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Abstract. This paper analyzes the kinematics of planar tensegrity ma-
nipulators made of two Snelson’s X-shape mechanisms in series. The
variable instantaneous center of rotation of each mechanism renders the
kinematic analysis of the resulting manipulator more challenging. A gen-
eral formulation of the direct kinematics is set. A method is proposed to
solve the inverse kinematic problem in a symbolic way and up to four in-
verse kinematic solutions are found. The singularities of the manipulator
are shown to divide the joint space into two singularity-free components,
showing for the first time a planar positioning manipulator that can be
cuspidal. The workspace is determined and plotted for different values of
the geometric parameters.
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1 Introduction

A tensegrity structure is an assembly of compressive elements (bars) and tensile
elements (cables, springs) held together in equilibrium [1],[3]. Tensegrity is known
in architecture and art for more than a century [2] and is suitable for modeling
living organisms [4]. Tensegrity mechanisms have been more recently studied for
their promising properties in robotics such as low inertia, natural compliance and
deployability [5],[6],[7]. A tensegrity mechanism is obtained when one or several
elements are actuated. This work falls withing the context of the AVINECK
project involving biologists and roboticists with the main objective to model and
design bird necks. Accordingly, a class of planar tensegrity manipulators made
of a series assembly of several Snelson’s X-shape mechanisms [8] i.e. crossed
four-bar mechanisms with springs along their lateral sides, has been chosen as
a suitable candidate for a preliminary planar model of a bird neck, see figure 1.
First investigations on the kinematics of such manipulators turn out to be more
challenging than expected with interesting properties, which has motivated the
work presented in this paper. Snelson’s X-shape mechanisms have been studied
by a number of researchers, either as a single mechanism [5],[7],[9] or assembled
in series [10],[11],[12]. A planar two-degree-of-freedom manipulator is obtained
with a series assembly of two such mechanisms. The manipulator can be driven
with tendons threaded through the spring attachment points like in [12], or
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it can be actuated with a rotary motor at a base joint of each mechanism.
There are several possible actuation schemes that can involve over-actuation if
stiffness needs also to be controlled [10]. The detailed actuation scheme is not
reported here and will be the scope of further work. This paper focuses on the full
kinematic analysis of the manipulator, which has never been done before to the
best of the authors’ knowledge. The variable instantaneous center of rotation
of each mechanism renders the symbolic calculation of the inverse geometric
problem more challenging, resulting in polynomials of excessive degree if the
problem is not tackled with care. A practical method is provided that makes
it possible to come up with a quartic polynomial, which turns out to be of
minimal degree. The singularities of the manipulator are shown to divide the
joint space into two singularity-free components or aspects, showing for the first
time a planar positioning manipulator that is cuspidal i.e. that can perform
non-singular solution changing motions. The workspace is calculated with its
boundaries for different values of the geometric parameters.

Fig. 1: Snelson’s X-shape mechanism (left) and a series assembly of several such
mechanisms, mimicking a bird neck (right)

2 Derivation of the kinematic equations

2.1 Manipulator description and parametrization

The manipulator studied consists of a series assembly of two identical crossed-
bar mechanisms as shown in figure 2. Each mechanism i has a base bar and an
upper bar of length b and two crossed bars of length L. Note that the mechanism
assembly condition is L>b. The springs, shown in green in figures 1 and 2, are of
length lij . We need to define a suitable joint variable that describes each mecha-
nism configuration without any ambiguity. In [12], the mechanism configuration
was chosen as the orientation αi of the upper bar with respect to the base bar,
but such a choice is allowed for mechanism motions restricted to −π < αi < π.
For a matter of completeness, we are interested in allowing each mechanism to
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move within its full range. In this case,−2π < αi < 2π and αi is not appropriate
to define the mechanism configuration. Let us introduce a line segment of length
li that links the middle points of the top and base bars of each mechanism i
(shown in red dotted line in figure 2). The angle between this line and the di-
rection orthogonal to the base bar is referred to as θi. For the symmetric design
considered here, it can be shown that αi = 2θi and when −π < θi < π, the
mechanism makes a full turn. Assuming that each mechanism remains always in
the crossed-bar assembly mode, the manipulator configuration can thus be fully
defined with (θ1, θ2). Since the mechanism sides define an isosceles trapezoid,
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Fig. 2: Manipulator description

the length li of the line segment that links the middle points of the top and base
bars can be expressed as follows :

li(θi) =
li1 + li2

2
=

√
L2 − b2 cos2(θi) (1)

2.2 Direct Kinematics

We first want to establish the direct kinematic equations. The base frame is
centered at the middle point of the base bar with the x-axis aligned along this
bar. The reference point (x, y) is chosen as the middle point of the top-bar
(figure 2). Note that any other location on the top bar would not affect the
study, with the exception of one of the two extremities. In such a case, indeed, the
input/output equations would be the same as in a simple 2R planar manipulator
and the kinematic properties of the manipulator studied would not be captured.
The direct kinematic equations of a manipulator with n mechanisms in series
can be written as for a virtual serial nR manipulator with (varying) link lengths
li and joint angles θi:{

x =
∑n
i=1 li(θi) cos(

π−2θi
2 +

∑i
j=1 2θj)

y =
∑n
i=1 li(θi) sin(

π−2θi
2 +

∑i
j=1 2θj)

(2)
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For a manipulator made of two mechanisms in series with input variables θ1 and
θ2, the direct kinematic equations can be put in the following form :{

x = −l1(θ1) sin(θ1)− l2(θ2) sin(2θ1 + θ2)

y = l1(θ1) cos(θ1) + l2(θ2) cos(2θ1 + θ2)
(3)

where l1 and l2 are defined in (1). Note that these equations assume that each
mechanism is in its crossed-bar assembly-mode.

2.3 Inverse Kinematics

We would like now to derive the so-called characteristic polynomial, a univariate
polynomial established to solve the inverse kinematics. The direct kinematic
equations (3) have been derived in their most compact form, namely, the two
output variables x and y are expressed as a function of the two input variables
θ1 and θ2 like in a 2R serial manipulator. However, starting from these equations
to derive a characteristic polynomial is not appropriate. Indeed, the square roots
appearing in l1 and l2 should be first cleared out, with the consequence of raising
artificially the degree of the resulting characteristic polynomial and providing
spurious solutions. Accordingly, it is better to write x and y as functions of the
crossed-bar angles φ1 and ψ2 as follows:{

x = − b
2 + L cos(φ1) + L cos(ψ2 + α1) +

1
2b cos(α1 + α2)

y = L sin(φ1) + L sin(ψ2 + α1) +
1
2b sin(α1 + α2)

(4)

In addition, the two loop-closure equations below are derived:{
−2Lb sin(α1) sin(φ1)− 2Lb(cos(α1) + 1) cos(φ1) + 2b2(cos(α1) + 1) = 0

2Lb sin(α2) sin(ψ2) + 2Lb(cos(α2) + 1) cos(ψ2) + 2b2(cos(α2) + 1) = 0

(5)
A set of four equations in four unknowns is thus available. A univariate polyno-
mial can be obtained upon elimination of three of the four unknowns. There are
several ways to do so with a computer algebra software. We have used Maple
and its Siropa library [14]. This library was developed in the frame of a collab-
orative project on the kinematics of parallel manipulators, see e.g. [15], [16] for
more details on the implementation and use of these tools. It contains specific
macro-functions that use efficient algebraic tools such as Groebner bases. Specif-
ically, the Projection function was used to project the system of four equations
in order to obtain one single equation in one single variable, chosen here as φ1.
The half-tangent substitution yields a factored polynomial, one of which defines
the characteristic polynomial. The characteristic polynomial obtained turns out
to be of degree 4 in t=tan(φ1/2) and can be written as follows:

a4t
4 + a3t

3 + a2t
2 + a1t+ a0 = 0 (6)

where :

a4 = (b+ 1)2(b2y2 + x4 + 2x2y2 + y4 + 4x3 + 4xy2 + 5x2 + y2 + 2x) (7)
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a3 = 4y(b+ 1)(2b2x+ b2 − 2x2 − 2y2 − 4x− 1) (8)

a2 = 2(b4y2+b2x4+2b2x2y2+b2y4+b2x2−10b2y2+x4+2x2y2+y4−3x2+9y2)
(9)

a1 = 4y(b− 1)(2b2x− b2 + 2x2 + 2y2 − 4x+ 1) (10)

a0 = (b− 1)2(b2y2 + x4 + 2x2y2 + y4 − 4x3 − 4xy2 + 5x2 + y2 − 2x) (11)

Note that L was set equal to 1 to simplify the calculations without loss of
generality. For each solution φ1, α1 is then solved from the first equation in (5)
(disregarding the solution α1 = π corresponding to the parallelogram assembly):

tan(α1/2) =
−L cos(φ1) + b

L sin(φ1)
(12)

Finally, ψ2 and α2 are solved from system (4), which gives two solutions, one
of which never satisfies the closed-loop equations (5). In total, thus, one comes
up with a maximum number of four solutions. The inverse kinematics is solved
for a manipulator defined by L = 1 and b = 2/3 at x = 0.03 and y = 1.6. Four
solutions are found (see figure 3), showing that the characteristic polynomial (6)
is of minimal degree.
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Fig. 3: The four inverse solutions at x = 0.03 and y = 1.6 (L = 1 and b = 2/3)

3 Singularity analysis and aspects

The Jacobian matrix of the manipulator is derived from system (3) and its
determinant is calculated and can be put in the following form:

Det(J) = (sin(θ1)
2b2 cos(θ1)− (L2 − b2 cos(θ1)

2)(cos(θ1) + 2 cos(θ2 + 2θ1)))

(cos(θ2 + 2θ1)b
2 cos(θ2) sin(θ2)− (L2 − b2 cos(θ2)

2) sin(θ2 + 2θ1))

−(− sin(θ2 + 2θ1)b
2 cos(θ2) sin(θ2)− (L2 − b2 cos(θ2)

2) cos(θ2 + 2θ1))

(cos(θ1)
2b2 sin(θ1)− (L2 − b2 cos(θ1)

2)(sin(θ1) + 2 sin(θ2 + 2θ1)))

(13)
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Solving Det(J) = 0 for θ1 yields two solution sets. The first one is θ1 = −θ2 ± π
and means that the two modules are coincident. It is equivalent to the fully-folded
back configuration of a planar 2R serial manipulator. When the manipulator is
in this singularity, the reference point is at the origin x = 0 and y = 0, whatever
θ1. The second solution is given by:

θ1 = atan2(− sin(θ2)(4b
4 cos(θ2)

4 − 4L2b2 cos(θ2)
2 − L2b2 + L4),

cos(θ2)(4b
4 cos(θ2)

4 − 4b4 cos(θ2)
2 − 4L2b2 cos(θ2)

2 + 3L2b2 + L4)) (14)

This solution is associated with the configuration where the two instantaneous
centers of rotation (ICR) are aligned with the end-effector control point, like in
the fully outstretched configuration of a planar 2R serial manipulator. In this
singularity, the manipulator cannot produce an instantaneous motion along a
line passing through the two mechanism ICR and the end-effector control point.
The above singularities divide the joint space into singularity-free domains called
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Fig. 4: Singularity curves in the joint space and aspects when L = 1 and b = 2/3

aspects [17]. The singularity θ1 = −θ2±π produces two lines while the singularity
defined by equation (14) gives a curve, as shown in figure 4. In the absence of joint
limits, the opposite sides of the square are in fact coincident and the singularity
curves divide the joint space into only two aspects. Since the manipulator admits
up to four solutions, there are two solutions in each aspect, which means that the
manipulators can move from one inverse kinematic solution to another without
meeting a singularity, namely, it is cuspidal [19]. To the authors’ knowledge, it
is the first time that a planar positioning manipulator is shown to be cuspidal.

4 Workspace analysis

When plotted into the workspace, the singularity curves define its boundaries.
The equation of these curves can be obtained by deriving the discriminant of
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the characteristic polynomial (6). By doing so, a polynomial of degree 16 in x
and y is obtained. Its expression is quite large and shall not be reported here
for lack of space. Figure 5 shows the plot of these curves for three examples. In
the second and third figures, they divide the workspace into three regions. In
the largest one, the manipulator admits two inverse kinematic solutions. In the
two smaller regions, there are four solutions. Clearly, the 4-solution regions get
larger when b is increased. The boundaries of these two 4-solution regions have
three singular points: a node and two cusps. The existence of cusps confirms the
fact that the manipulator is cuspidal. A non-singular solution changing motion
can be defined by encircling one of the cusps [18], [19]. Note that the two aspects
map onto the whole workspace, namely, figure 5 also shows the image of any of
the two aspects.
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Fig. 5: Workspace boundaries when L = 1 and b = 2/5 (left), b = 2/3 (center),
b = 9/10 (right)

5 Conclusion

The complete kinematic analysis of a planar manipulator made of two X-four bar
mechanisms in series has been carried out. The manipulator was shown to have
two or four solutions depending on its geometric parameter values. When it has
four solutions, the manipulator turns out to be cuspidal, a result that was not
expected. The influence of the geometric parameters on the shape and size of the
workspace was analyzed. The influence of joint limits was not reported for lack
of space and shall be studied in a near future as they also play an important role.
Internal collisions were not considered since a suitable design by assembling the
rods in different planes allows avoiding any physical interference. Future work
will be conducted on the actuation strategy.

Acknowledgement This work was conducted with the support of the French
National Research Agency (AVINECK Project ANR-16-CE33-0025).



8 Matthieu Furet et al.

References

1. R. B. Fuller, Tensile-integrity structures, United States Patent 3063521,1962
2. Skelton, R. and de Oliveira, M., Tensegrity Systems. Springer, 2009
3. Motro, R. Tensegrity systems: the state of the art, Int. J. of Space Structures, 7 (2),

pp 75–83, 1992
4. S. Levin, The tensegrity-truss as a model for spinal mechanics: biotensegrity, J. of

Mechanics in Medicine and Biology, Vol. 2(3), 2002
5. M. Arsenault and C. M. Gosselin, Kinematic, static and dynamic analysis of a planar

2-dof tensegrity mechanism, Mech. and Mach. Theory, Vol. 41(9), 1072-1089, 2006
6. C. Crane et al., Kinematic analysis of a planar tensegrity mechanism with pres-

stressed springs, in Advances in Robot Kinematics: analysis and design, pp 419-427,
J. Lenarcic and P. Wenger (Eds), Springer (2008)

7. P. Wenger and D. Chablat, Kinetostatic Analysis and Solution Classification of
a Planar Tensegrity Mechanism, proc. 7th. Int. Workshop on Comp. Kinematics,
Springer, ISBN 978-3-319-60867-9, pp422-431, 2017.

8. K. Snelson, 1965, Continuous Tension, Discontinuous Compression Structures, US
Patent No. 3,169,611

9. Q. Boehler et al., Definition and computation of tensegrity mechanism workspace,
ASME J. of Mechanisms and Robotics, Vol 7(4), 2015

10. JB Aldrich and RE Skelton, Time-energy optimal control of hyper-actuated me-
chanical systems with geometric path constraints, in 44th IEEE Conference on De-
cision and Control, pp 8246-8253, 2005

11. S. Chen and M. Arsenault, Analytical Computation of the Actuator and Cartesian
Workspace Boundaries for a Planar 2-Degree-of-Freedom Translational Tensegrity
Mechanism, Journal of Mech. and Rob., Vol. 4, 2012

12. D. L Bakker et al., Design of an environmentally interactive continuum manipula-
tor, Proc.14th World Congress in Mechanism and Machine Science, IFToMM’2015,
Taipei, Taiwan, 2015

13. M. Lettl., Kinetostatic analysis of tensegrity mechanisms, application to the mod-
elling of bird necks, Master thesis, Ecole Centrale de Nantes, France, 2017

14. F. Rouillier et al., Siropa Library V1, IDDN.FR.001.140015.000.S.P.2017.000.20600.
15. M. Manubens et al., Cusp Points in the Parameter Space of Degenerate 3-RPR

Planar Parallel Manipulators, ASME J. of Mechanisms and Robotics, Vol. 4(4),
2012

16. G. Moroz et al., On the determination of cusp points of 3-RPR parallel manipula-
tors, Mechanism and Machine Theory 45 (11), pp. 1555-1567, 2011

17. P. Borrel and A. Liegeois, A study of manipulator inverse geometric solutions with
application to trajectory planning and workspace determination.

18. J. El Omri and P. Wenger, How to recognize simply a non-singular posture changing
manipulator, Proc. 7th Int. Conf. on Advanced Robotics, 215-222, 1995

19. P. Wenger, Cuspidal and noncuspidal robot manipulators. Special issue of Robotica
on Geometry in Robotics and Sensing, Volume 25(6), pp.677-690, 2007


	Kinematic analysis of planar tensegrity 2-X manipulators

