of envi-
ronmental sounds, and by (Márquez-Molina et al., 2014)
for aircraft take-off noise classification. MFCCs were also
used to describe signals to distinguish speech from mu-
sic from nonvocal sounds by (Foote, 1997), for musical
instrument recognition by (Eronen and Klapuri, 2000),
and for musical genre classification by (Deshpande et al.,
2001).

Similarly to other applications, learning algorithms
involved in those studies are mainly based on SVM (Den-
nis et al., 2011; Deshpande et al., 2001; Fagerlund,
2007; Guo and Li, 2003; Noda et al., 2016), neural net-
works (Márquez-Molina et al., 2014), distance measure-
ments (Guo and Li, 2003; Lim et al., 2007; Tyagi et al.,

2006), k-means (Pace et al., 2010), kNN (Deshpande
et al., 2001; Noda et al., 2016), linear discriminant analy-
sis (Lee et al., 2006), hidden markov models (Clemins and
Johnson, 2006; Vieira et al., 2015) or RF (Noda et al.,
2016). Fuzzy classifiers were also used in (Bedoya et al.,
2014) and tree bases quantizer in (Foote, 1997).

II. METHODS AND TOOLS

We now present the proposed architecture for auto-
matic fish sound classification. The architecture we pro-
pose relies upon a labeled dataset of observations (i.e.,
it is a supervised approach) and includes four different
steps: (i) preprocessing of the signals; (ii) extraction
of features from the acquisitions; (iii) learning; and (iv)
testing of the model. An extra step of feature selection
can also be included. We detail each step in the following.

A. Preprocessing

Preprocessing is used to condition the signals before
the feature extraction phase. First, we consider as an
observation a signal of length ∆t, which is filtered in
frequency. The frequency bandwidths to be used are the
same as the one planned in the labeling stage that will
be fully detailed in Section III C: 50 Hz to 450 Hz, and
500 Hz to 900 Hz. One temporal window of length ∆t

therefore leads to two observations. The observations
can be down-sampled without consequences to reduce the
computational burden since only low frequencies are of
interest here (< 1kHz). In addition, signals undergo a
normalization so that each observation has unit energy
in the temporal interval of duration ∆t. By doing this,
classification becomes less dependent on the distance of
fishes from the recording device. In other words, after
energy normalization the signals are classified depending
on their shapes, and not on their energetic content which
would be a dominating feature.

B. Features extraction

As explained in Section I B 1, the choice of features
used to represent the data can have a major impact
on the classification results. In this study, we used 84
features that were presented or inspired by works ap-
peared in the literature and previously detailed in Sec-
tion I B. The novelty of the proposed representation lies
in: (i) The large set of features considered simultane-
ously, which is large, and is therefore more likely to cap-
ture most of the signal properties needed to discriminate
the signals into their classes. (ii) The features are also
general shape descriptors, which means that they can be
used for other purposes, including classification of differ-
ent transient signals. We purposefully gathered relatively
general features instead of designing features that would
be specific to an application or a particular family of
sounds. By doing this, the features set can be used on
other datasets (Malfante et al., 2017). (iii) Finally, we
extract the features from several signal representations.
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Specifically, the feature vector of an observation is a con-
catenation of features extracted from:

• The time domain x(t), to describe the waveform
(Time feature set);

• The frequency domain X(f) = T F
{
x(t)

}
, to de-

scribe the spectral content (Frequency feature set).
In practice, Fourier transform is computed on n
points, with n = 10400 · 0.5 as the observation
length;

• The spectrum of the frequency domain, also re-
ferred as the Cepstral domain in the speech com-
munity X (q) = T F

{
X(f)

}
. This domain shows

the periodic properties of a spectrum, which repre-
sents the harmonicity of the signal (Cepstral fea-
ture set).

The full list of the features is given in Table I. These
features describe the observations and their properties.
For example, we use entropy measurements, shape de-
scriptors, and statistical moments, such as standard devi-
ation, skewness or kurtosis, that define the spread, asym-
metry, and flatness of a signal. Skewness computed in
time describes the asymmetry of the time signal com-
pared to the Gaussian distribution. Computed in fre-
quency, it measures asymmetry of the signal spectrum
and in the Cepstral domain, it describes the asymmetry
of the representation underlying the harmonic properties
of the data.

C. Model training

Once extracted, the labeled feature vectors are used
as input for the learning algorithm. This stage is referred
to as learning or training, and, by learning a decision rule
from the input data, it produces a classification model. In
this study, we used SVM and RF algorithms as classifiers.
We recall that, SVM aims at finding an hyperplan which
optimally separates the labeled data into their classes. A
kernel function can also be used to transform the input
feature space to a space of larger dimension where the
data can be linearly separable (Boser et al., 1992). The
RF algorithm is based on an ensemble of binary decision
trees as weak learners. Classification is then obtained by
majority voting on the predictions guiven by the ensem-
ble of classifiers (Breiman, 2001). If the feature space
has been efficiently defined for the data, the classifica-
tion results should not be significantly influenced by the
learning algorithm choice. Both algorithms have hyper-
parameters that need to be tuned: choice of the kernel
and its parameters, and cost parameter CSVM for SVM,
and number of trees and number of variables for RF.

D. Model testing

In this study, we use two different procedures to test
our models. The first one is known as cross-validation:
from the N signals of the dataset, αN ones with the learn-
ing rate 0 < α < 1 are used to train the model, and

the remaining (1 − α)N are used to test it. This pro-
cess is repeated 50 times with random realizations of the
training and testing sets, to ensure statistically robust re-
sults. This procedure is used to estimate the model per-
formances, but also to set the hyperparameters to their
optimum values for this application. Class by class accu-
racy and overall accuracy are used to measure the model
performances.

Accuracyi =
#TruePredictionsForClass i

#ObservationsOfClass i
(1)

Overall accuracy =
#TruePredictions

#Observations
(2)

To ensure that the learned model does not over-
fitting the training data, we also check performance on
continuous underwater recordings. To do so, the record-
ings are continuously processed in the two frequency
bandwidths o(i.e., 50-450 Hz and 500-900 Hz), with a
sliding window of duration ∆t. To reduce the computa-
tional burden no overlap is considered between consecu-
tive windows. For each observation, the model outputs
the probabilities of the observation belonging to each of
the classes. Those probabilities are then thresholded: if
the probability associated to the most likely class is above
the threshold, the predicted class will be retained as a
reliable decision. If below the threshold, the observation
will be considered as Unknown since it is significantly dif-
ferent from the known labeled samples. The validation
process is carried out by domain experts by reviewing
a-posteriori the classification results. To evaluate the
model in this second configuration, we use the class by
class and overall accuracy, but also the precision index
which evaluates the false alarm rate.

Precisioni =
#TruePredictionsForClass i

#PredictedAsClass i
(3)

Confusion matrices, from which all metrics are deduced
are also presented to study the repartition of the errors
and limitations of a model. A confusion matrix is a
square matrix of size equal to the number of classes con-
sidered, in which each column shows for a given class c
with 1 ≤ c ≤ C, as the number of correct and incorrect
predictions.

E. Features selection

The proposed architecture can also be extended to
address the feature selection issue. In this study, we use
a forward selection method: features are ranked by im-
portance based on their weight in the RF model (see
(Breiman, 2001) for more details of this process). Once
ranked, the most important features can then be selected
to form a subset that will be used to represent the data.
This stage can be particularly significant when compu-
tational power is limited; e.g., in real-time applications.
As previously explained, the feature set proposed in this
study can be used for other applications; however, the
subset of selected features is highly dependent on the
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dataset, and is therefore meaningful for the considered
application only. Using feature selection tools gives two
interesting perspectives to our study: first, it helps in the
estimation of the number of features needed to reach a
given accuracy threshold; and secondly, it can be used
as a tool to analyze the data. In particular, the physical
meaning associated to the most important features can
often lead to certain knowledge about the data and what
discriminates them into their classes.

III. DATASETS

A. Data acquisition campaign

The data used in this study for the experimental
analysis were collected in August 2014 in France during
the SEACOUSTIC2014 campaign (Lossent et al., 2015).
The project aimed to collect data to address three issues:
(i) How to determine the vitality of underwater areas; (ii)
How to evaluate the anthropogenic stress on underwater
areas; and (iii) To study the link between vitality of a
given underwater area and the anthropogenic stress it
faces. The campaign was based at the STARSEO sta-
tion, near La Pointe de la Revelatta in Corsica, France
(Mediterranean Sea). For more details on the SEA-
COUSTIC2014 project, please refer to (Lossent et al.,
2015).

The study presented here is related to issue (i);
namely, the development of tools to determine the vi-
tality of underwater areas. The data used to test and
evaluate our system are area specific, which means that
self-sufficient recording devices were fastened to the sea
floor and left to record continuous signals. Specifically,
between 1 day and 3.5 days of continuous recordings were
collected from various marine areas. Each marine area
was characterized by its depth and its sea floor (i.e.,
meadow, rock, sand, as given in Table II) and the de-
velopment of automatic models to classify fish sounds
will help in the analysis and characterizing of these ar-
eas. Hydrophones (HTI92 WB) and recorders (SDA14;
RTSYS) were used, which provided the signals coded on
24 bits at 256 kHz (note, anti-aliasing filtering was ap-
plied). We here stress that the recordings used in the
present study were not labeled, and no ground truth was
available regarding their content. The labeling task was
carried out specifically for the present study, and was
conducted manually by an expert who reviewed and la-
beled the content of part of the recordings. More details
are given in Section III C.

B. Fish sound signals overview

The underwater recordings collected sounds from
three different sources: animal (biophony), environmen-
tal (geophony), and human (anthrophony). Together,
these formed the soundscape of a given area. In this
study, we focus on biophony, and more specifically, on
fish sounds.

Although a direct relationship between fish sounds
and individual fish or fish species has not been established
to date, it is known that specific fish sounds can be asso-
ciated with specific behaviors, if the fish species is known,
as determined in the fish biology literature (Amorim
et al., 2004; Amorim, 2006; Dos Santos et al., 2000; Mann
et al., 2008; Parmentier et al., 2006; Thorson and Fine,
2002). An established terminology that refers to the dif-
ferent fish sounds is still lacking, as well as any univer-
sally accepted correspondence between fish sounds and
fish behaviors) (Amorim, 2006). For this reason, we chose
to name (arbitrarily) the fish sounds in the acquisitions
based on their qualitative characteristics. For the various
recordings, four different types of fish sounds (classes)
that showed distinctive acoustic signatures were recog-
nized by the experts. Spectrograms of representative sig-
nals along with descriptions of the four classes are shown
in Figure 1, and are hereafter detailed as:

Impulsions: Emissions of short duration that are sepa-
rated by lags of the order of seconds.

Drums: Periodic pulse trains (around at least 15 pulses)
that last for at least 20 s in most of the recordings.

Roars: Wideband signals in their frequency content,
which are usually very energetic. These also last
between about 10 s and 30 s, and occur at a fre-
quency of around two a minute.

Quacks: Short signals with a harmonic structure that are
often present (up to five occurrences per second).
Quack sounds are recognizable by their similarity
to frog or duck sounds.

These four classes were identified by the experts as clearly
defined and matching the literature. Fish sounds that did
not fit this nomenclature were particularly rare in these
recordings. Alternatively, it would also be possible to de-
fine sub-classes: Drums, for example, could be sorted de-
pending on the pulse frequency, and Impulsions depend-
ing on their frequency, which can vary significantly. Such
sub-classes would more likely to be related to species or
identification of individuals (Amorim, 2006; Mann et al.,
2008).

Sounds different from those belonging to the four
above mentioned classes can also be spotted in the
recordings. They were mainly due to ambient and an-
thropic noise. Such sounds are referred to as Unknown
when a definite structure cannot be identified by the ex-
perts, or as Background when background noise domi-
nates. The four fish sound classes are referred as the
positive classes, while Background and Unknown repre-
sent the negative classes. More details on how those two
classes were handled will be given with the results in Sec-
tion IV.

According to the literature, the sounds named here
as Impulsions and Drums appear to be related to antag-
onistic behaviors of fish (Amorim et al., 2004; Dos Santos
et al., 2000; Parmentier et al., 2006; Thorson and Fine,
2002), while Roars and Quacks would be produced dur-
ing courtship (Dos Santos et al., 2000; Thorson and Fine,
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TABLE I. Feature set for a generic numerical signal s[i]ni=0 composed of n discrete samples and which can be defined in different

spaces such as the time x(t), frequency X(f) or cepstral X (q). E represents the signal energy. Features references are referred

’T’, ’F’ or ’C’ depending on their computation domain respectively being time, frequency of cepstral. Features in bold font are

the most valuable features (see Fig 3).

Feature Definition Used in Ref.

Centroid 1
E

∑
i i · Ei (Fagerlund, 2007; Huang et al., 2009) T1, F1, C1

RMS bandwidth RMSi =
√

1
E
.
∑
i i

2 · Ei − ī2 (Tucker and Brown, 2005) T2, F2, C2

Standard deviation σs =
√

1
n−1

∑
i(s[i]− µs)2 (Tucker and Brown, 2005) T3, F3, C3

Skewness 1
n
·
∑
i

( s[i]−µs

σs

)3
(Zaugg et al., 2010) T4, F4, C4

Kurtosis 1
n
·
∑
i

( s[i]−µs

σs

)4
(Zaugg et al., 2010) T5, F5, C5

Mean skewness

√∑
i (i−ī)3.Ei

E.RMS3
i

(Tucker and Brown, 2005) T6, F6, C6

Mean kurtosis

√∑
i (i−ī)4.Ei

E.RMS4
i

(Tucker and Brown, 2005) T7, F7, C7

Shannon entropy a −
∑
j

p(sj). log2

(
p(sj)

)
(Esmaili et al., 2004; Han et al., 2011) T, F, C 8 to 10 (F8)

aBin numbers for probability estimation: 5, 30, 500

Rényi ’entropy’ b 1
1−α · log2

(∑
j

p(sj)
α
)

(Han et al., 2011) T, F, C11 to 12

(F11, F12, C12

bBin numbers for probability estimation: 30, α = 2 and ∞

Rate of attack maxi
(
s[i]−s[i−1]

n

)
(Tucker and Brown, 2005) T13, F13, C13

Rate of decay mini
(
s[i]−s[i+1]

n

)
(Tucker and Brown, 2005) T14, F14, C14

Threshold crossing rate c #(Threshold Crossing)
n

(Fagerlund, 2007; Huang et al., 2009) T, F, C 15 to 18

(T15, T16)

Silence ratio c #(s where s<threshold)
n

(Mitrovic et al., 2006) T, F, C 19 to 22

(F22, F21, F20)

c Signal maximum normalized to 1 and different threshold values: 0.2, 0.4, 0.6 and 0.8

Mean µ =
∑

i s[i]

n
T23, F23, C23

Max over mean maxi s[i]
µ

T24, F24, C24

Min over mean mini s[i]
µ

T25, F25, C25

Energy measurementsd Energy standard deviation, energy

skewness, energy kurtosis

(Foote, 1997) T, F, C 26 to 28 F28,

T26, F17, F26

d Energy measurements are features computed from the signal energy E(t) = x(t)2 rather than on the signal itself.

2002). Impulsions might also be linked to feeding ac-
tivities according to (Amorim et al., 2004). Drums and
Roars could also be related to courtship behavior (Mann
et al., 2008). Additionally, it is worth noting that the fish
sounds listed in the biology literature are generic: the
four classes identified here are not specific to the data
used in this study (Amorim, 2006). As a consequence,
the architecture we propose to automatically classify fish
sounds can be used for recordings other than those used
in this study.

C. Dataset preprocessing

A dataset of observations is needed to train and test
any classification model, with the dataset construction
here. A labeled dataset is a database of signals in which
each observation has been assigned to its corresponding
semantic class detailed here. For our application, this
meant considering a large number of fish sounds of each
of the four considered classes. To distinguish fish sounds
from uninteresting sounds, we also considered a fifth class
of background noise. Once built, the dataset was used to
train and test the classification model: the model learns
to distinguish and recognize the various classes from the
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Ref. Area Depth Duration

1 Healthy sea-grass meadow -20m 3.5 days

2 Healthy sea-grass meadow -12m 1 day

3
Lower sea-grass meadow / sand

border
-38m 1 day

4 Damaged meadow -12m 1 day

5 Rock -12m 1 day

TABLE II. Description of the area-specific recordings used

in the present study.

(a)

(b)

(c)

(d)

FIG. 1. Description of the four classes, and their correspond-

ing spectrograms.

(a) Impulsions. Length: 2 ms to 20 ms. Presence: < 5/s.

Spectrogram with Gaussian windows on 8192 points.

(b) Drums. Length: 5 s to 20 s. Presence < 5/min. Spectro-

gram with Gaussian windows on 16384 points.

(c) Roars. Length: 10 s to 25 s. Presence: < 2/min. Spec-

trogram with Gaussian windows on 16384 points.

(d) Quacks. Length: 150 ms to 300 ms. Presence: < 5/s.

Spectrogram with Gaussian windows on 8192 points.

observations of the database. This implies that, ideally,
the dataset should contain all of the variability of the
phenomenon under study. As this is physically impos-
sible, the idea was to gather as many observations as
possible, to characterize a given class as completely as
possible. The dataset used to build the model is directly
linked to the model capabilities. Without data covering
a wide spectrum of observations, it is very difficult for
the model to analyze newly recorded data. It is there-

fore necessary to consider a large dataset that covers the
range of the phenomena under study. Further explana-
tions on supervised machine learning are given in Section
I B 1.

For the present study, 913 observations were manu-
ally identified from the underwater recordings by an ex-
pert: 91 Impulsions, 114 Drums, 36 Roars, 205 Quacks,
and 467 Background. We hereafter detail the process.
All of these observations were extracted from continu-
ous labeling of 10 min at the sand / sea-grass inter-
face (Table II, area reference #3). This particular area
was selected because it appeared to host the most varied
recordings. The labeled period was recorded on August
5, 2014, at 10 pm, and was selected as a particularly rich
recording (i.e., gathering many fish sounds). The record-
ings were continuously labeled using a sliding window of
fixed length ∆t = 0.5s and two bandwidths. We chose
to focus our analysis on the frequency ranges of 50 Hz
to 450 Hz, and 400 Hz to 900 Hz, as most of the fish
sounds in the recording were in these frequency bands.
The original recordings were previously down-sampled to
fs = 10400Hz. Each observation therefore had a fixed
length of ∆t = 0.5s, and belonged to one of the two fre-
quency ranges that were analyzed. The use of a sliding
window of fixed size led to some calls being considered
as various observations; e.g., Drums and Roars are long
calls (10-30 s), and were therefore separated into several
consecutive observations. The 0.5s window length was
empirically determined as the minimum duration needed
to distinguish the five classes. This was longer than a
single Impulsion or a single Quack, and shorter than ei-
ther a full Drum or a full Roar call. However, a minimum
of 0.5s is needed to identify a Drum or a Roar as such.
Alternatively, and depending on the data, the continu-
ous analysis proposed in this study can be carried out on
windows of different sizes and in other frequency bands.
Any observation where the class was not clearly identified
by the experts belonged to the Unknown class, and were
disregarded for the learning stage (but not for the test-
ing; see Section IV B). Alternatively, observations that
contained no fish sounds and no unidentified sound were
labeled as Background. The labeling step is illustrated
in Figure 2: each observation of the dataset is a signal of
length 0.5 s and filtered in its bandwidth. They can be
visualized as an extract of the spectrogram.

IV. RESULTS

In this Section, we present the various experiments
that were conducted, along with their goals and results.

Model validation: in which we show the performance
of the model using cross-validation in order to val-
idate the proposed architecture.

Features selection: in which the features influence is
stressed, and where we provide an illustration of
the feature selection process.
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FIG. 2. Illustration of the annotation process. All of the black boxes have the same width, corresponding to 0.5s, and the

same height corresponding to the frequency range (fmax − fmin = 400Hz in this study). An observation is a 0.5s portion of

the recording, filtered between its fmin and fmax. The spectrogram was generated using a sliding Gaussian window of 16384

points.
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Continuous analysis of underwater acoustic recordings:
in which we use the proposed architecture to pro-
cess continuous recordings of underwater acoustic
data. In particular, we use the labeled data
recorded at the lower sea-grass border with the
sand to analyze the data recorded at the same
location but latter (Table II, area Ref3), and the
data recorded with healthy sea-grass (Table II,
area Ref2). The validation process is carried out
for 10 min for each area.

The code used for this study and in this project was
written in Python using the scikit-learn library and run
on a laptop computer.2

A. Model validation

In this first part of the study, the proposed architec-
ture is tested using cross-validation. A total of 913 obser-
vations belonging to five classes are considered: the four
positive classes associated to fish sounds (Impulsions,
Drums, Roars and Quacks), and a generic Background
class. Cross-validation with α = 0.7 is used to deter-
mine the best values for the hyper-parameters of the
learning algorithms, and to validate the model perfor-
mances. When using SVM, the best accuracy of the
data is obtained with a Gaussian radial basis function
kernel of parameter γ = 2−7, and with a cost parame-
ter CSVM = 512. These values are obtained after a grid
search for the optimum values, and then they are kept
constant. The accuracy of the results varies smoothly
through the grid. For RF, the number of trees is fixed to
200, as a compromise between performance and computa-
tion time. The entropy is used as impurity measurement
since it leads to better results than Gini index,

√
d fea-

tures are considered at each node with d the total num-
ber of features, and the trees are not pruned. The overall
accuracy reaches 95.3%±0.76% when using all of the fea-
tures and RF as classifier, and 95.0%±0.88% when using
SVM. These results validate both the architecture and
the features used. Two main conclusions are drawn from
those numbers: first, the overall proposed process to au-
tomatically classify the fish sounds is validated. Second
the learning algorithm has, as was expected, a limited
influence on the results.
B. Features selection

In this second experiment, we study the influence
of the different features. In particular, we show that
the features have a greater impact on the results than
the choice of the learning algorithm. The accuracy
when comparing the influence of the feature sets (Time,
Frequency, Cepstral and All) and the learning algo-
rithms (SVM, RF) are given in Table III. The influ-
ence of the feature sets is of particular interest here.
When comparing the accuracy of the results with Time:
90.1± 2.0%; Frequency: 90.1± 2.7%; and Cepstral fea-
tures: 91.4± 3.0%, it is interesting to note that the fea-
ture set influence is no so important in this case. Those

accuracy values correspond to RF but SVM leads to the
same conclusion: each domain contains enough discrim-
inative content, but combining the three leads to better
performances. This phenomenon would suggest that the
discriminative information needed for the classification
is spread in the various domains. Once again, numbers
show that results are steady regarding the learning algo-
rithm that is used.

We therefore study the feature selection issue, and
as explained in Section II, we use RF features weight
to select the most important features. More specifically,
Figure 3 (b) shows the individual importance of the fea-
tures and Figure 3 (a) displays the mean evolution accu-
racy when the dimension d of the feature vector increases:
from the most important feature, to the two most impor-
tant, and so on. Analysis of the features weights leads
us to build two subsets of features of decreasing impor-
tance: the most valuable features (MVF) (Figure 3,
red dots) and the valuable features (VF) (Figure 3,
blue dots). The MVF and VF are selected as the min-
imum features subsets leading to stable results: using
more features does not significantly increase the perfor-
mance of the classification system. The accuracy when
using MVF and VF are also reported in Table III. The MVF
contains only three features: the energy kurtosis com-
puted from the spectrum (F28), the mean kurtosis com-
puted from the waveform (T7), and the threshold crossing
rate also computed from the waveform (T15). Consider-
ing the mean accuracy over the five classes when using
the MVF, it reaches 91.5% and 91.3% for RF and SVM,
respectively. This result is essential for real-time applica-
tions and embedded systems with limited computational
costs and storage capabilities. If we consider the 19 first
features with VF (including features from MVF), the global
accuracy reaches 95.6% and 94.7% for RF and SVM, re-
spectively. Similar numbers are obtained when using the
feature set All. This result shows that all of the features
are actually not needed to obtain good classification re-
sults, and it also reflects on correlations between some of
the features. Furthermore, it is worth noting that fea-
tures of VF contain descriptors computed on the signals
represented in the time, frequency, and cepstral domains,
encouraging to consider several representations of each
observation.

The impact of the most important features on the
class by class accuracy is also particularly relevant and
is reported in Table IV. In particular, it reveals that
valuable features are not equally important depending
on the considered class. The second most important fea-
ture for example (T7, mean kurtosis computed from the
time domain) has a great impact on Background, Drums
and Roars, has no effect on Impulse, but is detrimen-
tal to Quacks since their accuracy drops from 59.3% to
57.8% when using a second feature to represent the ob-
servations.
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TABLE III. General Results for the Automatic Classification

of Fish Sounds. Accuracy results are compared depending

on (i) the feature set used (time, frequency, cepstral, all or

MFCC) and (ii) the learning algorithm (RF or SVM). Subsets

of the most important features are also considered: MVF and

VF. Learning rate α = 0.7.

Feature set Dimension d
Accuracy

RF SVM

All 84 96.9± 2.0% 96.5± 1.6%

Time 28 90.1± 2.0% 91.2± 1.8%

Frequency 28 91.1± 2.7% 90.7± 3.1%

Cepstral 28 91.4± 3.0% 90.8± 2.7%

MVFa 3 91.5± 0.85% 91.3± 0.82%

VFb 19 95.6± 0.79% 94.7± 0.82%

MFCC 26 72.5± 3.3% 70.0± 6.0%

a with MVF for Most Valuable Features
b with VF for Valuable Features

TABLE IV. Class by class accuracy for feature vectors made

of the 1st to 5th most important features, according to Ran-

dom Forest features weights. Features are designated by their

references, as specified in Table I.

Accuracy (%)

Background 72.1 76.0 77.2 78.6 84.2

Impulse 63.5 63.8 67.3 68.5 72.0

Drums 62.8 91.1 91.7 91.8 93.8

Quacks 59.3 57.8 58.2 61.3 65.8

Roars 67.9 92.9 94.3 93.5 95.0

New feature ref. F28 T7 T15 F11 F1

C. Continuous analysis of underwater acoustic recordings

Finally, this section reports on the use of our pro-
posed method to automatically analyze continuous un-
derwater recordings. More particularly, we train a model
on the dataset presented in Section III C that contains
91 Impulsions, 114 Drums, 36 Roars, 205 Quacks and
467 Background observations. These observations are ex-
tracted from a continuous labeling of 10 min of recording
on August 5, 2014, at 10 pm. The model is trained with
SVM and the All features. The model is then used in an
applicative context to analyze continuous recordings in
two different configurations. The first one tests the model
performance on continuous recordings: the test signals
were recorded on August 5, 2014, between 10:27 pm and
10:37 pm, that is half an hour after the acquisitions used
for training the model. The two data sets (i.e., the one
used for training and the one for test) were recorded on
the same area. The second test configuration considers a
set of recordings that was randomly selected among the

FIG. 3. Evolution of (a) mean accuracy when using feature

vectors of increasing dimension d. Features individual weights

are shown in (b). Features are references as indicated in Ta-

ble I with T for Time, F for Frequency and C for Cepstral

domain. For instance, F28 refers to the energy kurtosis com-

puted from the spectral domain, T7 to the mean kurtosis com-

puted from the time domain, and T15 to the threshold cross-

ing rate (t = 0.2) computed from the time domain. In red,

the Most Valuable Features (MVF), in blue the Valuable Fea-

tures (VF) and in black the regular features (RF). The valuable

features are highlighted in bold font in Table I.

other recording areas. These were registered in Area Ref
#2 given in Table II (sea grass at 22 m in depth, com-
pared to sea grass/sand interface at a depth of 38 m, for
the learning observations) on August 6, 2014, at 11 pm.
In both configurations, the recordings are continuously
processed in the two bandwidths on which this study is
focused (i.e., 50-450 Hz and 500-900 Hz), with a sliding
window of duration 0.5 s. To reduce the computational
burden in both the training and validation processes, no
overlap is considered between consecutive windows. The
threshold value is empirically fixed to 0.8 ∈ [0, 1]. Clas-
sification results are presented in Tables V and VI.
In this configuration, class by class accuracy and preci-
sion results are presented, in order to better explicit the
false alarm rates. The first configuration was decided to
test the model on continuous signals that were recorded
at a different time than the learning observations, in or-
der to avoid similarities between the signals. The con-
fusion matrix of this test is presented in Table V and
several conclusions can be drawn. First, very few errors
are noticed. Regarding Drums, 133 observations are cor-
rectly detected, and two mislabeled in the Background
class. Similarly, 208 Impulsions are correctly detected,
two observations are confused for Background and one
for Drums. Comparable results are obtained for Quacks
and Roars, with 245 and 58 correct detections for no
and two errors, respectively. The associated accuracy is
therefore extremely high going up to 95.7% The study
of the Unknown observations is also particularly relevant
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since we observe 743 observations for which the model
does not reach any decisions. Among those, 624 are also
not identified by experts, either because the observation
is too noisy to be identified, or because it contains more
than one class, or because the sound does not match any
of the four positive classes. Between 11 (Impulsions)
and 39 (Background) observations per class should have
been attributed to a class, suggesting that the probabil-
ity threshold could be decreased, and adjusted to each
class. Precision results also lead to particularly valuable
information, since they are systematically above 97% for
the four fish sound classes: the false alarm rate is ex-
tremely low, which clearly validates the use of the model
in real conditions. Results from the experiment are par-
ticularly conclusive since the overall high performance
and the precision prove the interest of such tools for an-
alyzing continuous data.
The second set of observations are considered to ana-
lyze the model generalization capacities since the model
is tested on recordings from a different underwater area.
Results of this experiment are presented in the confu-
sion matrix in Table VI and very similar conclusions can
be drawn from the detected observations. Almost all de-
tected observations are correctly assigned to their classes.
Depending on the class, a maximum of 25 errors out
of 885 correct detections are found for the Background
class, and regarding positive classes, 6 errors for 46 detec-
tions and 4 errors for 25 detections are made respectively
for Impulsions and Drums. It is also interesting that no
Roars are detected, which is confirmed by the analysis
done by experts. Very good detection results are there-
fore achieved, even when the model is tested in a different
area compared to the learning observations. It is relevant
to notice that in this case, the number of rejected ob-
servations (Unknown class) is greater: 1024 compared to
743 in the previous configuration. Out of those observa-
tions, 651 are also rejected by the experts, but the others
are missed by the model. Generally speaking, accuracy
and precision rates are lower than when the training and
testing recording places are similar, but still relatively
high. A conclusion on those results is the need to lower
the threshold in this configuration: when the learning
and testing areas are different, test observations are less
likely to be similar to the ones used in the training, and
the probabilistic outputs of the model are therefore lower
than in the previous configuration. Those results recom-
mend the use of such a method for the continuous and
real-time analysis of underwater recordings. In partic-
ular, large datasets can be automatically analyzed and
conclusions can be drawn regarding the fish populations,
their evolution in time, and their movement from one
area to another.
As for the computation times, each set of recordings (i.e.,
duration of ten minutes) was analyzed in about 4 min
on a laptop computer, thereby validating the use of this
method for real-time applications. As a reminder, all
features were used for this analysis, and thus the compu-

TABLE V. The five considered classes are Background (B),

Roars (R), Drums (D), Quacks (Q) and Impulses (I). A sixth

class for rejected observations is considered and referred as

Unknown (U). The average accuracy reaches: 93.4%. Test-

ing observations recorded at a different time than learning

observations.

True Class (ground truth) Precision

B D I Q R U

B 969 2 2 2 23 97.1%

D 133 1 2 97.8%

Predicted I 208 100%

Class Q 5 245 2 97.2%

R 58 1 98.3%

U 39 16 11 40 13 624 84.0%

Accuracy 95.7% 88.1% 93.7% 86.0% 79.5% 95.7%

TABLE VI. The five considered classes are Background (B),

Roars (R), Drums (D), Quacks (Q) and Impulses (I). A sixth

class for rejected observations is considered and referred as

Unknown (U). The average accuracy reaches: 80.9%. Test-

ing observations recorded at a different time and place than

learning observations.

True Class (ground truth) Precision

B D I Q R U

B 885 6 4 21 96.6%

D 3 40 8 78.4%

Predicted I 16 21 56.8%

Class Q 6 256 97.7%

R

U 207 24 15 127 651 63.6%

Accuracy 79.2% 57.1% 52.5% 66.8% 95.7%

tation times could be decreased if only selected features
are used.
V. DISCUSSION

We discuss here several issues around the fish sounds
classification system and its limitations.

In particular, it is relevant to discuss the limitations
of the propose approach in order to better evaluate the
proposed results. The current main limitation of the
method is the use of a fixed window for the analysis:
some observations contain more than one class. Typi-
cally, Quacks and Impulsions can sometimes be found
within the same window. The model then recognizes
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properties of both classes and output probabilities are
split between the main classes. However, both are of-
ten lower than the threshold that was fixed, leading to
their rejection in terms of classification. To overcome
this limitation, the study could be carried out on tem-
poral windows of various length: smaller windows would
be less likely to contain more than one class. The use
of a sliding window also prevents temporal coherence in
the model; e.g., for call counting operations, a temporal
regularization would help to identify complete calls from
several detected observations. This is particularly rele-
vant for the long calls, such as Roars and Drums, which
are detected as a succession of windows including the
same class. To address this limitation, the use of hidden
Markov models is currently under consideration, since
they are effective in implementing a temporal regulariza-
tion of the classification results.
Another limitation of the current system for the analysis
of continuous recordings is the need to use a threshold.
If a threshold is not used, all of the windows are classi-
fied between the four positive classes and Background.
However, according to the interpretation done by ex-
perts, some of the windows are ‘Unknown’: if the fish
are far away and the effects of the propagation are non-
negligible, if different classes occur in the same window
(sometimes up to three), or if the sound does not fit in
any of the classes (unknown sounds), it is not possible for
the experts to classify these observations. It is therefore
necessary to threshold the output prediction probabilities
to reject such observations. The thresholding operation,
however, raises the issue of the threshold choice: if it is
too high, only well-defined observations will be detected,
and many will be missed; if it is too low, many obser-
vations that are Unknown for the experts will be forced
into a class. Ideally, a different threshold should be de-
cided upon for each class. A promising development of
the existing model would be to perform an analysis of the
‘Unknown’ observations in order to detect new classes of
sounds. For example, classes related to anthrophony or
geophony can be considered, and we can in particular
think of boat, rain, or thunder sounds. The use of an
unsupervised approach might also be envisaged, as the
main limitation of supervised learning is the need for a
labeled dataset. In many cases, including in this study,
the technical difficulty to label the data is real and highly
time consuming if done manually, which is a limiting fac-
tor. Unsupervised learning might also be interesting for
a study of the observation variability within a consid-
ered class: as explained in Section III B, some classes
have intra-class specifies that will be related to species or
the identification of an individual; e.g., Drums are emit-
ted with various pulse frequencies, while Impulsions are
emitted across a heterogeneous frequency range.

A. Comparison to the state of the art

As the state of the art in automatic classification
of fish sounds is relatively limited, we compare the pro-
posed method in terms of features to the use of MFCCs

as descriptors. As explained in Section I B, MFCCs were
originally designed for speech processing purposes, but
have since been used in many applications related to au-
tomatic classification of transient signals. Comparing
MFCCs to the All features, we obtain accuracies when
using MFCCs of 72.5 ± 3.3% for RF and 70.0 ± 6.0% for
SVM, while the All features reach 95.3% for RF and
95.0% for SVM. The feature set we propose for this ap-
plication thus leads to more accurate results, and is ac-
tually significantly better adjusted. Indeed, MFCCs were
originally developed to represent speech data, which are
particularly different from the data used in the present
study, in terms of their frequency range, shape, and other
details. We thereby stress that the features proposed
here are generic, and can also be used to represent more
general transient signals. The same conclusion can be
drawn when comparing the MFCCs with the Cepstral fea-
tures, where the accuracy reaches 91.4±3.0% for RF and
90.8 pm2.7% for SVM. The comparison between these
two feature sets stands as they both describe the Cep-
stral domain. However, the feature set we propose here
performs better than the MFCCs, once again stressing the
importance of the feature choice and validating the pro-
posed features. One reason for this might be that the
MFCC is an ordinate representation, while the Cepstral
feature set is not. All of the data related to the use of
MFCCs features are presented in Table III, and all 26 MFCC
coefficients were considered in this study.
VI. CONCLUSION AND PROSPECTS

This study addressed the monitoring of fish popula-
tions by focusing on their emitted sounds since they can
be associated to their activities. Specifically, this study
aimed at building a supervised automatic fish sound clas-
sifier. The proposed classification system exceeds 95% of
correct classification rate for five different classes (four
fish sounds and background noise). The key points of the
proposed architecture are: (i) the comprehensive set of
features that was defined for describing the acquired sig-
nals; (ii) the feature extraction process, which proposes
to extract features from three different representations
of observations (time, spectral, cepstral); and (iii) the
uniqueness of the labeled dataset presented. The method
we propose is also used to process continuous recordings
with excellent results. Such tools can therefore be used
to analyze large datasets and perform real-time analy-
sis of underwater recordings. The consequences for the
monitoring of such areas are particularly significant.

The currently ongoing prospects of this study in-
clude the analysis of several days of recordings to draw
conclusions regarding the fish populations present in the
monitored area. This analysis will be conducted using
the proposed system. For the technique of the method
and its improvement, the use of a more comprehensive
dataset that includes geophonic and anthrophonic events,
for instance, is under consideration. The use of unsuper-
vised methods to analyze the observations rejected by
the system (e.g., Unknown class) is also under investiga-
tion. Finally, the use of a hidden Markov model is under
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consideration, to exploit the temporal coherence of the
recordings and to deal with fish calls of various lengths.
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