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ABSTRACT
We introduce BIGFile, a new fast file retrieval technique based
on the Bayesian Information Gain framework. BIGFile pro-
vides interface shortcuts to assist the user in navigating to a
desired target (file or folder). BIGFile’s split interface com-
bines a traditional list view with an adaptive area that displays
shortcuts to the set of file paths estimated by our computa-
tionally efficient algorithm. Users can navigate the list as
usual, or select any part of the paths in the adaptive area. A
pilot study of 15 users informed the design of BIGFile, reveal-
ing the size and structure of their file systems and their file
retrieval practices. Our simulations show that BIGFile outper-
forms Fitchett et al.’s AccessRank, a best-of-breed prediction
algorithm. We conducted an experiment to compare BIGFile
with ARFile (AccessRank instantiated in a split interface) and
with a Finder-like list view as baseline. BIGFile was by far
the most efficient technique (up to 44% faster than ARFile
and 64% faster than Finder), and participants unanimously
preferred the split interfaces to the Finder.
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INTRODUCTION
Navigating through a file hierarchy is one of the most common
methods for accessing files. Previous studies [1, 3, 6, 15] have
shown users’ continued preference for hierarchy-based file
navigation over alternative methods, such as search. One of the
most important reasons is that the locations and mechanisms
of navigation-based retrieval remain consistent and reliable,
whereas the organization and content of search results, which
are extracted without context, can vary from one retrieval to
the next, resulting in extra cognitive effort [3, 15, 30].
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In addition to using search to potentially improve file access,
e.g. [8], researchers have tried to tackle this problem by look-
ing at different aspects of file retrieval: how users organize
personal information [5] and how visualization [27] and pre-
diction algorithms [10, 14, 31] can improve efficiency. Fitch-
ett & Cockburn introduced AccessRank [14], an algorithm to
predict what users are going to look for next, and demonstrated
using three real datasets that it outperforms other prediction
algorithms such as MRU (Most Recently Used) and Markov
chain models [34]. Fitchett et al. [16, 17] later embedded
AccessRank into three different navigation-based file retrieval
interfaces. Their controlled experiment [16] showed the effec-
tiveness of these interfaces in comparison to the Mac’s Finder
on a three-level file system hierarchy. In the present work
we replicate their core study methodology and extend it to a
six-level hierarchy in order to compare AccessRank to the new
algorithm that we introduce below.

Liu et al. [32] recently introduced Bayesian Information Gain
(BIG), an information-theoretic framework where the com-
puter attempts to maximize the information gained from each
user input by generating views that challenge the user, lead-
ing to more efficient identification of the intended target. Liu
et al. [32] applied BIG to multiscale navigation and showed
that the resulting technique, called BIGnav, was much more
efficient than standard pan and zoom. However, users felt that
they lost some control since they could not easily predict the
next view generated by the system in response to their input.

In this paper, we introduce BIGFile, a fast file retrieval tech-
nique based on the BIG framework where the computer tries
to gain information from the user to determine which file or
folder she is looking for. Unlike BIGnav, BIGFile features a
split adaptive interface that combines a traditional file naviga-
tion interface with an adaptive part that displays the shortcuts
selected by BIG. Previous studies have demonstrated that split
adaptive interfaces can improve both performance and satis-
faction compared to static designs [11, 12, 19]. The adaptive
shortcuts are calculated by our computationally efficient algo-
rithm BIGFileFast. BIGFileFast improves over the original
BIG algorithm by working efficiently with a large and evolving
hierarchical structure at run time.

We begin with a review of related work, and then describe
BIGFile’s interface and its underlying algorithm: the optimal
algorithm BIGFileOpt and the computationally efficient algo-
rithm BIGFileFast. After describing a pilot study of the actual
file structures of real users and their file navigation practices,
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we report on two studies: a set of simulations that compare
BIGFileFast with AccessRank (Study 1), and an experiment
that compares BIGFile with ARFile, a split file interface using
AccessRank for prediction, with the Finder as baseline (Study
2). Finally, we discuss the limitations of this work and how
BIGFileFast can be applied to other hierarchical structures.

RELATED WORK
We discuss related work on personal file systems, file retrieval
techniques, and adaptive user interfaces.

Personal File Systems
Prior studies have investigated how people manage and re-
trieve information from their personal file systems. Users have
thousands of files and folders in their file systems (Goncalves
& Jorge [21] found 8000 on average and Henderson & Srini-
vasan [26] 5850). They create hierarchical structures that
reflect their activities, as reported by Bergman [2, 3, 4, 5],
Henderson [24, 25, 26] and Jones [28]. Although users tend
to have different habits for building these structures (e.g. Filer
vs. Piler [39]), Bergman and Henderson [4, 26] found that
users’ file hierarchies tend to be shallow (mean retrieval depth
of 2.86 folders), with small folders (a mean of 11.82 files per
folder) containing many subfolders (mean = 10.64). Based on
this data, Fitchett et al. [16] used a three-level hierarchy in
their experiment. Our pilot study, reported below, investigates
current file system structures and user practices.

Regarding file retrieval, both Bergman [3] and Fitchett [15]
found strong preferences for navigation-based retrieval, re-
gardless of the substantial improvements in search tools. This
might be because navigation-based retrieval requires less cog-
nitive effort. Bergman [5] also found a difference in retrieval
time between Windows and MacOS users (17.3 seconds on
Windows vs. 12.6 on MacOS on average). Furthermore, as
with command usage [22] and email messages [9], Fitch-
ett [15] also found that the frequencies of file retrievals can
be approximated by Zipf’s Law [40], suggesting that people’s
patterns of file retrieval are strongly repetitive, with a small
number of frequently revisited files, and a large number of
infrequently visited ones. Based on this finding, BIGFile in-
corporates usage history information to improve its accuracy.

Enhanced File Retrieval Techniques
Researchers have explored how to use search, visualization
and prediction to enhance file retrieval. Search is an essential
tool for file retrieval as it provides direct access to the folders
or files that are associated with the search keyword [3, 8].

Visualization techniques such as tree maps [27] and hyperbolic
trees [29] have been introduced to depict hierarchical struc-
tures. However, this type of technique has not been widely
adopted for file systems. Fitchett & Cockburn [14] introduced
a prediction algorithm called AccessRank that blends Markov
chains [34], combined recency and frequency [31] and time
weighting to predict what users will do next. This algorithm
was used to create three augmented navigation-based file re-
trieval techniques [16]: Icon Highlights, where the predicted
items are highlighted to provide visual aids and reduce visual
search time; Hover Menus where the predicted folder content

is presented as shortcuts when hovering over an item; and
Search Directed Navigation where predictive highlighting is
provided to guide users through the hierarchy in response to
query terms. While all three interfaces were more efficient
than the baseline Finder, Hover Menus was the least preferred
by the participants, and was removed from the field evalua-
tion [17]. BIGFile builds on this work and is closest to Hover
Menus, which provides shortcuts to reduce the number of lev-
els to traverse. However BIGFile uses a different prediction
algorithm and a split adaptive interface.

Adaptive User Interfaces
Adaptive user interfaces (AUIs) are a class of interfaces that
adapt the presentation of functionality automatically, in re-
sponse to individual user behavior or context. Research results
on adaptive user interfaces are mixed: AUIs can lead to better
user performance and satisfaction [13, 20, 36], but can also
lead to the user being confused and feeling a loss of control
over the interface [10, 19, 35].

Split interfaces, which are based on Split Menus [37], are a
type of AUI that are particularly effective [11, 12, 19]. A split
interface typically has two parts: a static part that represents
the “status quo” original interface, and an adaptive part that
augments the static part. The adaptive part changes its con-
tents based on what the system believes the user needs. Users
have the choice between interacting with the static part or
the adaptive part. Thus, the learnability of the original inter-
face is not hindered, and user performance can be enhanced
if users take advantage of the adaptive part. Most split in-
terfaces to date have been designed for menu selection [13],
but other interface elements have also been split, such as the
toolbar [19], emails [7], and relevant documents on Google
Drive [38]. BIGFile introduces split interfaces for hierarchical
file systems.

BIGFile INTERFACE
BIGFile improves navigation-based file retrieval efficiency by
providing shortcuts that can reduce the number of steps (user
inputs) to reach the target file or folder: the user can skip levels
in the hierarchy by selecting one of the shortcuts. We first
present the BIGFile interface before describing the algorithm
that determines the shortcuts.

BIGFile features a split adaptive interface (Fig. 1): the short-
cuts are presented in the adaptive area at the top, while the
static area at the bottom is a traditional list view of the current
folder. The shortcuts in the adaptive area are the paths to the
items selected by the BIGFile algorithm, relative to the current
folder. Displaying the relative paths, rather than just the items,
offers users contextual information that helps them determine
if they correspond to the target they are looking for. It also lets
users navigate directly to any folder in the path by clicking on
it, typically when the target is not in the shortcuts, but a partial
path to it is. Finally a back button (visible in Fig. 5) lets users
go back to the previous state of the interface.

Both the shortcuts in the adaptive area and the items in the
static area are updated after each user input. Similar to many
other split adaptive interfaces [10, 37], if the system correctly
estimates the user’s target item, the user can select the shortcut,



Figure 1. The BIGFile interface as the user navigates to “Dog” in a file
retrieval task. (a) and (c) show the adaptive part with two shortcuts,
(b) and (d) the static part. In Step 1, the shortcuts do not help and the
user selects “Animals” in the static part, leading to Step 2 where the user
directly selects “Dog” in the first shortcut, saving one step.

or navigate the hierarchy using the static part as usual. If none
of the system’s estimates are correct, the impact for the user is
minimal since the items remain at their usual locations in the
static part of the interface.

For example, in Fig. 1 (left), “Islands” and “Cheese” are the
estimated items, presented along with their paths in the desig-
nated adaptive area (a). The static area (b) presents the usual
hierarchy. A user could, for example, click on “Dairy” to
access dairy products other than “Cheese” inside the folder
(not shown in the figure). If the user clicks on “Animals”, the
static area is updated, showing the items inside the “Animals”
folder (Fig. 1.d). The adaptive area is also updated with a new
set of estimated targets (“Dog” and “Salmon”, Fig. 1.c). If
the user is looking for the item “Dog”, she can save one step
(“Mammals”) by clicking the shortcut in the adaptive area.
The number of shortcuts is user-customizable.

We created and considered a number of alternative designs for
the interface, including an integrated view where each shortcut
is displayed, together with its path, next to the corresponding
root folder in the list view. However, we found that this inte-
grated view makes it difficult to display shortcuts of arbitrary
depth. Moreover, scrolling the view often hides shortcuts,
which partially defeats their purpose. In addition, this design
only works for the list view, while the split interface can work
with any of the traditional views in the static area, e.g. the icon
and column views of the Mac OS Finder. Therefore, we chose
what seemed to be the simplest and most obvious option for
our first implementation and comparison.

Note that the split interface design is not specific to BIGFile
and can be used with any algorithm that predicts potential tar-
gets. For example, we used it with the AccessRank algorithm
in Study two, described below.

BIGFile ALGORITHM
We briefly review the Bayesian Information Gain (BIG) frame-
work [32] and introduce an optimal algorithm for BIGFile,
BIGFileOpt. Since its computational cost is too high, we then
present BIGFileFast, a suboptimal but very efficient version,
which is used in the rest of the paper. The code for both algo-
rithms is available at https://github.com/wanyuliu/BIGFile.

Bayesian Information Gain Framework
The Bayesian Information Gain (BIG) framework provides a
quantifiable measure of the information transmitted by the user
to the computer to let the computer know what the user wants.
Let us assume that the user wants to select a target among a
set of potential targets Θ. Each potential target θ is associ-
ated with a probability P(Θ = θ) representing the computer’s
knowledge about the user’s goal. When the system presents a
view X to the user, e.g. a set of targets, and receives an input Y
from the user, e.g. whether or not the target is in the view, the
system gains information about which target is or is not the
real target. It can then update its knowledge accordingly, by
adjusting the probability of each potential target. This adjust-
ment requires a user behavior function P(Y = y∣Θ = θ ,X = x),
representing the likelihood that the user would give a certain
input Y = y when given a view X = x and looking for the target
Θ = θ . In order to maximize the information that the system
expects to gain at each step, the system selects a view X = x
such that, according to its current knowledge, the different
possible user inputs are equiprobable. In information-theoretic
terms, equiprobable choices maximize entropy, and therefore
information gain. A detailed description can be found in [32].

BIGFileOpt: Optimal Algorithm
In order to apply the Bayesian Information Gain framework
to file retrieval, we consider a regular hierarchical file system.
Without loss of generality, we consider a single window, with
a current folder F . We define the following:

● Θ represents all the folders and files that a user might be
interested in. Θ may include all the files and folders in the
file system, but is more likely to be narrowed to a subset
based on user preference or the task at hand. For example, it
can be reduced to a subset of the user’s home folder and/or
to a category of files such as documents of a certain type. In
the simulations and the experiment, we used only the files
as potential targets and excluded the folders.

● For each potential target Θ = θ , the initial probability, at the
beginning of a retrieval task, that it is the actual intended
target is P(Θ = θ). This probability distribution is calcu-
lated using the Combined Recency and Frequency (CRF)
algorithm1 [31] and is updated after each retrieval of a target
by the user, to reflect interaction history. At each step of the
retrieval task, i.e. after each user input, P(Θ = θ) is updated
using Bayes’ rule, as described in Algorithm 1.

● X represents the view generated by the system when first
opening a window and after receiving each user input in that
window. This view is composed of the static part S, which
shows the folders and files of the current folder F , and the
adaptive part A, which shows the N folders and files that
are produced by the BIGFile algorithm to serve as shortcuts
at this step. A view X = x is therefore represented by S⋃A.
The number of shortcuts N is user customizable.

1 CRF defines the weight of item f as w f =∑m
i=1

1
p

λ(t−ti) where m
is the number of past accesses, t the current time and ti the time
of access i. p and λ are parameters; we use {p = 2,λ = 0.1}. The
probability that a file θ is the target is calculated by normalizing its
weight: P(Θ = θ) = wθ /∑w f
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Algorithm 1: BIGFileOpt
Search the optimal set of N shortcuts.
Data: Θ,X ,Y,P(Y = y∣Θ = θ ,X = x),IGmax = 0
Result: Return set A that, together with set S, has the

maximal expected information gain (IG).
1 Receive user input Y = y
2 Update the probability distribution of Θ (Bayes rule):

P(Θ = θ ∣X = x,Y = y) = P(Y=y∣Θ=θ ,X=x)P(Θ=θ)

P(Y=y∣X=x)
3 for all the combinations A of N nodes that are below the

current folder F in the hierarchy do
4 Compute IG(S⋃A) = I(Θ;Y ∣X(S⋃A))

=H(Θ)−H(Θ∣X(S⋃A),Y)
// I is mutual information and H is entropy

5 if IG(S⋃A) > IGmax then
6 IGmax = IG(S⋃A)
7 Amax = A

8 return Amax

● Y represents any user input. At each step, the user issues
an input Y = y to the system: The user can select any of
the items in the static and adaptive parts, or go back to the
previous view with the back button in case of an error.

● P(Y = y∣Θ = θ ,X = x) represents prior knowledge about user
behavior: given view x and target θ , what is the probability
that user input is y at this step. For simplicity, one can
assume that the user does not make mistakes and therefore
that this probability is 1 if the user is issuing the correct
input, 0 otherwise. Alternatively, one can use a calibration
session, as in [32]. Note that since the user may select items
that are not in Θ during the steps that lead to a selection,
user behavior must be known for any item in the file system.

At each step, i.e. after each user input, the static part S of the
interface is updated if the current folder has changed, i.e. if
the user has clicked on a folder to navigate to it. Then the
adaptive part A of the interface is updated to display the N
items selected by the BIGFile algorithm.

Algorithm 1 presents BIGFileOpt, an optimal algorithm that
finds the N items that, together with S, maximize the ex-
pected information gain from the user’s next input. This slight
modification of the original Bayesian Information Gain algo-
rithm [32] lets us calculate an optimal view S⋃A. However,
considering the sizes of typical personal file systems, this algo-
rithm is not practical: the number of sets to test grows like f N ,
where f is the number of files and folders and N the number
of items in the adaptive part. We now present a suboptimal but
computationally efficient algorithm to address this problem.

BIGFileFast: Efficient Algorithm
We take advantage of the hierarchical structure of the file
system to select a set A′ of targets that, together with S, has
one of the highest, if not the highest, expected information
gain. At each step, BIGFileFast creates a tree whose leaves
are the n targets (n > N) with highest probability as follows:
First, the tree contains the n targets and their parent nodes
up to the root (Fig. 2b); Then BIGFileFast compresses this

Algorithm 2: BIGFileFast
Efficiently search a suboptimal set of shortcuts.
Result: Return set A that, together with set S, has a

suboptimal maximal expected information gain.
// Create the compressed tree

1 Create the minimal subtree of the current folder F that
contains the n most probable targets

2 for each element t of the tree do
3 if t is the only child of its parent then
4 Replace the parent by t and remove the parent

// Search this simplified tree
5 Create A, a set of N nodes such that no node is in the

subtree of another node
6 IGmax = IG(S⋃A)
7 while there are more sets to explore do
8 if Node ai ∈ A has a child a′i not yet explored then
9 A′ = A−ai+a′i

10 Compute IG′(S⋃A′)
11 if IG(S⋃A) > IG′(S⋃A′) then
12 Skip the subtree rooted at a′i

else
13 IG(S⋃A) = IG′(S⋃A′)
14 A = A′

else
15 A = A−ai+ the root of the next branch
16 Compute IG(S⋃A)
17 if IG(S⋃A) > IGmax then
18 IGmax = IG(S⋃A)
19 Amax = A

20 return Amax

tree by replacing nodes that have a single child with that child
(Fig. 2c). This much smaller tree vastly reduces the number of
sets of N targets to try. For N =4, we found that n=6 gave good
results; n = 10 gave slightly better results, but was too slow for
large hierarchies. Note that since the set is recomputed after
each user input, it adapts dynamically to the user’s navigation.

We further optimize the search as follows: Consider a can-
didate set A = a0,a1, ...aN and an item ai of A with a child
a′i . Let A′ be the set where ai is replaced by its child a′i :
A1 = a0,a1, ...,ai−1,a′i ,ai+1, ...,aN . If the expected information
gain for the set A′ is lower than that of A, then we do not
consider any set with an item in the subtree of a′i , effectively
pruning that subtree. Fig. 2 and Algorithm 2 describe the
implementation of BIGFileFast used in the simulations and
the experiment reported in the rest of the paper.

BIGFileFast dramatically reduces search time, making it real
time, and selects sets of targets with near-optimal expected
information gain. We ran simulations comparing it to BIG-
FileOpt and found that, for example, for 1000 targets and a
12-level hierarchy, BIGFileOpt takes roughly three minutes
while BIGFileFast responds in interactive time. Also, on aver-
age, the expected information gain of BIGFileFast was 84.7%
that of BIGFileOpt.



Figure 2. BIGFileFast with a binary tree: (a) Find the n = 5 most probable targets (red nodes); (b) Find their parents up to the root (dark blue nodes)
and prune all the non-parent nodes (light blue nodes); (c) recursively replace the parent of a node by its child if it is the only child; (d) if the expected
information gain of (A,B) is greater than that of (A,C), prune branch C and move directly to the next branch (A,D), skipping E and F.

PILOT STUDY
We conducted a pilot study to capture real users’ file structures
and understand their file navigation practices, informing our
simulations (Study 1) and experiment (Study 2). We wanted
to see if and how the structures and practices reported in the
literature [4, 26] have changed. We recruited 15 participants
from our institution, including faculty members, post-docs and
students, all in technical areas. 13 were MacOS users, 2 were
Windows users. We wanted to know the depth and breadth of
their file systems, their navigation strategies, their preferred
view for retrieving files, and the problems they run into.

Participants filled out a questionnaire, ran a script to get sum-
mary data of their file structures on their primary computer,
and then reflected on their own file retrieval behavior. To run
the script, participants identified the folder or folders that con-
tain(s) the files that they navigate routinely with the Finder or
File Explorer, such as the Documents and Desktop folders, but
not the Music folder. The script counts the number of files and
folders and returns a table with the file structure information
and a graph visualizing the hierarchy (Fig. 3).

File Structures. Our findings differ somewhat from previous
studies that found that people’s file hierarchies tend to be
shallow and broad (small depth and large branching factor),
and have small and well defined folders [4, 26]. We found
the average depth to be 7.7 (min = 5,max = 10,σ = 1.18), and
interviews with participants confirmed that they do regularly
navigate to deeper levels to access a file or folder. The average
branching factor was 5.62 (min = 2.8,max = 10.7,σ = 1.95)
and the average folder size 8.2 (min = 3.8,max = 14.6,σ =
3.37), which are relatively smaller than the findings in [4, 26],
which found an average branching factor of 10 and an average
folder size of 11. We also found that, in general, relatively
fewer folders and files are nested at deep levels, suggesting
that people do not build extremely complex file structures.

Figure 3. Visualization of P12’s Documents folder, a 5-level tree. Each
folder is represented by four bars: number of subfolders (branching fac-
tor) in red; number of files (folder size) in dark blue; total number of
folders in subtree in pink; total number of files in subtree in pale blue.

Navigation Strategy. Ten participants reported that they first
use Finder (or equivalent file navigator) to locate a file. Five
reported using Spotlight (or equivalent search tool) first. This
supports previous studies [3, 17] reporting that people usually
navigate the hierarchical structure to locate a folder or a file,
and use search as a “last resort” if navigation does not work.

Most-used View. Six participants preferred List view, four
preferred Column view, three preferred both List view and
Column view and regularly switch between them. Only two
participants preferred Icon view, although many participants
mentioned that they use Icon view to preview images.

Navigation Difficulty. Participants reported two main chal-
lenges when retrieving a file: (1) files/folders with repeated
names, and (2) having partial knowledge about the location
or the name of the target. This echoes previous studies [26,
33] reporting that people face retrieval difficulties stemming
from semantic ambiguity. Hence, contextual information is
crucial for a successful file retrieval. We used the findings
from this pilot study to inform the designs of the simulations
and experiment described next.

STUDY 1: SIMULATIONS
We ran simulations to investigate BIGFileFast’s performance
in estimating the target in a given hierarchical structure. We
wanted to know how well the algorithm performs with respect
to the following factors:

1. Depth and width: Both previous studies [21, 26] and our
pilot study show that users have different file structures.
Combining the results from [21, 26] and our pilot study, we
used DEPTH = {4,6,8,10,12} and BRANCHING FACTOR
= {2,4,6,8} for the simulations.

2. Initial distribution: We did not log participants’ use of their
file system in our pilot study, but previous work indicates
that file system use approximately follows a Zipf distribu-
tion [15]. To simulate different types of use history, we used
two DISTRIBUTIONs: Z(s = 1) and Z(s = 2). The latter is
a more skewed distribution describing cases where users
focus primarily on a small set of targets.

3. Size of target set: Both [21, 26] and our pilot study suggest
that users have different numbers of files and folders in their
file system. Therefore, we used different target set sizes to
see how BIGFileFast would perform. In our simulations,
TARGET SET SIZE = {10,100,1000}.

We compared BIGFileFast with AccessRank [14], a predic-
tion algorithm that incorporates several elements to predict



what users will do next: Markov chain model [34], CRF
(combined recency and frequency) [31], and time weighting.
Fitchett & Cockburn [14] demonstrated that AccessRank out-
performs existing prediction algorithms. We therefore use
AccessRank as our baseline.

In the case of navigation-based file retrieval, AccessRank
predicts the target by assuming that a subfolder is likely to
be selected if its parent folder is selected, captured by the
Markov chain model. Similarly, BIGFileFast also assumes
that the target is within the subtree of the current folder, and
renormalizes the probabilities at each step. The key differences
between AccessRank and BIGFileFast are as follows:

● AccessRank assigns a score to all folders and files while
BIGFileFast only considers the set of potential targets.

● AccessRank updates the score of an item (file or folder)
once it has been clicked while BIGFileFast updates the
probability of all potential targets after each user input.

● AccessRank identifies the N items with highest scores while
BIGFileFast identifies N items that provide the maximally
informative view.

● AccessRank has a parameter δ to control the stability of the
prediction list; BIGFileFast does not.

We generated a number of symmetric hierarchical structures
crossing DEPTH with BRANCHING FACTOR = 2 and BRANCH-
ING FACTOR with DEPTH = 4. When needed, extra targets
were added at the deepest level so that there would be 100
and 1000 targets respectively. Depending on the target set
sizes, we constructed a series of selections following the Zipf
distributions. We randomized the mapping between the Zipf
distribution and the targets, as well as the order of the selec-
tions.

We logged the number of steps needed to locate the target, the
information gain and the accuracy rate for both algorithms.
Note that we consider the folders on the path to the final target
to be partially correct. For example, if the target is at level
L2 but the shortcut is only correct up to the folder at level
L1 < L2, we consider the accuracy rate to be L1/L2, no matter
how many steps it takes to get to the target level L2.

We used {α = 0.8,δ = 0.5} for AccessRank as in [16] and
{p = 2,λ = 0.1} in CRF for both AccessRank and BIGFileFast.
We also assumed 100% correct user behavior for all simula-
tions, i.e. that users would be as efficient as possible, always
selecting an item from the adaptive area if it would get them to
the target in fewer steps. Each condition [DEPTH × BRANCH-
ING FACTOR × TARGET SET SIZE × DISTRIBUTION ] was
run 100 times, and the average taken.

Simulation Results
Fig. 4 shows the number of steps and the accuracy rate for the
two algorithms using a Z(s = 1) distribution. The results for
Z(s = 2) distribution are very similar; both BIGFileFast and
AccessRank performed slightly better than they did with the
Z(s = 1) distribution. This is intuitive since both algorithms
are based on frequency and recency of the file system use,
and Z(s = 2) focuses on a small set of very frequent items. In
information-theoretic terms, the computer starts with more
knowledge (less uncertainty) about the user’s goal.

4 6 8 10 12
Depth

0

4

8

12

Nu
m

be
r o

f S
te

ps

4 6 8 10 12
Depth

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

 R
at

e

2 4 6 8
Branching Factor

0
1
2
3
4
5

Nu
m

be
r o

f S
te

ps

2 4 6 8
Branching Factor

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

 R
at

e

BIGFileFast, Target Set Size 10
BIGFileFast, Target Set Size 100
BIGFileFast, Target Set Size 1000

AccessRank, Target Set Size 10
AccessRank, Target Set Size 100
AccessRank, Target Set Size 1000

Figure 4. Simulations of BIGFileFast vs. AccessRank for a Zipf distribu-
tion (s = 1) and three target set sizes (10, 100, 1000). The plots show the
number of steps (left, lower is better) and accuracy rates (right, higher
is better) as a function of depth (top) and branching factor (bottom).

In general, BIGFileFast takes fewer steps to locate the target
than AccessRank (Fig. 4, top left). In particular, the deeper
the target is located, the better BIGFileFast performs: when
DEPTH = 4, BIGFileFast averages 3.1 steps vs. 3.8 for Access-
Rank; when DEPTH = 12, BIGFileFast averages 7.6 steps vs.
10.1 for AccessRank. Increasing depth decreases the accuracy
rate for both BIGFileFast and AccessRank, but the effect is
more pronounced for AccessRank as shown in Fig. 4, top right:
when DEPTH = 4, BIGFileFast is 66.5% accurate on average
vs. 62.4% for AccessRank; when DEPTH = 12, BIGFileFast is
53.5% accurate vs. 24.2% for AccessRank.

This can be explained by the fact that AccessRank assigns a
score to all files and folders; hence, the more levels that are
traversed to get to a target, the more folders that are not targets
themselves (but are on the way to the targets) have their scores
increased. Another factor is that AccessRank takes user input
into account for the next retrieval, but not within a retrieval
task. If a node is shown but is not chosen, it will show up again
at the next step as a prediction if it has a relatively high score
and the final target is in the same parent folder. This results in
wasting a prediction slot and not gaining information from the
user. By comparison, BIGFileFast considers each user input
within a retrieval, and since it assumes correct user behavior,
if a node is shown and not chosen, all potential targets inside
that node will be assigned a probability of 0. Therefore, the
whole branch starting from that node will be discarded, i.e. it
will not show up in the prediction slots at the next step.

Increasing the branching factor negatively affects both BIG-
FileFast and AccessRank (Fig. 4, bottom). The accuracy rate
of BIGFileFast drops from 66.5% to 30.1% while the accu-
racy of AccessRank drops from 62.4% to 24.3%. This is not
surprising as there is not much information from the user input
for a wide but shallow (DEPTH = 4) hierarchy. Increasing
target set size also negatively affects the performance of both
BIGFileFast and AccessRank.



Averaged across all simulations, BIGFileFast is 15.5% more
accurate and takes 23.1% fewer steps than AccessRank. The
results can be summarized as follows: The deeper the target
is located, the better BIGFileFast is than AccessRank; Both
increased target set size and branching factor negatively af-
fect the performance of both BIGFileFast and AccessRank;
and BIGFileFast performs better on a deep hierarchy than on
a broad hierarchy. We next compare BIGFile (which uses
BIGFileFast) with a split interface using AccessRank in an
experiment with real users.

STUDY 2: EXPERIMENT
We conducted an experiment to investigate the effectiveness
of BIGFile with users. Our goal was to replicate and extend
the methodology used by Fitchett et al. [16]. We used their
implementation of the algorithm with the exception of one
improvement which is noted below. We also used their hier-
archical structure, which is a 3-level semantically organized
hierarchy.

Since we learned from our pilot study that people do navigate
to deeper levels, we extended their structure to 6 levels using
the branching factors and folder sizes from Bergman [4]: 10,
5, and 4 folders, and 11, 8 and 7 files at levels 4, 5 and 6 re-
spectively. Example targets for level 3 include ‘Dog’ with the
path “Animals > Mammals > Dog” and ‘Darwin’ with the path
“People > Inventors/Scientists > Darwin”. Example targets for
level 6 include ‘Hawaii’ with the path “Geography > Islands
> Tropical > Touristic > Large > Hawaii”, and ‘Brie’ with
the path “Food > Dairy > Cheese > France > Creamy > Brie”.
As in [16], only the folders containing the final target are
populated. In total, the hierarchy (available as supplemental
material) contains 958 folders and 1068 files, of which 30 files
are chosen as targets for each level-3 and level-6 condition.

Method
We used a [3×2] within-subject design with 3 INTERFACE
conditions: BIGFile with the BIGFileFast algorithm, ARFile, a
split interface using AccessRank for prediction, and a standard
Finder as baseline; and 2 target LEVELs: 3 and 6.

We made a slight modification to AccessRank in order to make
ARFile as effective as possible for users. In AccessRank, each
folder and file is assigned a score. If users constantly go to the
same item (file or folder), the algorithm’s set of top predictions
might include both the item and its parent folder. Since we
are showing the full paths to the predicted items (not just the
items themselves), this would result in an overlap between
the shortcuts. Therefore we only show the deepest path if one
shortcut is a prefix of another.

Elsweiler et al. [9] introduced the notion of Folder Un-
certainty Ratio (FUR), which was later used by Fitch-
ett & Cockburn [15] to illustrate users’ uncertainty when navi-
gating to files. If users are uncertain that they are going down
the correct path, they are likely to select incorrect folders by
mistake. In [15], users were found to be almost 94% accurate,
while the other 6% of time, they might click on the wrong
folder. Thus, we set the rate of correct user input to 94% and
divided the remaining 6% among the other user inputs. These
rates were used in the user behavior function in BIGFileFast

Figure 5. BIGFile experiment condition: The stimulus (full path to the
target) is first presented in a modal window (not shown), and the partic-
ipant must click “start” to begin the trial. The stimulus is also displayed
at the top of the BIGFile browser throughout the trial. The image is
cropped to save space: 11 additional files were visible below ‘Fireman’.

and for calculating information gain in ARFile and in Finder.
Furthermore, as in our simulations, we used {α = 0.8,δ = 0.5}
for AccessRank as in [16] and {p = 2,λ = 0.1} for CRF for
both AccessRank and BIGFileFast. A list view was used
for the static part in all interface conditions because it was
preferred in our pilot study.

Participants
Eighteen participants (7 women), aged 21 to 39 (mean = 28.5,
σ = 5.1), all right-handed and with normal or corrected-to-
normal vision, volunteered to participate in the experiment.
Ten were MacOS users, eight were Windows users but were
familiar with list view.

Apparatus
The experiment was conducted on a Macbook Pro with a 2.7
GHz processor, 8 GB RAM with resolution of 2560×1600.
The file browser window was 880 × 631 pixels, as in [16].
One row on the list view takes 20 pixels. The software was
implemented in Swift 3.0.

Procedure
The experiment consisted of two parts: practice, where partici-
pants familiarized themselves with the split interface using a
training file hierarchy, and retrieval, where participants com-
pleted a series of file retrievals following a stimulus, which
was presented as a path to the final target, e.g. “Food > Dairy
> Cheese > France > Creamy > Brie”, as shown in Fig.5.

During the retrieval phase, participants always started with
level 3, and then level 6 using the same interface. At each level,
they completed two sessions. Session 1 consisted of 20 file
retrievals, which comprised 10 different target files following
a near-Zipf distribution (frequencies 5, 3, 2, 2, 2, 2, 1, 1, 1,
1), as in [16]. Unlike [16], where the experiment started with
a uniform probability distribution, we started with the above-
mentioned Zipf distribution so that the item that was assigned
a certain frequency would appear the corresponding number of
times. For instance, if an item was assigned a frequency of 5, it
would appear as the target stimulus 5 times during the session.



The mapping between frequency distribution and targets was
counterbalanced across all participants and all conditions.

Each trial started by displaying the stimulus inside a popup
window hiding the file browser. Participants were instructed to
take as much time as they needed to understand the stimulus.
When they were ready, they hit a start button to initiate the trial,
at which point the content appeared inside the file browser (in
both the adaptive and static parts, for the two conditions with
split interfaces) and they were instructed to retrieve the file
as fast and accurately as possible. When the popup window
disappeared, the stimulus was shown in the toolbar at the
top of the file browser, as in Fig.5. When the participant
successfully clicked the target, a popup window appeared with
the stimulus for the next trial. If they clicked a wrong target, a
popup window let them know that they had made an error and
asked them to try again. After clicking a folder or a file, the
score for this item was updated in ARFile. Similarly, after each
user input, the probability of each potential target being the
actual target was updated, and after each retrieval, the initial
distribution for the potential targets was updated in BIGFile.

Session 2 repeated Session 1 with the same initial distribution
and randomized selection order. The goal was to see whether
and how participants would use the split interfaces once they
were more familiar with the file hierarchy and had some ex-
pectations about the targets, which is more representative of
real use. Participants could take a break between sessions and
between interface conditions.

For each level, we categorized the 30 targets into 3 non-
overlapping groups of 10. To reduce learning effects stemming
from familiarity with the hierarchy, within each group, the tar-
gets came from different top-level folders for level 3, and from
different second-level folders for level 6. The order of inter-
face and group of targets were counterbalanced using Latin
Square across all participants. Thus, the target group, the or-
der in which each target group is seen, the ordering of targets
within a group, and the order in which each interface is seen
all serve as control variables in our experiment.

After Session 2, for each interface, participants completed the
NASA Task Load Index (TLX) worksheets [23] and provided
comments on the interface. After all 3 conditions, we asked
participants for their preferences among the three interfaces.
The experiment lasted about 90 minutes.

Data Collection
For each trial, the program collects the task completion time
(TCT), the number of steps a participant takes to locate the
target (the number of items clicked, including the final target),
the amount of time spent at each step, the uncertainty the
computer has about the final target, the calculated shortcuts,
the participant’s input at each step, and the information gain
after each input. We collected 3 INTERFACE × 2 LEVEL × 2
SESSION (20 Selections each) × 18 Participants = 4320 trials.

RESULTS
For our analyses, we first removed 60 outliers (about 1.3%)
in which TCT was larger than 3 standard deviations from the
mean. We verified that outliers were randomly distributed

Factors df, den F p
INTERFACE 2, 34 452.47 < 0.0001
LEVEL 1, 17 895.61 < 0.0001
SESSION 1, 34 32.12 < 0.0001
INTERFACE × LEVEL 2, 34 211.89 < 0.0001
LEVEL × SESSION 1, 17 14.69 = 0.0242

Table 1. Significant effects in the full-factorial ANOVA on TCT.

across participants, interfaces and conditions. We also checked
for outliers for all our other dependent variables, but none were
found. Note that the results are the same if we include the
outliers in the analyses. Except where noted, we ran a repeated-
measures INTERFACE × LEVEL × SESSION factorial ANOVA
on our dependent measures2.

Task Completion Time and Step Time
Table 1 shows the results of a repeated measures ANOVA on
TCT. All main effects are significant, as well as two interaction
effects: INTERFACE × LEVEL and LEVEL × SESSION.

On average, BIGFile is 39.3% faster than ARFile, and 59.0%
faster than Finder, across all levels and sessions. The sig-
nificant interaction effect between INTERFACE and LEVEL
is shown in Fig. 6 (a) and (b). A post-hoc Tukey HSD test
reveals that all differences are significant: BIGFile is 44.5%
faster than ARFile and 63.8% faster than Finder at level 6,
while BIGFile is 27.8% faster than ARFile and 47.6% faster
than Finder at level 3. These findings are consistent with our
simulation results: the deeper the target is located, the better
BIGFileFast is compared to AccessRank.

The repeated measures ANOVA on step time (the time of a sin-
gle step) shows only two significant main effects: INTERFACE
(F2,34 = 114.48, p < 0.0001) and LEVEL (F1,17 = 142.27, p <

2All analyses are performed with SAS JMP, using the REML proce-
dure to account for repeated measures.

Figure 6. Task Completion Time (a, b) and number of steps (c, d) for the
3 interfaces, in 2 sessions, at levels 3 & 6, with 95% confidence intervals.



Factors df, den F p
INTERFACE 2, 34 3178.13 < 0.0001
LEVEL 1, 17 7267.81 < 0.0001
INTERFACE × LEVEL 2, 34 739.30 < 0.0001

Table 2. Full-factorial ANOVA on the number of steps required to locate
the target. Only significant effects are shown.

0.0001). A post-hoc Tukey HSD test indicates that BIGFile av-
erages 3.29s per step, which is significantly faster than ARFile
(3.78s), which is significantly faster than Finder (4.05s). In
terms of levels, the average step time is 3.35s for level 3 vs.
3.94s for level 6, despite the fact that there are fewer files and
folders at levels 5 and 6. Although not significant, the average
step time is 3.78s in Session 1 vs. 3.52s in Session 2. The
LEVEL × SESSION interaction indicates that the difference in
performance between Session 1 and Session 2 was generally
smaller at Level 6 than at Level 3, probably because Level 3
trials provided some training for Level 6 trials.

Number of Steps and Information Gain
Table 2 shows the results of a repeated measures ANOVA on
the number of steps (user inputs) required to locate the target.
Both INTERFACE, LEVEL and their interaction significantly
affect the number of steps. A post-hoc Tukey HSD shows the
following significant differences: for level 3, BIGFile takes
2.09 steps to locate the target, compared with ARFile’s 2.36
steps and Finder’s 3.08 steps; for level 6, BIGFile takes 2.8
steps vs. ARFile’s 4.22 and Finder’s 6.05, as shown in Fig. 6
(c) and (d). The interaction effect indicates that the impact of
the algorithm is more pronounced at level 6 than level 3. This
also reflects what we learned from the simulations: BIGFile
has a greater impact on a deep hierarchy.

Regarding the average information gain, BIGFile gains 1.27
bits per user input on average, while ARFile gains 0.94 bits
and Finder gains 0.69 bits. A typical plot of the 3 interfaces
under the same condition at level 6 is shown in Fig. 7. We
see that BIGFile gains more information from each user input,
therefore the uncertainty drops to zero much faster at each step
than with ARFile and Finder. By providing shortcuts, ARFile
also gains more information from each user input than Finder.

Accuracy Rate and Characterization of Use
We use the same definition of accuracy rate as in the simula-
tions. Across all factors, BIGFile is 68.4% accurate vs. 52.1%
for ARFile. At level 3, BIGFile is 74.8% accurate vs. 61.2%
for ARFile. At level 6, BIGFile is 62.8% accurate vs. 42.6%
for ARFile. As in our simulations, a deeper hierarchy affects
AccessRank more dramatically than BIGFileFast.

We also logged the use of the adaptive area with BIGFile and
ARFile. We find that with BIGFile, the final target was present
64.7% of the time and the parent folder was present 89.3%
of the time. In ARFile, the final target was present 48.5%
of the time and the parent folder was present 76.4% of the
time. When the final target was present in a shortcut, the
participant selected it 99.2% of the time. When the target was
absent but on of its parent folders was present in a shortcut,
the participant selected it 96.8% of the time.

Figure 7. Uncertainty and information gain after each step in (a) BIG-
File, (b) ARFile and (c) Finder.

Subjective Feedback
Subjective responses in all categories of the NASA TLX work-
sheets favored the split interfaces over Finder (Fig. 8). We
note significant effects between BIGFile and Finder as well
as between ARFile and Finder in terms of mental demand,
physical demand, performance, effort and frustration. In the
Finder conditions, four participants asked “where is the section
above [adaptive area]? Can you make it come back?” and
mentioned that “this is really slow...”. However we found no
significant differences between BIGFile and ARFile.

In terms of overall preference, participants ranked the inter-
faces (1 to 3). Both BIGFile and ARFile were preferred by
participants over Finder, but there was no difference in pref-
erence between BIGFile and ARFile. When asked about their
preference, 11 participants mentioned that they did not see
any difference between BIGFile and ARFile and thought those
interface conditions were just a different set of test words.

Three participants asked if they could search and whether the
results in the adaptive area would correspond to their queries.
Five participants mentioned that they would like to see “it” on
their own file systems: “I’m curious to see how it’d work on
my own Finder. I have so many files everywhere with super
long names... Wonder if this one will still work”. Another
participant asked “Can you reorder the list somehow as you
like? Can you change the number [of shortcuts]?” All these
comments provide opportunities to further improve BIGFile.

DISCUSSIONS AND LIMITATIONS
We have seen that BIGFile is an effective technique, saving
time and steps to retrieve a file in a hierarchical structure. We
now discuss the benefits of split adaptive interfaces for file
retrieval, provide a deeper comparison of BIGFileFast and
AccessRank and outline some limitations of this work.

Figure 8. NASA TLX scores (from mental demand to frustration, lower
is better) and overall preference (higher is better).



Split File Interface
To the best of our knowledge, BIGFile is the first attempt
at introducing split adaptive interface to hierarchical file re-
trieval. Regardless of the underlying algorithm, BIGFileFast
or AccessRank, the split interface outperformed the traditional
Finder with unanimous preference from participants. This
has not always been the case with adaptive interfaces, even
split ones. For example, Gajos & Chauncey [18] have demon-
strated systematic individual differences in the use of adaptive
features, correlated with users’ personality traits. Hence this
approach does not benefit all users equally.

In our case, the preference might be due to the nature of the
task: retrieving a file in a 3-level or 6-level hierarchy is much
more difficult than selecting menu items, which is the task
used in most split adaptive interface studies. Therefore, split
adaptive interfaces may be more beneficial for difficult tasks
where users need to “work hard” to reach their goal.

One possible issue with split interfaces is screen real estate.
The more shortcuts are shown in the adaptive area, the better
the underlying algorithm will work. But more shortcuts use
more space and may result in higher cognitive demand and
more occurrences of scrolling. Future work should therefore
study the effects of the number of shortcuts on performance,
preference and cognitive load.

Comparisons with AccessRank
Even though BIGFileFast can locate the final target more ac-
curately than AccessRank in our simulations and experiment,
unlike AccessRank, it does not account for repeated user be-
havior and repetitive access at the same time of day or day
of the week. It also does not have a parameter to control the
stability of estimated shortcuts across successive steps. These
features are likely to benefit users in real settings. Future work
should study their effect in BIGFile. AccessRank also needs
to be compared with BIGFileFast in more realistic settings.

We were surprised that users did not express a preference be-
tween BIGFile and ARFile, attributing the differences to the
set of targets rather than the underlying algorithm. This may
be due to the fact that interface differences are more obvious
to users than the inner workings of a system. Indeed, Fitchett
et al. [16] found Icon Highlights and Search Directed Navi-
gation to be more effective than Hover Menus, even though
the latter predicts targets several levels down the hierarchy.
In that respect, our split interface is an alternative to Hover
Menus that shows to be effective for both BIGFileFast and
AccessRank. Further work should therefore tease apart the
respective roles of the interface and the prediction algorithm
in file retrieval tasks.

Limitations
Despite BIGFile’s strong performance benefits, we want to
emphasize some limitations of our experiment.

File Hierarchies: Our pilot study was designed to inform the
design of our simulations and experiment in terms of the depth
and width of the hierarchy we should evaluate. Even though
we combined the results from our pilot study with those in
the literature, it is still possible that the hierarchies we used

are not fully representative. A larger scale study is needed to
capture user file structures and retrieval practices.

Potential Target Set Size: We learned from the simulations
that BIGFileFast performs much better on a 10-item potential
target set than on a 1000-item potential target set. The latter is
more realistic since users have thousands files and folders in
their file systems. Larger target sets should therefore be tested
to produce more robust findings.

Task Instruction: The task was initiated by showing a full
path to the final target, which allowed users to compare the
paths shown in the adaptive area with the instruction. In real
life, recall of either the full path or the name of the final
target is imperfect. Therefore, it is important to study how
BIGFile performs in a more realistic setting, where navigation
is combined with exploration.

CONCLUSION AND FUTURE WORK
We presented BIGFile, a fast navigation-based file retrieval
technique where the computer is trying to gain information
from the user by providing shortcuts that may help access the
target faster. These shortcuts are presented in a split adaptive
area of a file retrieval interface and include the estimated files
or folders selected by our computationally efficient algorithm
BIGFileFast, which together with the items in the current
folder, maximize the expected information gain from the next
user input. The interface includes the paths to the estimated
items so that contextual information is provided to identify
them. Users can use any shortcut in the adaptive area or simply
navigate the hierarchy as usual.

We first ran a pilot study to better understand users’ file struc-
tures and retrieval practices. We ran simulations demonstrating
the effectiveness and accuracy of BIGFileFast compared to
the AccessRank prediction algorithm in various hierarchical
structures. We also ran an experiment comparing BIGFile with
ARFile, a split interface using AccessRank, and with a Finder-
like list view as baseline. BIGFile was up to 44% faster than
ARFile and 64% faster than Finder, and users unanimously
preferred the split interfaces.

Future work includes improving BIGFile by adding a stability
parameter and potentially repeated user behavior. We also
plan to evaluate BIGFile in a longitudinal study, and explore
applications of the BIGFileFast algorithm to other areas.
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