
HAL Id: hal-01791148
https://hal.science/hal-01791148v1

Submitted on 14 May 2018 (v1), last revised 29 Jun 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph problems with obligations
Alexis Cornet, Christian Laforest

To cite this version:
Alexis Cornet, Christian Laforest. Graph problems with obligations. [Research Report] LIMOS (UMR
CNRS 6158), université Clermont Auvergne, France. 2018. �hal-01791148v1�

https://hal.science/hal-01791148v1
https://hal.archives-ouvertes.fr


Graph problems with obligations

Alexis Cornet, Christian Laforest
LIMOS (UMR CNRS 6158), Université Clermont-Auvergne, France
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Abstract

In this paper we study variants of well-known graph problems as vertex cover, spanning tree,
matchings, and hamiltonian path. Given a graph G = (V,E), we add a partition ΠV (resp. ΠE)
of its vertices (resp. of its edges). Now, any solution S containing an element (vertex or edge) of
a part of this partition must also contain all the others ones. In other words, elements can only
be added set by set, instead of one by one as in the classical situation. We propose hardness
and approximation results.
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1 Obligations

In this paper we deal with classical graph problems with additional constraints. Let G = (V,E) be
any undirected graph. We call system of obligations on vertices of G a partition ΠV = V1, . . . , Vk
of V and a system of obligations on edges of G a partition ΠE = E1, . . . , Ek of E. Each element Vi
(resp. Ei) is called a part of ΠV (resp. ΠE). Now, given G and an associated system ΠV (resp. ΠE)
of obligations on vertices (resp. edges), any solution S to a problem on G must have the property
that: if u ∈ S (resp. e ∈ S) and u ∈ Vi (resp. e ∈ Ei) then Vi (resp. Ei) must be entirely included
in S, that is Vi ⊆ S (resp. Ei ⊆ S). In other words, once an “object” x (vertex or edge), element
of a part X, is in a solution, all the others elements of X must also be included in the solution.
Obligations can be useful to model situations in which some set of elements (captors, computers,
softwares, people, etc.) are interdependent and the presence of one element induces the presence of
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all the other ones. From an algorithmic point of view, we will see that in most cases the problems
become much harder than the original ones.

This study comes to complete many recent works on a sort of opposite problem, implying what
is called conflit which is a pair {x, y} of edges or vertices of a graph that cannot be both in a
solution. Here an instance is then a graph G and a set of conflicts. Obtaining a solution without
conflict is hard in general for many graph problems, as it is shown in these papers [2, 3, 4, 7, 8, 9,
10, 11, 12, 13, 14].

In what follows we give some useful notations (undefined terms can be found in [5] for example).
Let G = (V,E) be any non directed graph, with V its set of vertices and E its set of edges. Two
vertices u and v are neighbours if G contains the edge uv. The degree of a vertex u is its number
of neighbours. We call graph induced by the set of edges Ei ⊆ E, the graph whose set of edges is
Ei and whose vertices are the ones that are at the extremity of at least an edge of Ei. The graph
induced by a set S of vertices of G, noted G[S], is the graph whose set of vertices is S and whose
edges are the ones of G connecting two vertices of S. A stable (or independent) S of G is a subset
of its vertices having the property that G[S] contains no edge.

2 Vertex cover with obligations on vertices

Let G = (V,E) be any graph and ΠV = V1, . . . , Vk a partition of V , a system of obligations on
vertices of G. A vertex cover with obligations (VCO) S, of (G,ΠV ) is:

• A vertex cover of G: each edge e = uv ∈ E is covered by S (u ∈ S or v ∈ S (both can be in
S)).

• ∀u ∈ S, if u ∈ Vi, then Vi ⊆ S.

It is easy to see that any instance (G = (V,E),ΠV ) always contains at least a VCO, namely
S = V .

A VCO S∗ of the instance (G,ΠV ) is said optimal, and noted VCOOPT , if it is of minimum size.
Constructing a VCOOPT is hard since even in the very particular case where each part of ΠV is a
singleton, this is the classical NP-complete vertex cover problem [6]. In what follows we propose an
approximation algorithm for the VCOOPT problem. But first we can easily simplify the instance
in some cases. Indeed, we can remark that if e = uv ∈ E and u and v are in the same part Vi of
the partition (u ∈ Vi and v ∈ Vi) then any VCO (thus any VCOOPT ) must contain Vi since the
edge e = uv must be covered and u or v must be in any solution and thus also Vi. Before running
any algorithm, we can include in any solution, all the parts Vi of ΠV such that G contains an edge
e with both extremities in Vi. This can be done in polynomial time. We suppose now that this
pre-treatment has been done and that G does not contain these vertices anymore and ΠV does not
contain these parts anymore.

A 2-approximation algorithm for the VCOOPT problem. At this point we can suppose that
an instance is now (G = (V,E),ΠV = V1, . . . , Vk) where each Vi is a stable of G.

1. Construct as follows a new weighted graph Gc = (Vc, Ec) called contracted graph:

• Each stable Vi of ΠV is associated to a vertex vi of Gc.
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• The weight of vi is the number of vertices of Vi (|Vi|).
• Add an edge between vi and vj in Gc iff G contains (at least) an edge having an extremity

in Vi and the other in Vj .

2. Construct a 2-approximated weighted vertex cover Sc in Gc (this can be done in polynomial
time, see [1]).

3. Return S =
⋃

i:vi∈Sc

Vi.

Theorem 1 The algorithm described above is a 2-approximation algorithm for the VCOOPT prob-
lem.

Proof. This algorithm is polynomial. It constructs a vertex cover ofG that satisfies the constraints
on obligations.

Note that to respect the conditions on obligations, any VCO of (G,ΠV ) is an union of some
parts of ΠV . We construct now a one-to-one correspondance respecting the weights and the sizes
between the VCO of (G,ΠV ) and the vertex covers of Gc.

• Let S be any VCO of (G,ΠV ). The set Sc = {vi : i : Vi ⊆ S} associated to S is a vertex cover
of Gc of weight |S|.

• Conversaly, let Sc = {v1, . . . , vl} be any weighted vertex cover of Gc. In this case, S = {Vi :
i : vi ∈ Sc} is a VCO of (G,ΠV ) whose size is equal to the weight of Sc.

A 2-approximation of an optimal weighted vertex cover of Gc corresponds to a 2-approximated
VCOOPT of (G,ΠV ). Hence the proposed algorithm is a 2-approximation algorithm for the VCOOPT
problem. �

3 Connected vertex cover with obligations on vertices

In this section, G = (V,E) is a connected graph. As in section 2, the obligations are given by a
partition ΠV = V1, . . . , Vk of V . A CVCO, connected vertex cover with obligations, S of the instance
(G,ΠV ) is:

• A vertex cover of G (for any edge uv ∈ E, u ∈ S or v ∈ S (both can be in S)),

• A connected set of vertices: G[S] (the induced graph of S in G) is connected,

• S respects the constraints of obligations of ΠV .

A CVCOOPT is a VCO of minimum size. Constructing a CVCOOPT is a hard problem, even if
ΠV is a partition of singletons (in this case this the classical NP-complete connected vertex cover
problem [6]).

Theorem 2 Any α-approximation algorithm for the CVCOOPT problem can be transformed into a
2α-approximation algorithm for the Optimal Set Cover problem.
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Proof. Let (A,X) be any instance of the Set Cover problem: A = {a1, . . . , an} is a set of n
elements and X = X1, . . . , Xk is a family of subsets of A (Xi ⊆ A) covering A: A = ∪ki=1Xi. An
optimal set cover is a sub-family of X, of minimum size, covering A. We note t∗ the size of such
an optimal solution of (A,X).

From (A,X) let us construct an instance of our problem. Each element ai is associated to a
vertex, also noted ai. Each set Xi of X is associated to a set noted Vi of n+1 new vertices, forming
a stable. Each of the n+ 1 vertices of the set Vi is connected to a vertex aj iff the set Xi contains
aj . Create now a new vertex r and connect it to all the vertices of the k sets Vi. The degree of r
is then k(n+ 1). We note G = (V,E) the final graph that is bipartite.

The obligations are the following. Each Vi is an obligation containing exactly n+1 independent
vertices. Add the obligation V0 containing r and the n vertices of A. V0 is then also a stable of
G composed of n + 1 vertices. ΠV = V0, V1 . . . , Vk is a partition of the set V of vertices of G and
is the system of obligations that we consider here; each Vi is a stable of n + 1 vertices of G. The
instance (G,ΠV ) can be constructed in polynomial time from the instance (A,X). Consider now
the one-to-one mapping between the CVCO of (G,ΠV ) and the set covers of (A,X).

Let SX = Xi1 , . . . , Xit be any set cover of size t of (A,X). Consider now the following set S of
vertices of G:

S = V0 ∪
t⋃

j=1

Vij

S is a vertex cover of G (all the edges of G are covered by the vertices of V0), G[S] is connected
(because the vertices of Vij are interconnected via r and each ai is connected to at least all the
vertices of a set Vij because SX is a covering) and satisfies the obligations of ΠV (S is composed of
an union of obligations of ΠV ). The size of S is: |S| = n+ 1 + t(n+ 1) = (n+ 1)(t+ 1).

Consider now any CVCO S of (G,ΠV ). As S satisfies the constraints on obligations, it is com-
posed of an union of obligations. As G[S] is connected and G is bipartite, it must contain some of
the obligations Vi, i ≥ 1. But as S must contain r or a vertex ai to ensure the connectivity it must
contain the obligation V0. Note V0, Vi1 , . . . , Vit the obligations composing S: S = V0∪Vi1 ∪ . . .∪Vit .
Let SX = Xi1 , . . . , Xit be the sub-family associated to this CVCO S. As V0 ⊆ S, each vertex ai
is connected to the other vertices of S via the vertices of at least a Vij . Thus SX is a set cover of
(A,X). We get: |SX | = t and |S| = (t+ 1)(n+ 1).

This one-to-one mapping associates to each set cover of size t a CVCO of size (t+ 1)(n+ 1) and
reciprocally. The transformations in one direction or the other can be done in polynomial time.

Suppose that a CVCOOPT can be approximated with a ratio α in polynomial time. Then, for any
instance (A,X) one can: construct the associated instance (G,ΠV ), then use this approximation
algorithm to construct a α-approximated CVCO S: (t + 1)(n + 1) = |S| ≤ α|S∗|. Then with
the one-to-one transformation, one can construct the associated set cover SX , of size t. This
chain of constructions is polynomial. Let S∗X be an optimal set cover, of size t∗. By the one-to-one
transformation, this corresponds to a CVCO of size (t∗+1)(n+1). This CVCO is optimal (otherwise
it would be possible to construct a smaller one with the one-to-one transformation). Hence,

|S| = (t+ 1)(n+ 1) ≤ α(t∗ + 1)(n+ 1)
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then, t+ 1 ≤ α(t∗ + 1) and t ≤ αt∗ + (α− 1) ≤ α(t∗ + 1) ≤ 2αt∗ (because 1 ≤ t∗). The algorithm
described above is then a 2α-approximation algorithm for the set cover problem. �

Corollary 1 The CVCOOPT problem cannot be approximated by a ratio better than c log(n)/2
unless P = NP .

Proof. Theorem 2 shows that the CVCOOPT problem cannot be approximated by a ratio better
than c log(n)/2 since the optimal set cover problem cannot be approximated within c log(n) for
some c > 0, unless P = NP , see [1]. �

4 Spanning tree with obligations on edges

In this section, an instance is (G = (V,E),ΠE = E1, . . . , Ek) where G is any connected graph and
ΠE , the obligations, is a partition of E.

The objective is, given an instance, (G = (V,E),ΠE = E1, . . . , Ek), to decide if there is a tree
spanning G with obligations (T SO) T = (V,ET ) which is a tree spanning G and such that for any
e ∈ ET , if e ∈ Ei then all the edges of Ei must also be in T .

Theorem 3 Deciding if (G = (V,E),ΠE = E1, . . . , Ek) contains a T SO is NP-complete, even if:

• G is bipartite, of maximum degree 4 and

• each Ei induces a star (that is a tree with a vertex directly connected to all the others) with
exactly 3 edges (|Ei| = 3).

Proof. The problem is in NP.
Let (X = {x1, . . . , x3q}, Z1, . . . , Zk) be any instance of the X3C problem (exact cover by 3 sets)

where X is a set of 3q elements and each Zi is a subset of 3 elements of X (Zi ⊆ X and |Zi| = 3)

with the property: X =
k⋃
i=1

Zi (the sets Zi cover X). The X3C problem consists in deciding if this

instance contains an exact cover of X, i.e., if there exist Zi1 , . . . , Ziq two-by-two mutually disjoint

sets such that X =

q⋃
j=1

Zij . This is a well-known NP-complete problem, even if each element xi is

in at most 3 sets, see [6]. It is this restricted formulation that we consider here.
From this instance, let us construct a graph G. For each element xi of X create a new vertex,

also noted xi. For each set Zi create a new vertex, also noted Zi. Add an edge between each
vertex Zi and the 3 vertices that are in the set Zi. Now, create a tree Tr to connect the k vertices
Zi that will become leaves of Tr. The Zi are connected two-by-two by a new vertex. Then these
dk/2e new vertices are connected two-by-two by a new vertex, and so on until there is only one
final new vertex that we call r (as “root” of Tr). Each vertex u, except the leaves Zi, have one or
two children. For each such u we add a new vertex lu (or two is necessarly) that is only connected
to u (lu is a leave). These 3 vertices are called the 3 children of u. We get now the final tree. All
of these vertices and edges form the final graph G = (V,E) that is bipartite and, thanks to the
restriction on X3C instances, the maximum degree of G is 4. An illustration of the construction is
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given in Figure 1: the bottom vertices are elements of X, squared vertices are the Zi, black ones
are the additional children and colored vertices are the internal ones of tree Tr. The dashed ellipses
represent the obligations that are described now.

Figure 1: Construction of G from a X3C instance

For each vertex Zi we group in a same obligation noted Ei the 3 edges connecting Zi to the 3
vertices representing the 3 elements that are in set Zi. We group in a same obligation the 3 edges
connecting any internal vertex u to its 3 children. All these obligations are called tree obligations.
Each edge of G is now in exactly one obligation (tree one or in a Ei) and the set of all these
obligations is ΠE , composed of stars of exactly 3 edges.

The construction described above is polynomial.

Suppose that the X3C instance has a solution Zi1 , . . . , Ziq . In this case, we can select the fol-
lowing obligations: all the tree obligations and all the edges in the obligations Ei1 , . . . , Eiq . This
gives a tree spanning G (each vertex xi is a leaf because it is a neighbour of exactly one vertex
Zij and each vertex Zl is connected to the other vertices via the tree Tr). This tree respects the
obligations of ΠE and is then a T SO of (G,ΠE).

Conversely, suppose that the instance (G,ΠE) has a T SO noted T . As T respects the obli-
gations, it necessarily contains all the tree obligations, this is mandatory to include the leaves of
the form lu. It also contains other obligations. But each vertex xi is a leaf of T . Otherwise, if
it is neighbour of 2 vertices, Za and Zb then we would have a cycle with some edges of the tree
obligations, that is not allowed because T is a tree. As T covers all the 3q vertices/leaves xi it
must contain exactly q vertices of type Zi, noted Zi1 , . . . , Ziq , and their 3 edges incident from the
associated obligations Ei1 , . . . , Eiq . The sets Zi1 , . . . , Ziq cover X and are pairwise mutually disjoint
and is then a solution for the X3C instance. �
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5 Matchings with obligations on edges

In this section, an instance in (G,ΠE) where G = (V,E) is any undirected graph and ΠE =
E1, . . . , Ek is a partition of E, the set of edges of G.

A matching with obligations (MO) M of the instance (G,ΠE) is a matching of G (set of pairwise
non incident edges of G) such that for any edge e of M , if e ∈ Ei then Ei ⊆M .

It is polynomial to determine if (G,ΠE) contains a MO. Indeed, there is a non empty MO iff
at least a part Ei induces a matching. From this we can simplify an instance (G,ΠE): if a part Ei
of ΠE induces a graph in which a vertex has more than one neighbour then Ei can be deleted from
ΠE and the edges of Ei can be deleted form G. This pretreatment can be done in polynomial time.
From now we suppose that (G = (V,E),ΠE = E1, . . . , Ek) is an instance where each Ei induces
a matching of G and thus contains a MO (possibly empty). A MO of maximum size is noted
MOOPT .

Theorem 4 Let (G = (V,E),ΠE = E1, . . . , Ek) be an instance where each Ei induced a matching
of G. Any α-approximation algorithm for the MOOPT problem can be transformed into a α-
approximation algorithm for the maximum size stable problem.

Proof. Let H = (VH , EH) be any graph, instance of the maximum size stable problem.
Note VH = {h1, . . . , hn} the n vertices of H. We construct an instance of our problem from H.

Let us create two new vertices ai and bi and associate a new edge aibi to each vertex hi of H. For
each edge hjhi with j < i let us associate a new edge ajbji where bji is a new vertex, exclusively
created for the edge hjhi of H. The union of all these edges and vertices gives a graph noted Q
(not yet the final graph G).

For each vertex hi of H let us associate a set Di of edges composed of edge aibi and all the
edges ajbji with j < i and hjhi ∈ EH :

Di = {aibi} ∪ {ajbji : j < i, hjhi ∈ EH}

D1, . . . , Dn form a partition of the edges of graph Q and each Di induces a matching of Q. Figure
2 gives an example of this construction if H is a cycle with 4 vertices.

The sets Di can have different sizes. Let Da be the one of maximum size. The next steps consist
in adding new independent edges, between new vertices, to each Di such that the n sets all have
the same size |Da|.

Note G = (V,E) the graph obtained from Q by the addition of these new vertices and edges.
We note ΠE = E1, . . . , En the sets D1, . . . , Dn previously obtained. We now have the following
properties.

• All the sets Ei have the same size noted t,

• E1, . . . , En is a partition of the set E of edges of G,

• each Ei induces a matching in G,

• G is a bipartite graph.

• Ei ∪ Ej is a matching of G iff hihj 6∈ E.
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Figure 2: Construction of Q from H

This instance (G,ΠE) can be constructed in polynomial time from the instance H of the max-
imum size problem.

Let S = {hi1 , . . . , hiq} be any stable, of size q, in H. Let us consider the associated obligations

to S: Ei1 , . . . , Eiq . As S is a stable, MS =

q⋃
j=1

Eij is a matching of G of size qt.

Conversely, let M be any matching of G, composed of the obligations Ei1 , . . . , Eiq . As M is a
matching of G of size qt, S = {hi1 , . . . , hiq} is a stable of size q in H.

There is a one-to-one mapping between the MO of (G,ΠE) and the stables of H. The sizes
are all the same, up to a factor t. Hence, if an approximation algorithm of ratio α exists for the
MOOPT problem then it would be possible to approximate the maximum size stable problem with
a ratio α via the previously described transformations: transform H into the instance (G,ΠE), then
apply the approximation algorithm on this instance and then transform its result into a stable of H.
The conservation of the sizes (up to a factor t) by these transformations insures the approximation
ratio. �

Corollary 2 TheMOOPT problem cannot be approximated with a ratio better than |V |1/2−ε unless
P = NP .

Proof. Theorem 4 shows that it is not possible to approximate the MOOPT problem with a
better ratio than the one of the minimum size stable. But this last problem cannot be approximated
within |V |1/2−ε for any ε > 0, unless P = NP , see [1]. �
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6 Hamiltonian path in complete graphs with obligations on edges

Here an instance is (G = (V,E),ΠE = E1, . . . , Ek) where G is any connected graph and ΠE a
partition of E.

A hamiltonian path with obligation (HPO) of (G,ΠE) is a hamiltonian path of G satisfying all
the constraints of obligations of ΠE (if an edge e is in the path then all the edges belonging to the
same obligation must also be in the path).

Theorem 5 Deciding if (G,ΠE) contains a HPO is NP-complete, even if G is a complete graph.

Proof. The problem is in NP. Let H = (V,E) be any connected graph, instance of the hamilto-
nian path problem, which is an NP-complete problem, see [6]. Let n = |V |. We suppose here that
n ≥ 4 (if n is smaller then the problem can easily be solved in constant time). The graph for our
problem is Kn, the complete graph on the n vertices V of H. The obligations are the following.
For each edge uv of H, the edge uv of Kn is the only element (singleton) of this part. All the
edges uv outside H (uv 6∈ E) are grouped in a single obligation E0. This instance (Kn,ΠE) can be
constructed in polynomial time. We divide our study in two cases.

Case 1: E0 induces a graph of maximum degree greater than or equal to 3. In this case, the
edges of E0 cannot be in a HPO of Kn. Hence, H contains a hamiltonian path iff (Kn,ΠE) contains
a HPO.

Case 2: E0 induces a graph of maximum degree at most 2. In this case, each vertex u has
degree at least n − 2 in H. But, by hypothesis n ≥ 4, this implies that the degree in H of each
vertex is at least n/2. This is the well-known (see [5] for example) Dirac sufficient condition for H
to have a hamiltonian cycle, i.e. also a hamiltonian path. Hence, H has a hamiltonian path and
(Kn,ΠE) has a HPO.

In all cases, H has a hamiltonian path iff (Kn,ΠE) has a HPO. �
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