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Ratio-based Multi-temporal SAR Images Denoising:
RABASAR

Weiying Zhao, Charles-Alban Deledalle, lcoDenis, Henri M&re, Jean-Marie Nicolas,
Florence TupinSenior Member, IEEE

Abstract—In this paper, we propose a fast and ef cient multi- paper a ratio-based denoising approach ( rst presented in [1]),
temporal despeckling method. The key idea of the proposed dedicated to long multi-temporal stacks.
approach is the use of the ratio image, provided by the ratio The main problems of SAR image despeckling are the spa-

between an image and the temporal mean of the stack. This tial uti ti the ed d text torati
ratio image is easier to denoise than a single image thanks to its 1al resolution preservaton, the edges and iextures restoration,

improved stationarity. Besides, temporally stable thin structures and the preservation of point-like targets. Spatial multilooking
are well preserved thanks to the multi-temporal mean. is a common way to reduce speckle uctuations in a single
The proposed approach can be divided into three steps: SAR image, at the cost of a signicant spatial resolution
1) estimation of a “super-image” by temporal averaging and |55 [2]. To effectively estimate the noise-free re ectivity as
possibly spatial denoising; 2) denoising of the ratio between the I th tial uti inale-ch |
noisy image of interest and the “super-image”; 3) computation well as preserve e_ Spatial resolution, many single-c anr_le
of the denoised image by re-multiplying the denoised ratio by SAR speckle reduction methods have been proposed during
the “super-image”. the past decades. Detailed introductions of the methods are
~ Because of the improved spatial stationarity of the ratio given by Touziet al: [3], Argenti et al: [2] and Deledalle
images, denoising these ratio images with a speckle-reductiong; g|- [4]. These methods mainly belong to four categories:

method is more effective than denoising images from the orig- . : . .
inal multi-temporal stack. The amount of data that is jointly Bayesian methods in the spatial domain (Lee lter [5], Lee

processed is also reduced compared to other methods through e nNed lter [6]), Bayesian methods in a transformed domain
the use of the “super-image” that sums up the temporal stack. [7], selection-based Itering (IDAN [8], PPB [9] and NL-
The comparison with several state-of-the-art reference meth- SAR [10]) and sparse-based approaches [11]. Many single-
ods shows better results numerically (peak signal-noise-ratio, SAR-image denoising methods are designed by combining

structure similarity index) as well as visually on simulated and information in different domains (th tial domain and
SAR time series. The proposed ratio-based denoising framework ormatio ere omains (the spatial domain and a

successfully extends single-image SAR denoising methods tdransformed domain), with different estimation criteria and
time series by exploiting the persistence of many geometrical various statistical models of speckle and radar re ectivities

structures. [2]. Several state-of-the-art single-image despeckling methods
Index Terms—Multi-temporal SAR series, ratio image, super- Perform a weighted average of selected surrounding pixels
image, SAR, speckle reduction values to estimate the speckle-free values. If the surrounding

pixels are not well selected or if their associated weights are
badly chosen, an estimation bias occurs which is generally
S visible in the form of a spatial resolution loss (over-smoothing
YNTHETIC aperture radar (SAR) imaging is widely usecind spreading of thin structures). The accurate selection of
in the monltorlng of land Surfaces, disasters or the enVerBi'Xe|s is very Cha”enging in Sing|e-|ook SAR images given
ment, due to its all-time achiSition Capability, its SenSitiVityhe |arge uctuations due to Speck|e phenomenon_ Even when
to geometric structures, its penetration characteristts, ysing state-of-the-art spatial denoising approaches (such as
However, the system-inherent speckle noise visually corruaR-BM3D [12] or NL-SAR [10]), the smallest and least
the appearance of images and severely diminishes the anal¥gistrasted structures can be damaged or some noticeable
and interpretation of SAR images. Therefore, a preliminagpecme uctuations can remain after Itering.
speckle reduction step is often necessary for the successfukecently, convolutional neural networks have shown a high
exploitation of SAR images. o ~ capability of denoising data affected by additive white Gaus-
The recent and unprecedented availability of long timgan noise (AWGN) [13]. Application to SAR images has also
series with Sentinel-1 constellation has opened new ways ff¥en proposed, either through an homomorphic approach [14]
SAR speckle reduction. This highly redundant informatiopr directly applying gamma distribution based methods [15].
offers a new paradigm. Taking inspiration from temporalnjike traditional SAR image denoising approaches, these
multi-looking and residual noise analysis we propose in thifiethods predict the noise-free value through the estimation of
N ) ) ) ) the speckle component. These recent techniques reach com-
W. Zhao, H. Métre, J.-M. Nicolas, F. Tupin are with LTCI, éfecom .
ParisTech, Universit Paris-Saclay, 75013 Paris, France paraple despecklmg results w.rt. s.,tatejof—the—art approach_es,
L. Denis is with Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optiqueboth in terms of signal to noise ratio (simulated data) and in
ETIENNE, France . . ) ! -
C.-A. Deledalle is with IMB, CNRS, Univ. Bordeaux, Bordeaux INP, F-the_s_e networl_<s IS t_'me consuming and requires to bL%Ildlng a
33405 Talence, France training set with pairs of speckle-free / speckled SAR images.

I. INTRODUCTION



With the launch of the latest generation of SAR satel- Il. PRINCIPLE OF THE PROPOSED METHOD
lites (Cosmo-SkyMed, TerraSAR-X, ALOS-2, Sentinekls) The temporal averaging (also called temporal multi-looking)

[16], more and more SAR images, with shorter revisit img¢ AR time series produces an image with reduced speckle
or higher resolution, are now available. With multi-temporal,y 5 preserved spatial resolution. We call such a reduced-
images, both spatial and temporal information can be CO@beckle image a “super-image”. In this paper, we propose

bined in the denoising process, which gives the potential @f oyt this super-image to build a ratio-based denoising
reaching better speckle reduction results than is achieval ework.

when processing a single image. This is the path followed byThe proposed method is composed of three main steps,
several kinds of multi-temporal denoising methods, pmpOSiri\QJstrated in Fig. 1:

temporal weighted average [17], [18], [19], temporal weighted 1), e 15t step, a super-image is calculated from a time

average in a transformed domain (M-TSF [20] and MSA%eries of spatially registered and radiometrically calibrated

B'YBD [21]), change-detection-aware multi—tempora! averagear images. Averaging temporal intensity samples is the
(Les method [22], [23] and 2SPPB [24]), or ltering us-gingjest way to obtain an image with reduced speckle. This
ing three-dimensional adaptwe_nelgh_borhoods [25], [26]'_ ébrresponds to the maximum likelihood estimation of the
drawback of such approaches is the increased CompUtat'Ol%aéctivity when speckle is considered temporally decorrelated

complexity with longer time series. and temporal uctuations of the re ectivity are neglected (ob-

Multi-temporal denoising methods take advantage of tréeervations at a given pixel are then independent and identically

incrgasing ayqilability of SAR image time-series to solve th(‘j:’|stributed). In practice, changes impacting some regions of
spatial denoising problems, for the benet of a better SP3re image may occur at some dates. Rather than averaging all

tial resolution preservation. Most of multi-temporal denoisingates it can be bene cial to select only relevant dates when
methods process the whole time series in order to pmd%?ming the “super-image”, as done for instance in [24], [23],

a denoised image at a given date. In this paper, we t Moreover, because speckle is temporally correlated (b
a different approach by forming a summary of the mulgﬂ%]' ver, . P ! P y (by

i | ! hich 02 . " th atially varying correlation levels), some amount of spatial
remporal series (V.V Ich we call a 'super-image-, Ihe spec noising helps to produce a “super-image” where speckle is
in that image being strongly reduced), and by using on

¥duced everywhere. Computation of the super-image, denoted
this “super-image” in addition to the speckle-corrupted ima 4 P p ge,

. ) ) ) . in the sequel, will be presented in Sec. lIl.
(rather than the whole time series) to obtain a denoised mag'@z) In the second step, the super-image is used to form the
at any given date. '

This ratio-based multi-temporal denoising method fuy2tio « between the image; at timet and the super-image,

exploits the signi cant information of the multi-temporal stack t each spatial locatios
through the “super-image”. After forming the ratio image

between the noisy image and the “super-image”, the proposed
method takes advantage of the state-of-the-art single-im
speckle reduction methods to denoise the ratio image [1].

Ve (S)
Om (S)

A refer to ; as the “ratio image” at timd. It contains
consider multi-temporal images acauired on the same or te residual speckle noise between the two images, and the
! U P 'mag qui Adiometric shifts when changes occur. When the length of the

(|.'e., glther _aII_ ascending orbits, or 'aII descending orbits Ime series increases and in the absence of change, the super-
with similar incidence angles, and which have been accurat%IX

registered [27]. For the sake of reproducible research, we hay agedn converges to the re ectiviyy. The ratio image

| d de at htts.// th.u-bord n tends to pure speckleg, a collection of independent
released an open-source code at hllps./iwww.math.u-bor e%‘éhtically distributed gamma random variables with unitary
fr/ cdeledal/rabasar.php.

0o . . mean and the same number of looks as the original image). In
The contributions of this paper are the following: . . .
introd ic ratio-based multi-t ld contrast, when changes occur in the time series, these changes
we '? roduce i gen”en(;: EA%:ASS:R Tu I-tempora _enol'ﬁﬁpact the super-image which then differs from the re ectivity
Ing _ramework, cafle , 10 process a sing %t of the image at time. Processing the ratio image is

SAR dlmfage us:jng a.mult|—te-|:ngolrjtl I_Stifk; daoted t tnecessary to correctly recover the re ectivity. Both the
we design a denoiser, cafled Rul-o%, adapted 1o lr"f-f‘)isy imagev; and the super-imag#,, suffer from speckle
statistical distribution of the ratio image formed betwee

a speckle-corrupted image and a “super-image” wi he speckle in the super-image, though, is strongly reduced).

. he processing of the ratio image requires to account for the
:)?)dsléfjeidn s{gg]c.kle, by extending the MuLoG method prg’peci C noise statistics arising from this ratio of speckled

. images. A denoiser dedicated to the statistics of the ratio-
we demonstrate the interest of the proposed method

imulated and SAR {i : Wage is derived in Sec.IV.
simulated an  IMe series. . 3) In the third step, the Itered image is recovered by
The remainder of this paper is organized as follows.

ultiplying the denoised ratio image with the original super-
Sec. I, we introduce the general framework of the propos%aggy g g ¢ P

method. Section IIl presents different ways to compute the
“super-image”. Then the lItering of the ratio image is de-
scribed in Sec.IV. Experimental results are presented in
Sec. V. Finally, some conclusions and perspectives are drawThe super-image can be computed from a time series by
in Sec. VI. different ways. First, different Blder means (such as the

t(8) = )

IIl. COMPUTATION OF THE SUPER-IMAGE



Computation of a “super-image”:

2

1

_—

. . Spatial filtering
Temporal multilooking (MuLoG algorithm)
» Section IT1.B/III.( » Section IIL.D
&‘:}IM (arithmetic mean), or Uy “super-image”
aBWAM (binary weighted Computation of the
m arithmetic mean) ratio image:
3 noisy image at time ¢
Denoising of the 7-th image: super-image
temporal stack U1
of SAR images 5 4
—
—
. ) Spatial filtering of
denulsed' ratio the ratio image
x ‘“‘super-image”
» Section IV.B
Ut Pt Tt

Fig. 1: Summary of RABASAR method for speckle reduction of SAR time series and associated sections of the paper.

arithmetic or the geometric means) could be chosen; théh, Arithmetic mean

these means may be applied either on the intensity data ogjyen a time series of intensity values v (s)gl-, indexed

on the amplitude data. We may expect from these choicesyp timet, the arithmetic mean is calculated at locatioby:
enhance different pieces of information [30]. In this paper,

registered and radiometrically corrected intensity SAR images
are used. We propose to use the arithmetic mean for its good
properties [30], in particular in terms of modeling the statistics
of the super-image, with the option of using binary weights to Theoretically, with (i) no change in the time serieg(s) =
discard the intensity at some dates when a change occurret(s) = = ur(s), and (i) T large enough and speckle
suf ciently decorrelated from one image to an other, averaging
the temporal intensity data is a simple yet effective approach
to reduce the speckle [32]. When speckle is fully decorrelated,
We briey recall in this section the statistics of fullythe arithmetic mearndiM(s) corresponds to the maximum
developed speckle. Under Goodman's hypothesis [31], fullikelihood estimation ofu(s) and the multi-look image;V
developed intensity speckle follows a gamma distributiciollows a gamma distributios(u; L T ). In practice, because
G(u; L) depending on the number of looks and the mean of temporal correlations of the speckle, the resulting equivalent
re ectivity u (the aftersought signal of interest) of the sceneiumber of looks (ENL) may be less than this theoretical

oAM(s):EXT vi(s) 1 t T (4)
K Tt=1

A. Statistics of SAR images

L1 value L T), especially in case of images in interferometric
ppVvouL = L Lv e & 2y con guration. The associated ENL will be denoted by, in
u(L) wu the following, and its estimation is discussed in Sec. llI-D.
Speckle in SAR images acts like a multiplicative noise andA}\//lvhen changes occur in the time series, the arithmetic mean
the speckle model can be expressed as [5]: an"(s) no Ionger. mgtches the scene re ectivity at tirhe
We can reduce this discrepancy between the temporal average
V= uw (3) and the re ectivity at date¢ by averaging only the unchanged

o . temporal samples, as described in the next paragraph.
wherew follows a gamma distributio®(1; L), the expectation

is E[v] = u and the variance i&ar[v] = u?=L. With the . ] ] i

increase of the number of looks, the variance decreasesC- Binary weighted arithmetic mean

The proportionality between the variance amdre ects that Instead of computing the super-image from the time series
noise is signal-dependent and multiplicative. without considering the daté of the image under study,



another option is to compute a dedicated super-image thaDis ENL estimation

closer to the re ectivityu;. Only samples with similar and The super-image may have a spatially varying ENL because
stable re ectivities can be considered in the average. To detggt temporally changing areas, because of spatially-varying
these samples, we suggest using a patch-based selection bgsgérence, or because of the use of locally-computed binary
on the generalized likelihood ratio (GLR) test. The GLR te$feights. To robustly estimate,, in the super-image calcu-
between two independent observed intensity valyeandvz  |ated with medium or high resolution temporal SAR images,
(with same number of lookk) confronts the following two tne og-cumulant method [34] is used within sliding windows.

hypotheses: the null hypothesis corresponding to a commgppirical expressions for the local rst and second order log-
re ectivity value uj> accounting for the observed intensitiegymuylant estimators are (fdd samples):

vi andv,, and the alternative hypothesis where a different 1 X

re ectivity is considered for each observation; (for v; and Ri(s)= —  logtn(s+ ) 9)
u, for v,) to account for a change in the re ectivity between N

the observations. The generalized likelihood ratio (GLR) test

_ 1 X 2
corresponding to this hypothesis test is given by [33]: and QZ(S) TN logthn (s + ) Ql(s)] (10)

GLR(V1: Vp) = Vive () The sums are computed over all pixel shiftsuch that pixels
12 (Vi + )2’ with index s+ are located inside a square window with

_ ) N -pixels centered ors (in practice, we useN = 30 30
where constant terms are omitted. Taking the log and extenge|s). Assuming all samples in the local window are iid,

ing the comparison to the image patches centered at locatigg can obtain a local estimation of the ENL by inverting the

s in the images at dateandt® lead to [9], [24]: following relationship (theoretical expression):
s s
G oS) = X o vi(s+ ) N Vio(s+ ) ®) Q2(5) = (1;Cm () (11)
A 9 Vet ) vi(s+ ) where is the rst-order Polygamma function [34]. Note

that the traditional estimation method (by means of the ra-
wherev(s+ ) is the value in the noisy patch at dateThe tio E[0n]?=Var[0n]), the moment estimation method or the
sum is taken over all pixel shifts such that pixels with index maximum likelihood (ML) estimation method could also be
s+ are located inside a patch centeredo(small square used for the ENL estimation [35].
window). Then, a binary weighti o(S), expressing whether Nevertheless, samples within local windows centered on
there are temporal changes or not, is computed as: s are usually not iid, and the subsequent statidig(s)
underestimates , (s). For this reason, once the ENLs have
been locally estimated in all sliding windows, we consider a
global ENL for the whole super-image obtained By, =
quantile(ﬁm(s); ) where = 0:98 (almost the maximum).
where is a threshold chosen as = quantile( dito(s); ) While it may be argued that the ENL varies spatially in the
under the null hypothesis and is estimated with Monte Cal’lmage, we found on several images obtained by different
simulations using gamma distributed data and= 0:92 as sensors that using a constant ENL value leads to satisfying

1, |f dt;t O(S) <

Wt o(S) = 0; otherwise

O

proposed in [24]. results in the subsequent denoising steps.
Then, the binary weighted arithmetic mean (denoted by
BWAM in the sequel) is calculated at datteéby: E. Denoising the super-image

< When the number of date¥ is not large enough or
0BWAMy(g) = p - 1 Wit o(S)Vio(S) 8) when .the temporgl correlatlon' of speckle is too strong, the
to=1 Wet o(S) yoog super-image obtained by (weighted) averaging suffers from
signi cant remaining speckle uctuations. A spatial Itering
where the notation BWAMis used to highlight that the super-step is then necessary to improve the quality of the super-
image depends on the targeted datéor each pixes and each image 0y,. At this step, any speckle reduction method can
datet of the stack, the weights o(s) select the datet’ for be used. In this paper, we use MuLoG-BM3D [28] to perform
which no signi cant change occurred with respect to the imaghis spatial Itering. MuLoG-BM3D will be discussed in more
at datet. Thus, the binary weighted meaf"M: (s) provides details in Sec. IV-B where we describe how it can be extended
a more faithful estimation ofu(s). This improvement is to process ratio images.
obtained at the cost of an increased complexity since the supertn summary, 4 super-images can be computed: the arith-
image is date speci c: the stack has to be processed for eagbtic mean image (according to Eq. (4)), the binary weighted
datet, while a single super-image is computed once and for &lfithmetic mean image (according to Eqg.(8)), the denoised
with the (unweighted) arithmetic mean. The interest of usingithmetic mean image (DAM) and the denoised binary
such a temporal mean will be evaluated in Sec.V. weighted arithmetic mean image (DBWAM). The impact of
In practice, the selection performed by the binary weightese method used to build the super-image on the output of
affects the associated ENLy, of the super-image. In the nextRABASAR is evaluated in Sec. V. In the following, these four
paragraph, we describe hdwy, is estimated. super-images will be indifferently denoted ag .



(@) | (b) © | (@)
Fig. 2: (a) Sentinel-1 noisy image, (b) Arithmetic mean image, (c) Ratio image, (d) Denoised result on ratio image. Appearing
(dark areas in (d)) and disappearing buildings (clear areas) are located in the middle of the image.

After temporal averaging and spatial ltering, the remaining.,, > 1, andVar[ {] = fﬁ%‘% forL, > 2.
noise in the super-image follows a distribution without knowmhe proportionality betweeWar[ ] and ? reveals again that
closed-form. It can nonetheless be approximated by a gamnwise is signal-dependent.
distributionG(up, ; L) whereL ,, is a constant parameter that
can be re-estimated from the data in order to t at best the
empirical distribution as described in Sec. llI-D.

IV, RATIO IMAGE DENOISING B. Denoising of the ratio image: RuLoG algorithm

The ratio image , formed at datet contains both the To denoise the ratio images, we need a method that can

uctuations due to the speckle component of the noisy ima fCcount for the Fisher distribution that arises when forming

\é‘. (pure spec;)kl;e) andtiome stru_ctures thzttﬁppear ?.u? to € ratio between gamma-distributed random variables with
Iscrepancy between the super-image and the re ectivity differing number of looks. To this end, we describe in this

Uy (changes of re eciivity). Compared to the noisy image aragraph the MuLoG framework [28] and how it can be

ghe ratio 'Tr?ge tt.'s .spatlal.ly fa:jr mc;re homageneous so th xtended in order to apply general-purpose Gaussian denoisers
enoising the ratio image is advantageous. to Eisher-distributed noise.

- . . MuLoG rst stabilizes the variance by applying a logarithm

A. Statistical analysis of the ratio transform to the image. We denote igythe log of the ratio

Denoising a ratio image requires a denoising methaghage , at datet (the dependency tbis dropped to simplify
adapted to the statistics of the ratio between the SAR imag® notations) and by = log ; = log u;=u, the log of
v; at datet and the super-imagé.,. Despite the temporal the ratio of the re ectivities. Thanks to the log transform, the
averaging (and possibly, the spatial ltering) of the supemultiplicative noise in the ratio image is mapped to an additive
image, remaining uctuations are presentify . The statistical signal-independent noise with expectatiy] = x log ﬁ+
distribution of the ratioy = v{=0n, therefore differs fromthe ( L) ( L) and variancevar[y] = (1;L)+ (1;Lm)
gamma distributiorG(u;=um ; L) followed by the more ideal where ( ) denotes the digamma function. This shows that,
ratio vi=un. Note that, for the sake of notation simplicitylike for gamma-distributed noise, taking the log of the ratio
we drop in this section the dependency wighand each image stabilizes the variance of the Fisher-distributed noise.
formula mu_st be unde_rstood pixel_wise. The Mell_in framework Unlike standard homomorphic approaches, and inspired by
developed in [35] provides an ef cient way to derive the pdf 09‘5

4 36], MuLoG considers next the exact distribution of log-
t- Indeed, the pdf of the product of two independent randoff \qtormed data. Speci cally, thepixels imagex is obtained

variables is the Mellin convolution of the pdf of the two variy,, ayimum a posteriori estimation expressed as the solution
ables. The details of the computation are given in Appendléf an optimization problem of the form:

It is shown that the ratio; = v;=0, follows a Fisher pdf
F( ¢;L;Lm) with the three parameters = u=un, L and
Lm: R 2 argmin[ logpy (yjx)+ R(X)] (13)
L L Ln x2R
P« ulilm /2 Lm+L— ; (12
t

L

t where the rst term logpy (yjx) is the exact likelihood of

where the normalization constant depends solely on the nutine log-transformed ratiy, and the second terrR(x) =
ber of looksL and L. Fisher random variables have a logpx(x) is a prior enforcing some spatial regularity on
multiplicative behavior,; = (w;, wherew; follows a Fisher the solution. MuLoG solves Problem (13) iteratively by the

distribution F(1;L;L ). We haveE[ (] = t%, for alternating direction method of multipliers (ADMM) algorithm



that repeats, for> 0, the updates Algorithm 1 Extension of MuLoG to ratio images (RuLoG)

_ Input: ratio image
z argmin Ekz R+ A+ R(2) (14) number of looks® of the numerator
22R number of looks, of the denominator

d d+2 2 (15) _ -
Output: Denoised ratio imagé;
2 argmin =kx 2 d? o X 16
xg2 R 2 apy (vix) (16) 1: maxADMMiter 6 (typical value)
In practice, six iterations are considered wite 1+2 =L+ % ?ax%ewtomter 10 (typical value)
3

2=L, as suggested in [28].
Regarding Problem (16), in the case of gamma-distributed” ¥~ 109( t)

speckle considered in the original MuLoG method [28], the5 R |09(2t)+|%g( C=Cr)+ (Cm) (D)

likelihood term was corresponding to a Fisher-Tippett distri-5 1+ t Co

bution. As discussed in the previous section, the distributior: for k from 1 to maxADMMiter

of ratio-images is not gamma-distributed but follows a Fishels: 2 BM3Ddenoise (&8 & noise _std = 1:p )
distribution. Therefore the optimization of (16) has to beg: § {§+4 2
modi ed compared to the original MuLoG algorithm. By
applying a change of variable, it can be shown that, after the update® with a few Newton iterations:
log transform, Fisher-distributed random variables follog-a 10:  for * from 1 to maxNewtoniter
Fisher pdf [37] given by: hE c (Lm+L)exply R]=fLm+ Lexply RIg
_ 2 & 2 &d+LQAQ o
P Y(s) x(s);LiLm / expL y(s) x(s) 1z ¥le@ Lo
Ly 13 end "
(Lm + Lexply(s) x(s)]) " (A7) 14 end
which leads to: 15: return - exp(R)

logp, (yix) = Cst+ Lx(s) Algorithm 2 Multi-temporal speckle reduction (RABASAR)

s=1 Input: T co-registered SAR imagds/g/_; ,
targeted daté, input number of lookd..
*(L+Lm)log(Lm + Lexply(s) x(s)) : (18) Output: Imgge with reduf:)ed speckiy .

Injecting this expression in (16) leads to solMe separable Step 1: computation of the super-image (AM or BWAM)
convex problems whose solutions can be obtained by a few )
iterations of Newton's method de ned by: 1 O0m  compute super_image(y;t)
2. [, estimate looks 0y,
R(s) 2(s) s+ L1 )
R(s)  R(s) + Le(s)(1 ﬁc(s)) (19) Step 2 (optional): denoising of the super-image

wherec(s) = (Lm + L) expy(s) 2(s)]=fLm + L exp[y(s) 8 Om  MuLoGBM3Mm;L = ()
R(s)]g. Interestingly, wherL, 11, the z-Fisher pdf tends # Crm  estimate _looks O
to the Fisher-Tippet pdf, and taking the limit in (19) leads to
the original MuLoG algorithm [28].

Regarding Problem (14), MuLoG adopts the strategy ob: t Vi =0nm
plug-and-play ADMM (see for instance [38]) which consists6: RULOGBM3D;L;Lm = L)
in replacing the minimization problem involving (x) by the ) )
solution of a denoiser adapted to additive white Gaussian Stép 5: computation of the restored image
noise with variancel= . In this paper, we consider using 7. g, 0m
BM3D [39], an algorithm based on patch similarity and
three-dimensional wavelet shrinkage, and reaching remarkabfe
results with fast computation. We refer to this method for ratio
image denoising as Ratio adaptation of MuLoG (RuLoG), see
Algorithm 1.

Step 3-4: denoising of the ratio image

return O

The application of this pipeline — RABASAR —is illustrated
Fig. 2. A typical Itering result on a ratio image is presented
on Fig. 2(d) along with the original image, super-image and

After obtaining the estimated noise-free valdg(s) = the ratio image. The pseudo-code is given in Algorithm 2.

exp(R(s)) of the ratio, we obtain the denoised imade
through: V. EXPERIMENTAL RESULTS

= N
0:(8) = U () () (20) To evaluate the performances of the proposed method,
different experiments have been conducted on simulated



used (project DLR-MTH0232). These images are taken over
a highly mountainous countryside, with a narrow inhabited
valley concentrating many human artifacts (roads, bridges,
dams) (see Fig.3).

In this paper we are dealing with images acquired in
interferometric con guration (same orbit and incidence angle).
In this case, the registration step can be done accurately using
the sensor parameters provided by the space agencies. Be-
sides Sentinel-1 and TerraSAR-X images are radiometrically

calibrated.
: b It often happens that SAR pixels are not spatially inde-
(a) (b) pendent because of a slight over-sampling creating a spatial
Fig. 3: TerraSAR-X series: (a) one image of the tempor&Prrelation. This spatial correlation should be taken into ac-
series, (b) arithmetic mean of the 26 images. count during the denoising. However, most of the denoising

methods are based on the hypothesis that the speckle noise is
white. When applied directly to images with correlated noise,
reduced performances may be expected from these methods.
Therefore, we recommend to perform a spatial decorrelation
before despeckling. In this paper, the noisy TerraSAR-X
images are decorrelated using the method proposed in [40] and
the Sentinel-1 images are decorrelated by resampling because
of its special acquisition model (the beam both steering in
range direction and steering from backward to forward in
azimuth direction). All the SAR images are co-registered using
subpixel image registration applied on the single look complex
data [27].
(b) o 2) Simulated data:Simulated SAR images are obtained
g;eccording to Eg. (3), by multiplying a re ectivity map with

(a)

Fig. 4. Images used for data simulation (a) optical ima ndom qamma distributed noi
used as a noise free image, (b) arithmetic mean of Sentine andom gamma distributed noise. - .
) . . : any simulations are based on re ectivity maps obtained
images with the location of different land-cover types used *0 S . L

. . rom optical images. However, SAR images exhibit strong and
simulate temporal changes (green: farmland changes, yeIIOVt\é'rsistent scatterers, especially in urban areas which can hardl
forest changes, red: appearing building, blue: appearing t Se simulated usin é) tigal im;/ es. Therefore, we propose toy
disappearing building. g op ges. k prop

use the arithmetic mean image of long time-series of SAR

and SAR images. Recall that an open-source code ig}ages, considered as a noise free image (a re ectivity map

RABASAR is available at https://www.math.u—bordeaux.fry‘) to create realistic simulations of SAR images. This map
cdeledal/rabasar.php. u is multiplied by a gamma distributed noise providing

The in uence of different super-images on RABASAR de2n imageve = uw; of the series. These simulated data

noising results are commented in Sec. V-C. Then, RABASAEPTespond to the case without change and are an ideal case
is compared to some selected methods from the literatufBUre iid samples of noise). Images of Fig.2(b), Fig.3(b) and

UTA [17], [18], NLTF[21], 2SPPB [24] and MSAR-BM3D 4(a) are us_ed for the simulated case withou'g changes. .
[21] (Sec. V-D). Concerning changes in the temporal series, to deal with

changes in a realistic way, temporal sequences have been
A. Data presentation introduced over vario_us areas: forests_, farmlands, building

' areas,etc as shown in Fig.4(b). The introduced temporal

1) Sentinel-1 and TerraSAR-X imageghe proposed meth- changes have been chosen according to changes observed in

ods are tested on a time series of 69 descending Sentinel-14/R time series and have the temporal proles shown in
SLC Level-1images acquired from December 24, 2014 to Mayg_ 6.

6, 2017 with VV polarization over Saclay area, south of Paris
(see Fig. 2(a) and (b)). Saclay plateau is mostly an agricultugl Evaluation method

area with pieces of forests and dispersed academic buildingsy1easurement of speckle reduction performances is a chal-
In the last ve years, many new buildings and mfrastructurqgnging task, especially when noise-free data are unavailable.
have begr_l under Qevelopment. ) ) Visually checking the despeckling results is an immediate and
In addition, 26 single-look TerraSAR-X images (13 imagegy, o rtant way for quality evaluation, but it lacks objectivity.
are sensed |n_2009 aqd the ot-her 13 images in 2011) &§ oyercome this limitation, we use the peak signal-noise-
quired over Saint-Gervais-les-Bains, south-east of Geneva, Lo (PSNR) and structure similarity (SSIM) indexes, even

1Al the Sentinel-1 images can be downloaded from Copernicus OpéHOUQh theY SUffe'f from some limitations that have been well
Access Hub (https://scihub.copernicus.eu/dhus/). discussed in the literature.
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A binary weighted arithmetic mean binary weighted arithmetic mean
+ spatial denoising + spatial denoising

30F 09F
0.8}

26 arithmetic mean

0.7F
22 0.6
. . . . . . . . > 05l ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ >
5 15 25 35 45 55 65 75 85 95 5 15 25 35 45 55 65 75 85 95
number of dates T number of dates T
(@) (b)

Fig. 5: RABASAR performances obtained with different super-images, in the absence of change, as measured with the PSN
(a) and the MSSIM (b). The solid line represent the mean value computed over 50 different noise realizations. For each inde
box, the bottom and top edges indicate the 25th and 75th percentiles, respectively. The outliers are plotted individually using
the '+' symbol.

1) PSNR: Peak signal-noise-ratioThe PSNR is a com- values). The number of imagek in the time series varies
monly used approach to evaluate the quality of restoratifmom 5 to 95.
results; We considepthe PSNR expressed on amplitude imagesor temporal images without re ectivity changes (Fig. 5(a-

s =" uandla = O b)), using denoised super-images provides better PSNR and
juAj2 MSSIM values when using a small number of images, but

PSNR =10 log, E[Un(S) mzx 97 (21) this benet disappears with longer stacks of images (more
A A than 60). When using denoised super-images, the obtained

Wherejua j ., is the maximum amplitude value in the nois@SNR/MSSIM values is notably impacted by the value of the
free data,E[] represents the spatial average and is the ENL.

denoised am.plitude value. _ In the case of changing areas, we performed restorations of
2) MSSIM: Mean structure similarity indesto evaluate the 5o gpeckle realizations in the four different change scenarios
preservation of image features, the SSIM index [41] (structurglscussed in paragraph V-A2. We report in Fig.6 the mean
similarity index measurement) is often preferred to PSNR e and 1 con dence interval obtained by RABASAR.
From the SSIM, we derive the mean struct_ural similarity inde_pf can be observed that, in the case of uctuations typically
measurement (MSSIM) values which provide a comprehensiygserved in farmland and forest areas (Fig. 6 (a) and (b)), both

measure over the whole image: RABASAR-AM and RABASAR-BWAM perform well and
LR 5 Blua] BlOA]+ 1 pro_duce an estimate with no s_igni cant bias (the re ectivity
MSSIM = N Bru2 1+ Blo2 varies up to a factor 2 in our simulations). Because a smaller
=1 BlUal+ B[0]+ 4 number of dates is selected in the case of RABASAR-BWAM,
2 gOV[UA;OA] + 5 the estimation variance is very slightly larger. In Fig.6 (c)

Var[u 1+ Var[ﬁ 1+ and (d) we consider the case of much larger changes that
) A A . _ typically occur in urban areas: an appearing large re ectivity
where ux and 0 are noise free and denoised amplitudgy a temporarily large re ectivity. In this case, RABASAR-AM

patches,Cov[; ] is the measure of covariance; and 2 |eads to a bias of the same order as the estimation standard
are suitable constants, ahd is the number of local windows geyiation. The origin of this bias, observed in Fig.6(c) for

in the image. t 29 can be ascribed to the difference between the true
re ectivity and the mean intensity. This difference is too small
C. Which super-image gives the best denoising? to be compensated when denoising the ratio. When 29,

We presented in Sec. IlI-E different ways to compute iHoe diﬁereqc_e is much_ Ia_rger and no bias can be observed
super-image (AM, BWAM and their spatially denoised Ver{after denoising, thg ratio image correctly compensates fqr the
sions). This section presents quantitative (Fig.5) and qualif®iS t of the super-image value). By selecting only similar
tive (Fig.7) denoising results obtained when using differefigteS; RABASAR-BWAM is more robust to this phenomenon:
super-images, and considering different time series lerigthsthe Pias is negligible compared to the estimation standard

In the binary weight computation (methods BWAM andléviation. In the case of an appearing, then disappearing
DBWAM), a window of size 7 7 is used in Eq.(6), as structure (Fig. 6(d)), no signi cant bl.as is visible with elf[her
suggested by the analysis in [42]. method because the super—lmag_e_wnh RABASAR—AM dlﬁers

1) Using simulated radar imagesSimulated images allow S9N cantly from the true re ectivity and 'tht dlfference. is
to evaluate quantitatively the performances obtained with es®{Tectly recovered when denoising the ratio image (the signal-
of the four different super-images by measuring averaginoise ratio is suf cient so that it be recovered).

PSNR and MSSIM values (50 different noise realization are 2) Using Sentinel-1 imagesThe temporal series of 69
computed in order to compute the average PSNR and MSS8éntinel-1 images on the Saclay area is used to test the method
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Fig. 6: Evaluation of RABASAR estimators in 4 different change scenarios: typical temporal variations of re ectivities in
(a) farmland areas; (b) forest areas; (c) urban areas when a new building appears; (d) urban areas with an appearing th
disappearing structure. The mean andcbn dence interval are displayed for RABASAR-AM (top curve) and RABASAR-
BWAM (bottom curve).

on SAR images. Figure 7 can be used to visually assess HRBLE I: AVERAGED COMPUTATION TIME OVER TEN
ef ciency of speckle reduction when using different “superRUNS OF THE DIFFERENT STEPS FOR A TIME SERIE

images”. RABASAR provides satisfying denoising result®F 69 IMAGES WITH SIZE 512 768 PIXELS

with each of the four different super-images. The use of anmstep Averaged time
additional spatial Itering step to form the super-image seems BWAM super-image  (step 1) 0.74 sec  (L.0%)
bene cial in terms of restoration quality: the obtained images ENL estimation (step 1 and 2) 0.18 sec (0.3%)
are smoother. MuLog-BM3D (step 2) 343 sec (50.5%)

When usi_ng AM and DAM, srr_lall areas with I(_)\_/v values Ru!Lo'gA-IIDB'\I\/fl'\BADitself ((Sstgepp24 )& 4) f‘g(.)?sseic (é%zo/?)))
were sometimes smoothed, leading to the apparition of new 1 BMm3D itself (step2 &4)  65.1sec (95.9%)
points in the denoised results (Fig.7(a-b) red rectangular). Total time 67.9 sec.

This phenomenon is obvious for impulsive and abrupt changes
in building areas. Using BWAM and DBWAM reduces this
problem (Fig. 7(c-d)). In some changing parts of the imag#fithmetic mean, the super-image has to be computed again for
using BWAM, however, leads to poor Itering results becauseach image to process, whereas the super-image computation
very few similar dates could be combined when computirig done only once for AM or DAM versions of RABASAR.
the super-image.
3) Computation time:The computation time of the algo-D. Denoising performances of RABASAR compared to exist-
rithm depends on the adopted RABASAR version (type dfig methods
super—image -binary wgighted qr.not—, ENL estimation method The proposed method is compared with state-of-the-art
and choice of the spatial denoising). multi-temporal denoising methods, both on simulated and
When running the experiments on a time serie of 69 SARAR images. Numerical and visual results are provided when
images of size 512 768 (Saclay) in the MATLAB environ- comparing RABASAR with the chosen methods: UTA [18],
ment on a computer (4 cores, Intel(R) Core(TM) i7-7600WLTF [21], 2SPPB [24] and MSAR-BM3D [21].
CPU @ 2.80GHz), the averaged elapsed time of RABASAR- 1) Quantitative comparisonAs in the previous sections,
DBWAM is given in Table I. to quantitatively compare the ltering performance of these
As can bee seen, the main part of RABASAR computingiethods, averaged PSNR and MSSIM are computed. Only
time is due to the denoising step. If both the super-imagRABASAR-AM and RABASAR-DAM performances are pre-
and the ratio image are denoised, the time is multiplied Isgnted in the curves of Fig. 8.
2. The similarity and weight computation represents diiy In this simulation, we see from Fig.8, that RABASAR
of the total time. Nevertheless, when using binary weightagenerally provides better PSNR than other ltering methods.
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(3) RABASAR-AM (b) RABASAR-DAM (c) RABASAR-BWAM (d) RABASAR-DBWAM

Fig. 7: RABASAR denoising results on Sentinel-1 images over the Saclay area (middle row) and corresponding ratio-image:
(lower row) based on the use of: (a) AM, (b) DAM, (c) BWAM, (d) DBWAM. 69 Sentinel-1 images are used. The zoom of
the red box is enlarged in the rst row together with the original noisy image to ease the comparison.

TABLE II: NUMERICAL RESULTS PROVIDED BY DIFFERENT METHODS WITH 32 IMAGES IN THE SERIES.
EVALUATION IS MADE BY PSNR AND MSSIM. FOR PSNR AND MSSIM, LARGER VALUES EXPRESS BETTER
DENOISING RESULTS. THE MEAN VALUES OF 20 TIMES TEST ARE USED.

Sentinel-1| Evaluation| UTA NLTF 2SPPB MSAR RABASAR
methods -BM3D | -AM  -DAM -BWAM -DBWAM
without PSNR 2537 1949 25.16 21.90| 27.34 28.61 26.72 28.15
changes MSSIM 0.84 0.82 0.83 0.67 | 0.86 0.89 0.85 0.88

With few images in the stack, MSAR-BM3D and 2SPPB alsnoise (ratio of the original image by the denoised image)
provide competitive PSNR and MSSIM. However, with thare visually evaluated. The residual noise should correspond
increase of the number of images, MSAR-BM3D curve dods pure gamma-distributed noise samples of mean 1. Resid-
not rise as fast as 2SPPB. When using less than 4 imagea, structures, homogeneous areas, and radiometric variations
MSAR-BM3D provides the best MSSIM values. With arcorrespond to the following perturbations: the destruction of
increasing number of images, UTA PSNR and MSSIM valuestructures, the absence of Itering, and bias introduction.

keep increasing. First, compared to MuLoG-BM3D applied on a single
Table 1l presents some results about PSNR and MSSiMage, RABASAR-DAM provides a much better result, pre-
results. It shows that RABASAR-DAM provides the besterving ne strucures and isolated objects, see Fig.11. This
results in this ideal situation when there is no change in tl&periment shows that the exploitation of the super-image
temporal series. and the ratio image, which is much more stationary than the
2) Sentinel-1 and TerraSAR-X image denoisiigtis sec- Original noisy image, helps preserving the original resolution.
tion presents and discusses the results obtained when denoisirfgigure 9 presents different Itering results on a Sentinel-
Sentinel-1 and TerraSAR-X images. Since the noise fréetime serie of Saclay. Compared to 2SPPB and MSAR-
images are not available, the denoised results and the residi3D methods, RABASAR-DAM and RABASAR-DBWAM
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Fig. 8: Comparison of different temporal denoising methods: UTA, NLTF, 2SPPB, MSAR-BM3D, RABASAR-AM and
RABASAR-DAM. Averaged PSNR (upper row) and MSSIM (lower row) as a function of the number of images for two
data sets: (a) simulated time serie without changes using Fig. 4(a)), (b) realistic simulated SAR data without changes usin
Fig. 4(b)). Each experiment is repeated 50 times, with the same noise free value multiplied by different gamma distribution
noise. The line features shows the mean value of PSNR (top) and MSSIM (bottom)over the 50 experiments.

@) (b) (©) (d)

(e) () @ (h)
Fig. 9: Denoising Sentinel-1 images over the region of Saclay (RuLoG results) (the original noisy image is shown in Fig. 2(a)):
(a) ltered with 2SPPB, (b) with MSAR-BM3D, (c) with RABASAR-DAM, (d) with RABASAR-DBWAM, (e-h) residual
noise images between the noisy image and denoised results. 69 Sentinel-1 images are used.

provide better denoising results since they take both the ralinilding areas in the residual noise are homogeneous (Fig. 9(f)
results and the texture characteristics into account. Some naisg circle area) showing that no ltering has been applied in
areas can be observed in the RABASAR-DBWAM results dubese areas (Fig. 9(b) red circle area).
to the temporal samples selection (for some pixels, only fewThis also explains why MSAR-BM3D has lower PSNR
similar temporal samples can be found to compute the binarglues. In addition, some of the textures in MSAR-BM3D
weighted arithmetic mean). 2SPPB method does not give gaegults are over smoothed, such as the blue circle area in
results for seasonal changing farmland areas, and showsFim 9(b).
obvious bias in the residual noise (see for instance the blueSimilar phenomena can be observed on the TerraSAR-X
circle area in Fig. 9(e)). images presented Fig. 10. Whereas Fig. 10(c) and (d) visually
Since MSAR-BM3D method detects the bright points iprovide satisfying results and homogeneous residual noise
advance and prohibits any denoising around these points [Affjages, both 2SPPB and MSAR-BM3D smoothed out some
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@) (b) (€ (d)

(e) (f) (9 (h)
Fig. 10: Denoising results of TerraSAR-X images over Saint-Gervais (using Rulog). The original noisy image is available in
Fig. 4(f). (a) 2SPPB, (b) MSAR-BM3D, (c) RABASAR-DAM, (d) RABASAR-DBWAM, (e-h) residual noise images (ratio of
noisy image and denoised results). 26 TerraSAR-X images are used.

textures (Fig. 10 blue circle areas), or keep unchanged soestablished in [43], and used in [44] for edge detection in SAR

noisy areas. images. Following [45] [46], the Mellin framework allows a
straightforward derivation.
VI. CONCLUSION AND FUTURE WORK We assume that the numerater follows a gamma dis-

This paper has proposed a ratio-based multi-temporal degbution G(u;;L), the denominator, follows a gamma
noising framework. During the restoration of each SAR imagdistribution G(um; Lm), and thatv; and 0, are independent.
it exploits the temporal information through a super-imag&Ve will denote by” the Mellin convolution, ancH (u) the
The use of different strategies to compute the super-imagesmothetic pdf de ned byH (u)( ) = % (7 1). We have
has been analyzed. RABASAR can provide better PSNR atié following relationship between a gamma distributed pdf of
MSSIM values when using a spatially denoised super-imageean 1 and a gamma pdf of mean [35]:
With the increase of the number of images in the time series,
the differences of using different super-images decrease. When
there are changes in the time series, using a binary weighted
arithmetic mean can also provide good results. Based on the
processing of time-series corrupted by simulated speckle Noigethe same way, we have the following relation for the pdf
actual Sentinel-1 stacks and TerraSAR-X stacks, the qualitatpye,,
and guantitative comparisons with UTA, NLTF, MSAR-BM3D
and 2SPPB methods shoyved the potential of RABASAR to G(Um:Lm) = H(Um) "G (L;Lm)
better preserve structures in multi-temporal SAR images while
ef ciently removing speckle. Besides, the super-image can be
easily updated when a new data becomes available so agie variableg,,! follows an inverse gamma distributio@|
process new images on-line. given by:

Future work will be devoted to the updating framework,
specially for the “re-computation” of the super-image and to

Glug;L) = H(u) "G (1;L)

the further processing of denoised time series. ot On Umilm = H(Uy') "Gl (LiLm) (0%
. 1 1 M (M +1)
APPENDIX with GI(;M )( )= M e

DISTRIBUTION OF THE RATIO IMAGE

In this appendix we present a simple way of deriving the = ) 1 .
distribution (pdf) followed by the ratio, = 8,7; The pdf of Multiplying the variablesy andm, we thus have the Mellin

the ratio of 2 gamma-distributed random variables has beeonvolution ofH J’—; , G(1;L) andGI(1; L) which leads
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