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Alexis Cornet, Christian Laforest∗

LIMOS (UMR CNRS 6158), Université Clermont-Auvergne, France
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Abstract

In this paper we study variants of well-known graph problems: vertex cover, connected vertex
cover, dominating set, total dominating set, independent dominating set, spanning tree, connected
minimum weighted spanning graph, matching and hamiltonian path. Given a graph G = (V,E),
we add a partition ΠV (resp. ΠE) of its vertices (resp. of its edges). Now, any solution S
containing an element (vertex or edge) of a part of this partition must also contain all the
others ones. In other words, elements can only be added set by set, instead of one by one as
in the classical situation (corresponding to obligations that are singletons). A motivation is to
give a general framework and to study the complexity of combinatorial problems coming from
systems where elements are interdependent. We propose hardness and approximation results.
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1 Obligations

Systems (production, distribution, network,...) are composed of elements (factories, vehicles, soft-
wares, nodes, links, people...) and must supply outputs (services or goods). These elements are
linked (to communicate, to exchange materials,...) and these links form a network modeled as a
graph G = (V,E). For the production of outputs or to manage the network, elements must work to
complete a task and must be organized. For example, a spanning tree can be useful (to broadcast
pieces of information), or a vertex cover (to monitor the links of G) or a dominating set (to monitor
the elements). But, in some situations, some sets of these elements must be simultaneously active.
This is the case for example when the treatment of a task involves a tool that is distributed on
several nodes and to use one of these nodes, all the other ones must also be active. Another case is
when nodes are people that are member of teams: if one member of a given team is mobilized for
the task then all the other members are also mobilized.

We can model this interdependence between two elements a and b as follows: element a is active
(or selected for the task) if and only if element b is active (or selected). We write this dependence
< a, b >, or equivalently < b, a >. However, by its nature, this relation < ., . > is transitive (if
< a, b > and < b, c > then we necessarily get < a, c >) and reflexive (we have < a, a > for any
element a). < ., . > is then an equivalence relation and it creates a partition of the elements, where
all the parts are called obligations in this article. This means that when an element x is involved,
all the elements in relation with x in the transitive closure of < ., . > are also involved. Note that if
an element y is involved in no < ., . > relation (except with itself), then it is alone in its obligation
(singleton {y}).

We do not address here any specific practical problem but we give a general framework and
we treat the underlying combinatorial optimisation problems. Hence, in this paper we deal with
classical graph problems with additional constraints. Let G = (V,E) be any undirected graph.
We call system of obligations on vertices of G a partition ΠV = V1, . . . , Vk of V and a system of
obligations on edges of G a partition ΠE = E1, . . . , Ek of E. Each element Vi (resp. Ei) is called
a part (or obligation) of ΠV (resp. ΠE). Now, given G and an associated system ΠV (resp. ΠE)
of obligations on vertices (resp. edges), any solution S to a problem on G must respect (or satisfy)
the (constraints on) obligations, that is must have the following property: if u ∈ S (resp. e ∈ S)
and u ∈ Vi (resp. e ∈ Ei) then Vi (resp. Ei) must be entirely included in S, that is Vi ⊆ S (resp.
Ei ⊆ S). In other words, once an “object” x (vertex or edge), element of a part X, is in a solution,
all the others elements of X must also be included in the solution. As mentioned at the beginning,
obligations can be useful to model situations in which some set of elements (captors, computers,
softwares, people, etc.) are interdependent and the presence of one element induces the presence
of all the other ones. From an algorithmic point of view, it is clear that introducing obligations
constraints in a classical graph problem PROB leads to a direct generalization of PROB (where
obligations are all singletons). But we will see that in most cases the problems with obligations
become much harder than the original ones.

In addition to the motivations mentioned above, this study comes to complete many recent
works on a sort of opposite problem, implying what is called conflit which is a pair {x, y} of edges
or vertices of a graph that cannot be both in a solution (x and y are incompatible). Here an
instance is then a graph G and a set of conflicts. Obtaining a solution without conflict is hard in
general for many graph problems, as it is shown in these papers [4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 17].

In what follows we give useful notations for the rest of the paper (undefined terms can be found
in [7] for example). Let G = (V,E) be any non directed graph, with V its set of vertices and E its
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set of edges. Two vertices u and v are neighbors if G contains the edge uv. The degree of a vertex
u is its number of neighbors. We call graph induced by a set of edges Ei ⊆ E, the graph whose set
of edges is Ei and whose vertices are the ones that are at the extremity of at least an edge of Ei.
The graph induced by a set S of vertices of G, noted G[S], is the graph whose set of vertices is S
and whose edges are the ones of G connecting two vertices of S. A stable (or independent) S of G
is a subset of its vertices having the property that G[S] contains no edge.
In our paper we reduce some of our problems to well-known NP-complete problems like set cover,
X3C (exact cover by 3 sets), minimum size stable,... whose strict description can be found for
example in the classical textbook [8].

2 Vertex cover with obligations on vertices

Let G = (V,E) be any graph and ΠV = V1, . . . , Vk a partition of V , a system of obligations on
vertices of G. A vertex cover with obligations (VCO) S, of (G,ΠV ) is:

• A vertex cover of G: each edge e = uv ∈ E is covered by S (u ∈ S or v ∈ S (both can be in
S)).

• ∀u ∈ S, if u ∈ Vi, then Vi ⊆ S (i.e. S respects the constraints on obligations).

It is easy to see that any instance (G = (V,E),ΠV ) always contains at least a VCO, namely
S = V . A VCO S∗ of the instance (G,ΠV ) is said optimal, and noted VCOOPT , if it is of minimum
size. Constructing a VCOOPT is hard since even in the very particular case where each part of
ΠV is a singleton, this is the classical NP-complete vertex cover problem [8]. In what follows we
propose an approximation algorithm for the VCOOPT problem. But first we can easily simplify the
instance in some cases. Indeed, we can remark that if e = uv ∈ E and u and v are in the same
part Vi of the partition ΠV (u ∈ Vi and v ∈ Vi) then any VCO (thus any VCOOPT ) must contain Vi
since the edge e = uv must be covered and u or v must be in any solution and thus also Vi. Before
running any algorithm, we can include in any solution, all the parts Vi of ΠV such that G contains
an edge e with both extremities in Vi. This can be done in polynomial time. We suppose now that
this pre-treatment has been done and that G does not contain these vertices anymore and ΠV does
not contain these parts anymore.

A 2-approximation algorithm for the VCOOPT problem. At this point we can suppose that
an instance is now (G = (V,E),ΠV = V1, . . . , Vk) where each Vi is a stable of G.

1. Construct as follows a new weighted graph Gc = (Vc, Ec) called contracted graph:

• Each stable Vi of ΠV is associated to a vertex vi of Gc.

• The weight of vi is the number of vertices of Vi (|Vi|).
• Add an edge between vi and vj in Gc iff G contains (at least) an edge having an extremity

in Vi and the other in Vj .

2. Construct a 2-approximated weight vertex cover Sc in Gc (i.e. a vertex cover of Gc whose
total weight is at mots two times the minimum one. This approximation can be done in
polynomial time, see [1]).
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3. Return S =
⋃

i:vi∈Sc

Vi (for each vertex vi of Sc, put the corresponding obligation Vi in S).

Theorem 1 The algorithm described above is a 2-approximation algorithm for the VCOOPT prob-
lem.

Proof. This algorithm is polynomial. It constructs a vertex cover ofG that satisfies the constraints
on obligations.

Note that to respect the conditions on obligations, any VCO of (G,ΠV ) is a union of some parts
of ΠV . We construct now a one-to-one correspondance respecting the weights and the sizes between
the VCO of (G,ΠV ) and the weighted vertex covers of Gc.

• Let S be any VCO of (G,ΠV ). The set Sc = {vi : i : Vi ⊆ S} associated to S is a vertex cover
of Gc, of weight |S|.

• Conversely, let Sc = {v1, . . . , vl} be any weighted vertex cover of Gc. In this case, S = {Vi :
i : vi ∈ Sc} is a VCO of (G,ΠV ) whose size is equal to the weight of Sc.

A 2-approximation of an optimal weighted vertex cover of Gc corresponds to a 2-approximated
VCOOPT of (G,ΠV ). Hence the proposed algorithm is a 2-approximation algorithm for the VCOOPT
problem. �

3 Connected vertex cover with obligations on vertices

In this section, G = (V,E) is a connected graph. As in section 2, the obligations are given by a
partition ΠV = V1, . . . , Vk of V . A CVCO, connected vertex cover with obligations, S of the instance
(G,ΠV ) is:

• A vertex cover of G (for any edge uv ∈ E, u ∈ S or v ∈ S (both can be in S)),

• A connected set of vertices: G[S] (the induced graph of S in G) is connected,

• S respects the constraints of obligations of ΠV .

It is easy to see that any instance (G = (V,E),ΠV ) always contains at least a VCO, namely S = V
since G is connected. A CVCOOPT is a CVCO of minimum size. Constructing a CVCOOPT is a
hard problem, even if ΠV is a partition of singletons (in this case this is the classical NP-complete
connected vertex cover problem [8]).

Theorem 2 Any α-approximation algorithm for the CVCOOPT problem can be transformed into a
2α-approximation algorithm for the minimum size set cover problem.

Proof. Let (A,X) be any instance of the set cover problem: A = {a1, . . . , an} is a set of n
elements and X = X1, . . . , Xk is a family of subsets of A (Xi ⊆ A) covering A: A = ∪ki=1Xi. An
optimal set cover is a sub-family of X, of minimum size, covering A. We note t∗ the size of such
an optimal solution of (A,X).
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From (A,X) let us construct an instance of our problem. Each element ai is associated to a
vertex, also noted ai. Each set Xi of X is associated to a set noted Vi of n+1 new vertices, forming
a stable. Each of the n+ 1 vertices of the set Vi is connected to a vertex aj iff the set Xi contains
the element aj . Create now a new vertex r and connect it to all the vertices of the k sets Vi. The
degree of r is then k(n+ 1). We note G = (V,E) the final graph that is bipartite.

The obligations are the following. Each Vi is an obligation containing exactly n+1 independent
vertices. Add the obligation V0 containing r and the n vertices of A. V0 is then also a stable of
G composed of n + 1 vertices. ΠV = V0, V1 . . . , Vk is a partition of the set V of vertices of G and
is the system of obligations that we consider here; each Vi is a stable of n + 1 vertices of G. The
instance (G,ΠV ) can be constructed in polynomial time from the instance (A,X). Consider now
the following one-to-one mapping between the CVCO of (G,ΠV ) and the set covers of (A,X).

Let SX = Xi1 , . . . , Xit be any set cover of size t of (A,X). Consider now the following set S of
vertices of G:

S = V0 ∪
t⋃

j=1

Vij

S is a vertex cover of G (all the edges of G are covered by the vertices of V0), G[S] is connected
(because the vertices of Vij are interconnected via r and each ai is connected to at least all the
vertices of a set Vij because SX is a covering) and satisfies the obligations of ΠV (S is composed of
a union of obligations of ΠV ). The size of S is: |S| = n+ 1 + t(n+ 1) = (n+ 1)(t+ 1).

Consider now any CVCO S of (G,ΠV ). As S satisfies the constraints on obligations, it is com-
posed of a union of obligations. As G[S] is connected and G is bipartite, it must contain some of
the obligations Vi, i ≥ 1. But as S must contain r or a vertex ai to ensure the connectivity it must
contain the obligation V0. Note V0, Vi1 , . . . , Vit the obligations composing S: S = V0∪Vi1 ∪ . . .∪Vit .
Let SX = Xi1 , . . . , Xit be the sub-family associated to this CVCO S. As V0 ⊆ S, each vertex ai
is connected to the other vertices of S via the vertices of at least a Vij . Thus SX is a set cover of
(A,X). We get: |SX | = t and |S| = (t+ 1)(n+ 1).

This one-to-one mapping associates to each set cover of size t a CVCO of size (t+ 1)(n+ 1) and
reciprocally. The transformations in one direction or the other can be done in polynomial time.

Suppose that a CVCOOPT can be approximated with a ratio α in polynomial time. Then, for any
instance (A,X) one can: construct the associated instance (G,ΠV ), then use this approximation
algorithm to construct a α-approximated CVCO S: (t + 1)(n + 1) = |S| ≤ α|S∗|. Then with
the one-to-one transformation, one can construct the associated set cover SX , of size t. This
chain of constructions is polynomial. Let S∗X be an optimal set cover, of size t∗. By the one-to-one
transformation, this corresponds to a CVCO of size (t∗+1)(n+1). This CVCO is optimal (otherwise
it would be possible to construct a smaller one with the one-to-one transformation). Hence,

|S| = (t+ 1)(n+ 1) ≤ α(t∗ + 1)(n+ 1)

then, t+ 1 ≤ α(t∗ + 1) and t ≤ αt∗ + (α− 1) ≤ α(t∗ + 1) ≤ 2αt∗ (because 1 ≤ t∗). The algorithm
described above is then a 2α-approximation algorithm for the set cover problem. �

Corollary 1 The CVCOOPT problem cannot be approximated by a ratio better than c log(n)/2
unless P = NP .
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Proof. Theorem 2 shows that the CVCOOPT problem cannot be approximated by a ratio better
than c log(n)/2 since the optimal set cover problem cannot be approximated within c log(n) for
some c > 0, unless P = NP , see [1]. �

4 Dominating set with obligations on vertices

In this section, an instance is (G = (V,E),ΠV = V1, . . . , Vk) where G is a graph and ΠV is a
partition of V . A dominating set with obligations S (DO) of (G,ΠV ) satisfies:

• S dominates G (for any u ∈ V − S, u has at least a neighbor in S),

• S respects the constraints of obligations of ΠV .

Remark 1 There is always a DO: V , the set of vertices of G.

The minimization problem is NP-complete and cannot be approximated with a better ratio
than c · log |V | for any c > 0 (unless P = NP ): indeed when the obligations are all singletons, we
get the classical dominating set problem having this bound on approximation ratio, see [16].

Let us show now that it is possible to construct a O(log(|V |))-approximation for our problem of
dominating set with obligations. For that purpose we reduce it to the weighted set cover for which
there is such an approximation ratio O(log(|V |)), see [3].

Theorem 3 Given (G,ΠV ), it is possible to approximate an optimal DO with ratio O(log(|V |)).

Proof. From instance (G = (V,E),ΠV ), we construct (U, S,w) an instance of the weighted set
cover. Let U = V . For any obligation Vi ∈ ΠV , we construct a set Si composed of the union of
the closed neighborhoods of vertices of Vi (the closed neighborhood of x is the set of neighbors of
x plus x itself). We can remark that a set Si contains exactly the vertices dominated by Vi. The
weight of this set is the size of the obligation (which is, in general, different from the size of Si) i.e.
w(Si) = |Vi|. The family S of sets of the instance (U, S,w) is composed of all these Si. Figure 1
shows an example of construction of S1 from V1. Here, the set constructed has weight 3 (the size
of V1) and dominates V1 and its neighbors.

We construct now a one-to-one mapping between the dominating sets with obligations of (G,ΠV )
and the set covers of (U, S,w).

Let D be any dominating set with obligations of (G,ΠV ). As D respects the obligations, D is
a union of obligations Vi1 , . . . , Vit . Construct C =

⋃t
j=1 Sij . As D is a dominating set of G, each

vertex u of V is dominated by a vertex in a set Vij and, hence, each element u of U = V is covered

by Sij , i.e. by C. We also have |D| =
∑t

j=1 |Vij | =
∑t

j=1w(Sij ) = w(C).

Reciprocally, let C = Si1 , . . . , Sil be a set cover of (U, S,w). Construct D =
⋃l
i=1 Vil . As C is

a set cover, each element v is covered by at least a Sij , and then each corresponding vertex v is
dominated by itself if it is in Vij , or by one of its neighbors in Vij , D is then a dominating set of

G. Moreover, by construction, D respects the obligations. As previously, w(C) =
∑l

j=1w(Sij ) =∑l
j=1 |Vij | = |D|.
The final result follows from this polynomial transformation and one-to-one mapping, preserving

size/weight and the result of [3]. �
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Figure 1: Construction of S1 from V1.

5 Total dominating set with obligations on vertices

In this section, an instance is (G = (V,E),ΠV = V1, . . . , Vk) where G is a graph and ΠV is a
partition of V . A total dominating set with obligations S (T DO) of (G,ΠV ) satisfies:

• S totally dominates G (for any u ∈ V , u has at least a neighbor in S),

• S respects the constraints of obligations of ΠV .

Remark 2 (G = (V,E),ΠV ) contains a T DO (the set V ) iff G has no isolated vertices.

An optimal T DO is a T DO of minimum size. The minimization problem is NP-complete
and cannot be approximated with a better ratio than c · log |V | for any c > 0: indeed when the
obligations are all singletons, we get the classical total dominating set problem having this bound
on approximation ratio, see [2].

Let us show now that it is possible to construct a O(log(|V |))-approximation for our problem
of total dominating set with obligations. For that purpose we reduce it to the weighted Set Cover
for which there is such an approximation ratio O(log(|V |)), see [3]. The reduction is very similar
to the one of Section 4, however, to be complete we include it.

Theorem 4 Given (G,ΠV ), it is possible to approximate an optimal T DO with ratio O(log(|V |)).

Proof. Let (G = (V,E),ΠV ) be any instance of our problem. We suppose here that G has no
isolated vertices, i.e., (G = (V,E),ΠV ) contains a T DO. We construct (U, S,w) an instance of the
weighted set cover. Let U = V . For any obligation Vi ∈ ΠV , we construct a set Si composed of
the union of the open neighborhoods of vertices of Vi (the open neighborhood of a vertex x is the
set of neighbors of x, without x itself). The weight of this set is the size of the obligation (which
is, in general, different from the size of Si) i.e. w(Si) = |Vi|. The family S of sets of the instance
(U, S,w) is composed of all these Si. Figure 2 shows an example of construction of S1 from V1.
Here, the set constructed has weight 3 (the size of V1) and dominates the open neighborhood of
V1. We can remark that all the vertices of V1 are not necessarily in S1.
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Figure 2: Construction of S1 from V1.

We construct now a one-to-one mapping between the dominating sets with obligations of (G,ΠV )
and the set covers of (U, S,w).

Let D be any total dominating set with obligations of (G,ΠV ). As D respects the obligations,
D is a union of obligations Vi1 , . . . , Vit . Construct C =

⋃t
j=1 Sij . As D is a dominating set of G,

each vertex u of V is dominated by a vertex in a set Vij and, hence, each element u of U = V is

covered by Sij , i.e. by C. We also have |D| =
∑t

j=1 |Vij | =
∑t

j=1w(Sij ) = w(C).

Reciprocally, if C = Si1 , . . . , Sil is a set cover of (U, S,w), let D =
⋃l
i=1 Vil . As C is a set cover,

each element v is covered by at least a Sij , and then each corresponding vertex v is dominated by
a neighbor in Vij , D is then a total dominating set of G. Moreover, by construction, D respects

the obligations. As previously, w(C) =
∑l

j=1w(Sij ) =
∑l

j=1 |Vij | = |D|.
The final result follows from this polynomial transformation and polynomial one-to-one map-

ping, preserving size/weight and the result of [3]. �

6 Independent dominating set with obligations on vertices

In this section, an instance is (G = (V,E),ΠV = V1, . . . , Vk) where G is a graph and ΠV is a
partition of V . An independent dominating set with obligations S (IDO) of (G,ΠV ) satisfies:

• S dominates G (for any u ∈ V − S, u has at least a neighbor in S),

• S is a stable of G (no edges between vertices of S),

• S respects the constraints of obligations of ΠV .

In this particular variant of domination, a solution is not always guaranteed.

Theorem 5 Determining if (G,ΠV ) contains an IDO is NP-complete.

Proof. The problem is clearly in NP. Let (X,Z) be a X3C instance (exact cover by 3 sets) where
X is a set of 3q elements and each Zi is a subset of 3 elements of X (Zi ⊆ X and |Zi| = 3) with
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Figure 3: Construction of (G,ΠV ) from (X,Z).

the property: X =
⋃k
i=1 Zi (the sets Zi cover X). The X3C problem consists in deciding if this

instance contains an exact cover of X (each element of X is in exactly one subset of the solution).
This problem is NP-complete, see [8].

Let us construct an instance of our problem from (X,Z). For each element x of X, a P3 (a path
with 3 vertices) is created and one extremity is called the vertex representing the element. For each
subset z of Z, a path P2 is created and one extremity is called the vertex representing the subset.
Additional edges are added between:

• Each vertex representing a subset and each vertex representing an element inside this subset.

• Each pair of vertices representing subsets whose associated subsets have non-empty intersec-
tion.

For each element x, an obligation containing the vertex representing x and its neighbor in its P3

is created. They are called obligations of elements. All the other obligations are singletons. An
exemple of result of this (polynomial) construction is given in Figure 3.

Let D be an independent dominating set respecting the obligations of (G,ΠV ). D contains no
obligation of elements because these obligations are between two vertices linked by an edge. Hence,
each vertex representing an element can only be dominated by vertices representing subsets. Let
S be the family of subsets corresponding to the vertices representing subsets of D. Then as each
vertex representing an element is dominated by D, each element is covered by S. Moreover, as only
subsets with non-empty intersection are neighbors, D is an independent set, and the subsets of S
are pairwise disjoint: S is then an exact cover of (X,Z).

Now, let S be an exact cover of (X,Z). Let us construct D. For each Zi, the corresponding
vertex is added to D iff Zi is in S. Otherwise, the neighbor of Zi in the P2 is added to D. Also
add to D all the vertices that are the opposite extremities of the vertices representing an element
in each P3. It is easy to see that D is an independent set. Moreover, D respects the obligations
(since each vertex of D is in a singleton obligation). Finally, each element is covered by S: each
vertex representing an element is then dominated by a vertex representing a subset. The paths P2

are dominated either by the vertex representing the subset or by the other extremity. For each
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path P3 the vertex, opposite extremity of the vertex representing the element, is in D and covers
itself and its unique neighbor. D is then an independent dominating set, respecting the obligations
of (G,ΠV ). �

7 Spanning tree with obligations on edges

In this section, an instance is (G = (V,E),ΠE = E1, . . . , Ek) where G is any connected graph and
ΠE , the obligations, is a partition of E.

The objective is, given an instance, (G = (V,E),ΠE = E1, . . . , Ek), to decide if there is a tree
spanning G with obligations (T SO) T = (V,ET ) which is a tree spanning G and such that for any
e ∈ ET , if e ∈ Ei then all the edges of Ei must also be in T .

Theorem 6 Deciding if (G = (V,E),ΠE = E1, . . . , Ek) contains a T SO is NP-complete, even if:

• G is bipartite, of maximum degree 4 and

• each Ei induces a star (that is a tree with a vertex directly connected to all the others) with
exactly 3 edges (|Ei| = 3).

Proof. The problem is in NP.
Let (X = {x1, . . . , x3q}, Z1, . . . , Zk) be any instance of the X3C problem (exact cover by 3 sets)

where X is a set of 3q elements and each Zi is a subset of 3 elements of X (Zi ⊆ X and |Zi| = 3)

with the property: X =
k⋃
i=1

Zi (the sets Zi cover X). The X3C problem consists in deciding if this

instance contains an exact cover of X, i.e., if there exist Zi1 , . . . , Ziq pairwise disjoint sets such that

X =

q⋃
j=1

Zij . This is a well-known NP-complete problem, even if each element xi is in at most 3

sets, see [8]. It is this restricted formulation that we consider here.
From this instance, let us construct a graph G. For each element xi of X create a new vertex,

also noted xi. For each set Zi create a new vertex, also noted Zi. Add an edge between each vertex
Zi and the 3 vertices that are in the set Zi. Now, create a tree Tr to connect the k vertices Zi that
will become leaves of Tr. The Zi are connected two-by-two by new vertices. Then these dk/2e new
vertices are connected two-by-two by new vertices, and so on until there is only one final new vertex
that we call r (as “root” of Tr). Each vertex u, except the leaves Zi, have one or two children. For
each such u we add a new vertex lu (or two if necessary) that is only connected to u (lu is a leave).
These 3 vertices are called the 3 children of u. We get now the final tree. All of these vertices
and edges form the final graph G = (V,E) that is bipartite and, thanks to the restriction on X3C
instances, the maximum degree of G is 4. An illustration of the construction is given in Figure 4:
the bottom vertices are elements of X, squared vertices are the Zi, black ones are the additional
children and colored vertices are the internal ones of tree Tr. The dashed ellipses represent the
obligations that are described now.

For each vertex Zi we group in a same obligation noted Ei the 3 edges connecting Zi to the 3
vertices representing the 3 elements that are in set Zi. We group in a same obligation the 3 edges
connecting any internal vertex u to its 3 children. All these obligations are called tree obligations.
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Figure 4: Construction of G from a X3C instance.

Each edge of G is now in exactly one obligation (tree one or in a Ei) and the set of all these
obligations is ΠE , composed of stars of exactly 3 edges.

The construction described above is polynomial.

Suppose that the X3C instance has a solution Zi1 , . . . , Ziq . In this case, we can select the follow-
ing obligations: all the tree obligations and all the edges in the obligations Ei1 , . . . , Eiq . This gives
a tree spanning G (each vertex xi is a leaf because it is a neighbor of exactly one vertex Zij and
each vertex Zl is connected to the other vertices via the tree Tr). This tree respects the obligations
of ΠE and is then a T SO of (G,ΠE).

Conversely, suppose that the instance (G,ΠE) has a T SO noted T . As T respects the obli-
gations, it necessarily contains all the tree obligations, this is mandatory to include the leaves of
the form lu. It also contains other obligations. But each vertex xi is a leaf of T . Otherwise, if
it is neighbor of 2 vertices, Za and Zb then we would have a cycle with some edges of the tree
obligations, that is not allowed because T is a tree. As T covers all the 3q vertices/leaves xi it
must contain exactly q vertices of type Zi, noted Zi1 , . . . , Ziq , and their 3 edges incident from the
associated obligations Ei1 , . . . , Eiq . The sets Zi1 , . . . , Ziq cover X and are pairwise disjoint and is
then a solution for the X3C instance. �

8 Connected spanning graph of minimum weight with obligations
on edges

In this section G = (V,E) is a weighted connected graph: each edge e ∈ E has a weight w(e) > 0.
The obligations form a partition ΠE = E1, . . . , Ek of E. The objective is to extract from G a subset
S of edges, inducing a connected graph spanning all the vertices of V , having a minimum weight
and respecting the obligations. Such an object is called a CSGOOPT (Minimum Weight Connected
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Spanning Graph with obligations). We call CSGO a Connected spanning Graph with obligations (a
CSGOOPT is a minimum weight CSGO).

We can note that, because of the obligations, a CSGO is not necessarily a tree. Indeed, if each
obligation induced a cycle for example, no spanning tree is possible. We can remark that since G
is connected, G itself is a CSGO of (G,ΠE) (the problem always has a solution) and that if ΠE

only contains singletons, this is the traditional minimum weight spanning tree problem that can be
polynomially solved with the classical Prim algorithm for example.

Theorem 7 Let (G = (V,E),ΠE = E1, . . . , Ek) be an instance with G a weighted connected graph.
Determining if there is a CSGO of weight at most |V | − 1 is NP-complete, even if:

• G is bipartite, of maximum degree 4,

• all the weights are 1 and

• each obligation induces a star with 3 edges.

Proof. This problem is clearly in NP. Any spanning graph contains at least n − 1 edges, with
n = |V |. Hence, in the case where each edge has weight 1, there is no CSGO with weight strictly
less than n− 1. Deciding if there exists a CSGO of weight at most n− 1 is then strictly equivalent
to decide if there exists a T SO in this instance, which is NP-complete, even if G verifies the
hypotheses, thanks to Theorem 6. �

Theorem 7 shows that deciding whether an instance contains a CSGO is NP-complete, even if
all the weights are equal. The next result shows that there is no constant approximation algorithm
for the weighted case.

Theorem 8 Any α-approximation algorithm for the CSGO problem in bipartite graphs where obli-
gations induce stars can be transformed into a α-approximation algorithm for the minimum size set
cover problem.

Proof. Let (X = {x1, ...xn}, F = {F1, ...Fk}) be any instance of the set cover problem. Let
us construct an instance of CSGO. Put in V the n vertices corresponding to x1, ...xn, k vertices
corresponding to sets F1, ...Fk and an additional new vertex r. Link r to each vertex Fi and link
each vertex Fi to all the xj such that xj ∈ Fi. Clearly the graph obtained is bipartite. Put in
a same obligation, noted O0, all the incident edges of r and assign a weight ε/k on each edge of
O0 (where ε can be as small as desired). For each Fi, put all incident edges to Fi, except the one
between Fi and r, in an obligation noted Oi and assign to each such edge of Oi a weight 1/|Fi|.
Hence, the total weight of each obligation is 1, except O0 with weight ε. Each obligation induces a
star. An exemple of this construction is given in Figure 5.

We show now that each solution of the set cover problem can polynomialy be transformed in a
solution of equivalent weight for the CSGO problem, and reciprocally.

Let S be a solution of the set cover, of size t. We construct C the set of edges as follows: put
O0 in C, and for each 0 < i ≤ k, put Oi in C iff Fi is in S. The vertices r and Fi are connected in
C (via O0). Each element xj is covered by a set Fi of the set cover: the corresponding vertex xj is
connected to the vertex Fi via the obligation Oi, hence C is a CSGO. C contains O0 and t other
obligations, its weight is then t+ ε.
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Figure 5: Construction of the CSGO instance. Dashed ellipses represent the obligations.

Let now C be a CSGO. C contains O0 (to connect r) and t other obligations. Its weight is then
t + ε. Let us construct a solution S of the set cover. For each 0 < i ≤ k, put Fi in S iff Oi ∈ C.
Let xj be an element of X. The corresponding vertex is connected by an edge which is an element
of an obligation Oi. Hence, the corresponding set Fi belongs to S and the element is covered, S is
then a set cover. Moreover, the size of S is t.

As ε can be arbitrary small, using these transformations, one can use a α-approximation algo-
rithm for our CSGO to create a α-approximation algorithm for the set cover problem. �

Corollary 2 The minimum weight CSGO cannot be approximated with a constant approximation
ratio (unless P = NP ), even if G is a bipartite graph and if each obligation induces a star.

Proof. Theorem 8 shows that it is not possible to approximate the CSGO problem with a better
ratio than the one of the minimum size set cover, even in bipartite graphs where each obligation
induces a star. But this last problem cannot be approximated within c log(c) for some c, unless
P = NP , see [1]. �

At this point, an open question remains: determine if there is a constant approximation ratio
for the unweighted case (i.e. for unitary weights).

9 Matchings with obligations on edges

In this section, an instance in (G,ΠE) where G = (V,E) is any graph and ΠE = E1, . . . , Ek is a
partition of E, the set of edges of G.

A matching with obligations (MO) M of the instance (G,ΠE) is a matching of G (set of pairwise
non incident edges of G) respecting the obligations (for any edge e of M , if e ∈ Ei then Ei ⊆M).

It is polynomial to determine if (G,ΠE) contains a MO. Indeed, there is a non empty MO
iff at least an obligation Ei induces a matching. From this we can simplify an instance (G,ΠE):
if a part Ei of ΠE induces a graph in which a vertex has more than one neighbor then Ei can be
deleted from ΠE and the edges of Ei can be deleted from G. This pretreatment can be done in
polynomial time. From now we suppose that (G = (V,E),ΠE = E1, . . . , Ek) is an instance where
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each Ei induces a matching of G and thus contains a MO (possibly empty). A MO of maximum
size is noted MOOPT .

Theorem 9 Let (G = (V,E),ΠE = E1, . . . , Ek) be an instance where each Ei induced a matching
of G. Any α-approximation algorithm for the MOOPT problem can be transformed into a α-
approximation algorithm for the maximum size stable problem.

Proof. Let H = (VH , EH) be any graph, instance of the maximum size stable problem.
Note VH = {h1, . . . , hn} the n vertices of H. We construct an instance of our problem from H.
For each edge hihj of H, we create a new P3 (path with 3 vertices) associated to this edge.

The union of these |EH | pairwise disjoint paths form a graph noted Q (not yet the final graph G).
Now, for each i, 1 ≤ i ≤ n, we create Di a subset of edges of Q as follows. For each edge hihj of
H, put an edge of the associated P3 path in Di and the other one in Dj . These n sets D1, . . . , Dn

form a partition of the edges of Q and each Di is a matching. Figure 6 gives an example of this
construction.

Figure 6: Construction of Q (right) from H (left). Sets Di are in dashed boxes.

The sets Di can have different sizes. Let Da be the one of maximum size (this corresponds to
the maximum degree of H). The next steps consist in adding new independent edges, between new
vertices, to each Di such that the n sets all have the same size |Da|.

Note G = (V,E) the graph obtained from Q by the addition of these new vertices and edges.
We note ΠE = E1, . . . , En obtained by the previous operation of homogenization of size. We now
have the following properties.

• All the sets Ei have the same size noted t,

• E1, . . . , En is a partition of the set E of edges of G,

• each Ei induces a matching in G,

• Ei ∪ Ej is a matching of G iff hihj 6∈ E.
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This instance (G,ΠE) can be constructed in polynomial time from the instance H of the max-
imum size problem.

Let S = {hi1 , . . . , hiq} be any stable, of size q, in H. Let us consider the associated obligations

to S: Ei1 , . . . , Eiq . As S is a stable, MS =

q⋃
j=1

Eij is a matching of G of size qt.

Conversely, let M be any matching of G, composed of the obligations Ei1 , . . . , Eiq . As M is a
matching of G of size qt, S = {hi1 , . . . , hiq} is a stable of size q in H.

There is a one-to-one mapping between the MO of (G,ΠE) and the stables of H. The sizes
are all the same, up to a factor t. Hence, if an approximation algorithm of ratio α exists for the
MOOPT problem then it would be possible to approximate the maximum size stable problem with
a ratio α via the previously described transformations: transform H into the instance (G,ΠE), then
apply the approximation algorithm on this instance and then transform its result into a stable of H.
The conservation of the sizes (up to a factor t) by these transformations insures the approximation
ratio. �

Corollary 3 TheMOOPT problem cannot be approximated with a ratio better than |V |1/2−ε unless
P = NP .

Proof. Theorem 9 shows that it is not possible to approximate the MOOPT problem with a
better ratio than the one of the maximum size stable. But this last problem cannot be approximated
within |V |1/2−ε for any ε > 0, unless P = NP , see [1]. �

10 Hamiltonian path in complete graphs with obligations on edges

Here an instance is (G = (V,E),ΠE = E1, . . . , Ek) where G is any connected graph and ΠE a
partition of E.

A hamiltonian path with obligation (HPO) of (G,ΠE) is a hamiltonian path of G (a path of
|V | − 1 edges, spanning V ) satisfying all the constraints of obligations of ΠE (if an edge e is in the
path then all the edges belonging to the same obligation must also be in the path).

Theorem 10 Deciding if (G,ΠE) contains a HPO is NP-complete, even if G is a complete graph.

Proof. The problem is in NP. Let H = (V,E) be any connected graph, instance of the hamilto-
nian path problem, which is an NP-complete problem, see [8]. Let n = |V |. We suppose here that
n ≥ 4 (if n is smaller then the problem can easily be solved in constant time). The graph for our
problem is Kn, the complete graph on the n vertices V of H. The obligations are the following.
For each edge uv of H, the edge uv of Kn is the only element (singleton) of this part. All the
edges uv outside H (uv 6∈ E) are grouped in a single obligation E0. This instance (Kn,ΠE) can be
constructed in polynomial time. We divide our study in two cases.

Case 1: E0 induces a graph of maximum degree greater than or equal to 3. In this case, the
edges of E0 cannot be in a HPO of Kn. Hence, H contains a hamiltonian path iff (Kn,ΠE) contains
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a HPO.

Case 2: E0 induces a graph of maximum degree at most 2. In this case, each vertex u has
degree at least n − 2 in H. But, by hypothesis n ≥ 4, this implies that the degree in H of each
vertex is at least n/2. This is the well-known (see [7] for example) Dirac sufficient condition for H
to have a hamiltonian cycle, i.e. also a hamiltonian path. Hence, H has a hamiltonian path and
(Kn,ΠE) has a HPO.

In all cases, H has a hamiltonian path iff (Kn,ΠE) has a HPO. �

11 Conclusion

In this paper we shown that adding obligations drastically increases the approximation ratio of
classical graph problems. This is the case for the connected vertex cover with obligations that
has no constant approximation ratio algorithm (while there is a 2-approximation algorithm for
the original problem), the minimum connected weighted spanning graph and the maximum size
matching. For the last two problems, the classical versions are polynomial but the version with
obligations are as hard as set cover or maximum stable problems. For some other problems, the
situation is even worst: it becomes NP-complete to know whether there is a solution, regardless of
its size (while it is trivial or polynomial in the original problem). This is the case for the following
problems: independent dominating set, spanning tree and hamiltonian path in complete graphs.
For the dominating and total dominating set problem, the approximation ratios are almost the
same with or without obligations constraints (but these ratios are not constant). Only the vertex
cover problem keeps the same constant approximation ratio 2.

One might imagine that a perspective could be to refine our results by studying more spe-
cific/restricted instances. Unfortunately in some cases, the problem is “equivalent” to another
hard problem (minimum set cover, maximum size stable problem) that already received a lot of
attention and improving them is known as a hard challenge in itself since a long time. In other
cases, the instances for which our problem is hard are basic in a sense: bipartite graphs of max-
imum degree 4 and very small obligation sizes for the spanning tree problem, complete graph for
the hamiltonian path problem.

Other combinatorial problems can be studied with our framework. But our results show that
dealing with obligations can lead to very complex problems that could be unsolvable. Organizing
practical systems with obligations should be done with a lot of attention.
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