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MUSIC FROM AURA: MUSIC GENERATION USING EEG AND KIRLIAN
PHOTOGRAPHY FOR TEMPORAL DIFFERENCE LEARNING

Pierre-Henri Vulliard
SCRIME/LaBRI
pierre-henri.vulliard @u-bordeaux.fr

ABSTRACT

Our aim is to fill the gap between computer music and
musical emotions. We use a 2D emotional space (2D ES)
both to analyze listener’s emotions captured from phys-
iological measure and to drive a music generator with a
Reinforcement Learning algorithm. We present hereafter
the Reinforcement Learning algorithm and the different
parts of our framework used as input (emotions classifi-
cation with Emotiv EEG headset and Kirlian photography
device, to improve the machine learning by using data that
have no correlation between them), and output of the algo-
rithm (rhythm and scale/chords generation). Some current
and future applications are also briefly depicted.

1. INTRODUCTION

How to represent emotions both in music and in brain-
waves analysis: The most used model is the representa-
tion of emotions in 2D valence/arousal space, where va-
lence represents the way one judges a situation, from un-
pleasant to pleasant and arousal expresses the degree of
excitement felt by people, from calm to exciting [1].
Emotions as a model for the interaction between brain-
waves and music: Numbers of experimentations have been
pursued for the sonification of brainwaves. However, the
fuzzy aspect of both music and emotions spaces makes
traditional algorithms inefficient. Thus we choose for this
experiment two more appropriate algorithm from Rein-
forcement Learning family, QLearning and Sarsa(\) [2].
One characteristic of our work is to include machine learn-
ing tools with a great symmetrical between its inputs (lis-
tener’s emotions captation from his brainwaves analysis)
and its outputs (music generation based on emotionnaly
connoted parameters). From an algorithmic point of view,
this symmetry has no particular meaning; but beyond a
purely artistic approach, it should create conditions for a
retroactive loop, it is widely admitted that music has an
undisputable influence upon listener’s mood and emotion,
and numerous studies have adressed its effect [3, 4].

2. REINFORCEMENT LEARNING

2.1. Reinforcement Learning features

Reinforcement learning (RL) is learning by interactions
with the environment. Its aim is, roughly speaking to map
situations to actions in order to maximize a numerical re-
ward signal. Clearly, a learning agent must be able to
sense the state of the environment and to take actions that
affect this state, and it also needs a goal to achieve. Tem-
poral difference learning (TD) is a combination of Monte
Carlo approach and Dynamic Programming. As for the
Monte Carlo approach, TD can learn directly from the
experiment (no need of a model of the environment dy-
namics), and as for the Dynamic Programming approach,
TD updates its estimate based on prior estimation without
waiting the end of the experiment and the final outcome.

2.2. Interest of Reinforcement Learning for music

Bio-mimetism: Reinforcement Learning methods take
their insight from animal psychology studies, like those
analy- sing how an animal can learn from trial and error
to adapt to its environment, or those based upon language
learning.

They are from the family human-like algorithms, and so
seem well adapted to musical language learning.

Ways emphasis vs single target: One of the special fea-
tures of the algorithm is that, in addition to the final target
(tonic for tonal resolution), it also takes into account paths
(harmonic walks).

Early effectiveness: Reinforcement learning differs from
standard supervised learning in that correct input/output
pairs are never presented, so it does not need prior cali-
bration, and can be effective since early bars of music.
Short or long term optimisation: One of the proper-
ties of the RL approach is the trade-off between explo-
ration (of uncharted territory) and exploitation (of current
knowledge). This is a way of optimising for a fast re-
sult or for a long term optimised solution. Poietic pro-
cess: Could help to describe musical rules directly from
their attributes, for example using functional value of
chords (dominant preparations, dissonances, resolutions)
in mainstream tonal music based on tension/relaxation.
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2.3. Reinforcement Learning in MuZICO

A module of Reinforcement Learning is implemented in
MuZICO as a PureData interface using C++ functions

Following [2] a RL task can be expressed as a Markov
Decision Problem (MDP) provided that we assume deci-
sions and values to be functions of the current state only.
At each discrete time ¢, the agent observes the environ-
ment state s; - in our case it is the projection of EEG sig-
nal of the listener into the 2DES. It selects an action a; -
in our case the musical parameters driving the music gen-
eration. The action is performed and one step later (time
t + 1) the agent receives a reward ;1 and reaches a new
state, the reward is the distance between the classification
of the EEG signal projected in the 2DES space and the
goal to reach. The last component is the policy m, where
m¢(8, a) is the probability that a; = a when s; = s which
is used to update the estimates.

Choice for the Reinforcement Learning algorithm are:

five parameters (temperature, epsilon (e), lambda (M),
earningRate () and gamma (v)), two possible policies
(egreedy and softmax), two learning methods (glearning
and sarsa).
Temperature and € are parameters for the policies, « is the
learning rate used to update the expected reward of the
states, 0 < X < 1 is the parameter which drives the num-
ber of states updated (A = 0 the state updated is s; ; A = 1
states s, . .., st are updated). 0 < v < 1 is the discount
factor used to compute the long run reward, if v = 0, the
agent maximizes the immediate rewards.

3. ACTIONS

3.1. Muzico

The actions are changes of the generative music settings
to aim a target emotion. According to [5], the musical
parameters related to the valence of emotions induced by
music are tonality and complexity. We propose here har-
monic, rhythmic and melodic generative models, as well
as a description of their parameters from the point of view
of musical complexity.

These parameters, as they are used in the MuZICO envi-
ronment, have either discrete or continuous values, and are
either defined by adjectives (fuzzy classes) or by numeri-
cal values. For example, the spectrum of a sound can take
values from “muted” to “bright”, corresponding to spe-
cific energy values that are measurable in the signal and
are linked to its spectral centroid. The other parameters
related to energy in music are: the tempo of the music,
the attack of the notes’ dynamic envelope, the pitch of the
notes, the number of instruments playing simultaneously,
the more or less “natural” sound of the instruments, the
percussive or sustained aspect of sounds, as well as the
number of simultaneous notes [5].

All these parameters are characterized by bounded inter-
vals used by MuZICO to generate music. Those values,
corresponding to low and high energies induced by the
music, can be fuzzy values (such as muted, bright) or in-
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tervals for physical data. The parameters that have unde-
fined units are translated by MuZICO into various units
according to the algorithms used to produce the sounds
(synthesis, sample playing, audio effect control). For in-
stance one can translate the brightness of a sound by a
particular setting of the modulation index in a FM synthe-
sis algorithm, or by the control of the cutoff frequency of
a low-pass filter applied to a sample player.

3.1.1. Pitch scales

Usually scales are generated by an integer as interval, fol-
lowing Eq. 1.

Un+1 = (Un X w% — Uo) X w P
Up = fy (D
with p € NTsuch that Uy < U1 < w X Up

where w is the octave ratio, 0 the divider of the octave
to obtain the temperament, f is the root frequency of the
generated scale, and V' the interval seed of the scale.

We consider that the complexity of a pitch scale relies
on the number of iterations needed to generate it, and on
the values of the different parameters w, 6, and V.

For example, taking w = 2, § = 12 (tonal occidental
music). Let V' = (7) (generation of the pitch scale by it-
erating through steps of fifths), and N be the number of
iterations. This gives: the pentatonic scale or the Maj 6/9
chord for N = 4, the diatonic scale for N = 6, the chromatic
scale for N =11

These scales have an increasing harmonic complexity.
Scales of different complexities can be generated by vary-
ingV: V = (4) and N = 2 generate a pitch scale cor-
responding to an augmented chord, V' = (3) and N = 3
give a diminuated chord, V = (3,4, 4,3) and N = 6 give
the ascending melodic minor scale.

3.1.2. Rhythmic patterns

To keep a human-like style in beat generation, we model
our inspiration upon the rhythms accompanying work
songs during community repetitive labour, as activities in
the field (threshing and winnowing) or domestic work (the
pestle pounding the mortar). Each participant produces
one single regular beat but the collective result is a more
complex rhythm.

The rhythmic patterns are created by layering various
iterative rhythmic patterns, all synchronized to the same
underlying pulse, each pattern being defined by an offset
from the common initial pulse and by a rhythmic density
(number of pulses between two onsets in the pattern ). The
superimposition is done by a logical OR operation, con-
sidering the superimposed patterns as bit vectors, a value
of 1 representing an onset, and a value of 0 no onset:
density=0offset=0—11111111
density =0 offset=2—-00111111
density = 1 offset=2—00101010
density = 3 offset = 0 + density = 5 offset =3
10001000+00010000=10011000



For the rhythmic complexity, we use a model based on
Toussaint’s complexity measure [6] or other techniques of
rhythmic complexity evaluation, that assign a weight to
each pulsation.

3.2. Generative attributed grammar

Chords series: In MuZICO, the chords sequences gener-
ation takes the context into account to oversee the trans-
positions related to the modulations. The complexity of a
chord depends on several factors that we identified:

the number of notes that make it up, the complexity of the
scale on which it is built, the order of appearance of its
notes in the building of this scale by iterations.

The complexity of a chords sequence also depends on sev-
eral factors: the complexity of the chords that make it up,
the number of different chords in the sequence, the har-
monic complexity of the chords sequences, mainly taking
into account the cadences and resolutions in the context
of modern modal and tonal music, and the modulations in
the context of the latter.

4. REWARD

Reward is calculated from Arousal and Valence axis of
emotions, according to the Two-Dimensional Emotion
Space (2DES) [1]. It is the distance between the current
projection of the classification of the EEG to the final state
at aim in the 2DES.

4.1. Emotions captation system

Hardware: As the title of the poster indicates, we use dif-
ferent sources for data acquisition: EEG headsets, con-
nected watches, G.D.V (kirlian photography). Since the
data is digital, the most scientific data (EEG, pulse) should
make it possible to evaluate the relevance of the more fan-
ciful data (aura, meditation analysis by Emotiv helmet).
For EEG, we use an Emotiv headset for its convenience
and its growing dissemination. We acquire data from the
headset with the Emotiv C++ SDK, and transmit them via
UDP protocol for further use.

Software: OpenViBE software[7], designed for Brain
Computer Interface work, provides all the necessary tools
we need for our experiment setup.

4.2. EEG Data Analysis

Filters: First level is managed by the Emotiv headset it-
self. By request to the C++ api, we receive two types of
data from the sensors: on one hand, raw data on the four-
teen channels, on the other hand, filtered face muscles in-
formation (EMG), i.e. bottom or upper face tensions.

In OpenViBE software. EEG data channels are sorted and
a first stage of band filters is applied, according to tradi-
tionnal brainwaves categories. Then comes the Common
Spacial Pattern (CSP) filter stage, to improve the classifi-
cation [8]. A CSP filter of dimension four is used for each
band of brainwaves.

5. EXAMPLES OF APPLICATIONS

5.1. Short term convergence: Live Music Performing

Saxophone and generative music: Interactive music is
used in real time in a saxophone improvisation show,
(sometimes with dance and video projections).

5.2. Long term convergence: Relaxation, Music Ther-
apy

Aware of the highly controversial statements coming from
the alternative medicine community about audio stimula-
tions which may help to induce relaxation, meditation,
creativity and other desirable mental states, we imple-
mented, nevertheless, some of these stimulations and syn-
chronized them with the music beat.

The main clock of MuZICO calculates equivalences of
tempo in BPM, duration of 16th notes, and difference in
Hz for binaural beats. For instance, if bpm=120, the 16th
note duration is 0.125 second, the isochronic sounds have
afrequency of 8 HZ, and the left/right binaural beats chan-
nels are respectively raised and lowered from 8/2 = 4Hz.

Some of the mostly used audio processes:
ASMR (Autonomous Sensory Meridian Response): Rhyth-
mic noises and sounds used to provoke a pleasant sensa-
tion of tingling or chills in the skull or scalp, or as a sleep
aid.
Mindmachines: Audio impulsions are generated on an in-
dependant stereo output to control flashing leds glasses to
make a “brainwave synthesizer” (or “mindmachine”).
Binaural beats: Binaural beats, or binaural tones, are au-
ditory processing artifacts, or apparent sounds, produced
by a slight difference in the frequencies percieved by each
ear of the same tone.
Isochronic sounds: Isochronic tones are evenly spaced
tones, quickly turned on & off;

6. CONCLUSION - FUTURE WORKS

In this poster we presented the MuZICO framework and
the core learning algorithm as an attempt to fill the gap
between computer music and musical emotions.
Preliminary results have shown that a musical construc-
tion can be deduced from EEG analysis and Reinforce-
ment Learning. The difficulty which remains is to assert
that the state reached in the 2DES is effectively the in-
tended real emotional state.

Exploratory experiments of various scenarii evaluating the
different parameters of the MuZICO framework (LDA,
CSP, TD on-policy, TD off-policy, long run rewards such
as maximum valence and maximum arousal for music
shows, or maximum valence and minimum arousal for re-
laxation) are undergoing.

The operation of the algorithm requires a large amount
of data, so we created a smartphone app called Per-
sonal Hypno Vibes for listening to music and to acquire
physiological data in various use cases (meditation, self-
hypnosis, tests on the aura).
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