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ON THE RELAXATION OF THE MAXWELL-STEFAN SYSTEM TO LINEAR DIFFUSION
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In this note, we rigorously prove the relaxation limit of the Maxwell-Stefan system to a system of heat equations when all binary diffusion coefficients tend to the same positive value.

Introduction

The Maxwell-Stefan equations have been written in the nineteenth century [START_REF] Maxwell | On the dynamical theory of gases[END_REF][START_REF] Stefan | Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen[END_REF], but the interest in its rigorous mathematical study is very recent and not yet complete. After some works, mainly devoted to the matrix formulation of the gradient-flux relationships and described in [START_REF] Giovangigli | Multicomponent flow modeling[END_REF], the study of existence and uniqueness has been carried out in [START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF][START_REF] Boudin | A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations[END_REF][START_REF] Chen | Analysis of an Incompressible Navier-Stokes-Maxwell-Stefan System[END_REF][START_REF] Hutridurga | Existence and uniqueness analysis of a non-isothermal cross-diffusion system of Maxwell-Stefan type[END_REF][START_REF] Jüngel | Existence analysis of Maxwell-Stefan systems for multicomponent mixtures[END_REF][START_REF] Herberg | Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics[END_REF], the formal derivation of multicomponent diffusion equations from the Boltzmann system has been investigated in [START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF][START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF][START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections[END_REF][START_REF] Hutridurga | Maxwell-Stefan diffusion asymptotics for gas mixtures in non-isothermal setting[END_REF][START_REF] Hutridurga | On the Maxwell-Stefan diffusion limit for a mixture of monatomic gases[END_REF][START_REF] Anwasia | From the simple reacting sphere kinetic model to the reaction-diffusion system of Maxwell-Stefan type[END_REF] and some numerical discretizations of the Maxwell-Stefan system have been proposed in [START_REF] Boudin | A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations[END_REF][START_REF] Mcleod | Mixed finite element methods for addressing multi-species diffusion using the Maxwell-Stefan equations[END_REF].

Despite the advances of the last years, the aforementioned results are far to be complete and many questions are still waiting for a satisfactory answer. Among them, we cite the rigorous study of the relaxation of the Maxwell-Stefan system, under the condition of equimolar diffusion, to a system of heat equations when all binary diffusion coefficients tend to the same positive constant value. In this note, we intend to give a contribution on this last question and fill in the gap in the literature.

The problem and the main result

Let Ω ⊂ R d (d ∈ N) be a bounded domain with regular boundary of class C 2 and ε > 0. Consider a collection of ε-dependent strictly positive and symmetric coefficients k ε ij (i.e. k ε ij = k ε ji > 0 for all i, j = 1, . . . , I ∈ N).

The Maxwell-Stefan equations describe a gaseous mixture composed of I ≥ 3 interacting species. The cross-diffusion relationships link the ε-dependent unknown densities and fluxes (c ε i , J ε i ), i = 1, . . . , I ∈ N, between themselves:

(2.1)

       ∂ t c ε i + ∇ x • J ε i = 0, (t, x) ∈ R + × Ω ∇ x c ε i = - j =i k ε ij (c ε j J ε i -c ε i J ε j ).
Moreover, the fluxes satisfy the equimolar diffusion relationship (2.2)

I i=1 J ε i = 0.
The ε-dependent coefficients k ε ij represent the set of binary diffusion coefficients of the gaseous mixture whose behavior is described by the Maxwell-Stefan equations (2.1). Note that the diagonal coefficients k ε ii (i = 1, . . . , I) play no role in the system. System (2.1) is supplemented with appropriate initial and boundary conditions. In what follows, we suppose that the solution of (2.1) satisfies homogeneous Neumann boundary conditions, so that we have:

(2.3) (c ε 1 (0, x), . . . , c ε I (0, x)) = (c in 1 (x), . . . , c in I (x)) ∈ (L ∞ (Ω)) I , J ε i (t, x) • n x = 0, (t, x) ∈ (0, ∞) × ∂Ω, i = 1, . . . , I,
where n x ∈ S d-1 is the outward normal unit vector to the domain Ω starting from a given point x ∈ ∂Ω. Since the Maxwell-Stefan system (2.1) is written in terms of molar fractions, we assume that all c in i ≥ 0 and

I i=1 c in i (x) = 1.
Because of the symmetry of the binary diffusion coefficients, it is easy to see, from (2.1) and the equimolar diffusion condition (2.2), that (2.4)

I i=1 c ε i (t, x) = 1
for a.e. (t, x) ∈ R + × Ω. When all the binary diffusion coefficients are equal (i.e. when k ε ij = κ for all i, j), it is easy to see that the Maxwell-Stefan equations (2.1), together with equations (2.2) and (2.4), are equivalent to a system of heat equations for c ε i (t, x). Indeed, thanks to the equimolar diffusion condition, we have that

J ε i = - j =i J ε j
and hence, from (2.4) and the second relationship in (2.1), we deduce that

J ε i = - 1 κ ∇ x c ε i
for all i = 1, . . . , I, which is the standard form of Fick's law [START_REF] Fick | On liquid diffusion[END_REF][START_REF] Fick | Über Diffusion[END_REF]. It leads, thanks to the first equation in (2.1), to the system of heat equations

(2.5) ∂ t c ε i = 1 κ ∆ x c ε i , i = 1, . . . , I,
with initial conditions

c ε 1 (0, x), . . . , c ε I (0, x) = (c in 1 (x), . . . , c in I (x)) ∈ (L ∞ (Ω)) I
and homogeneous Neumann boundary conditions

∇c ε i (t, x) • n x = 0, (t, x) ∈ (0, ∞) × ∂Ω, i = 1, . . . , I.
In this note we prove that, when the binary diffusion coefficients k ε ij may be different but tend to the same constant value in the limit ε → 0 + , then the solution of the Maxwell-Stefan system converges to the solution of a suitable system of heat equations. More precisely, our result is the following: Theorem 2.1. Let (c ε i , J ε i ), with i = 1, . . . , I and I ≥ 3, be the solution of the initial-boundary value problem (2.1)-(2.2)-(2.3), with binary diffusion coefficients of the form

(2.6) k ε ij = κ + εδ ij ,
such that |δ ij | ≤ 1 and let T > 0. Then, in the limit as ε → 0 + , the densities (c ε 1 , . . . , c ε I ) converge strongly in (L 2 ((0, T )×Ω)) I , with an explicit rate of order √ ε, to (c 1 , . . . , c I ), and the fluxes (J ε 1 , . . . , J ε I ) converge strongly in (L 2 ((0, T ) × Ω)) d×I to (J 1 , . . . , J I ), with an explicit rate of order √ ε. Moreover, for all i = 1, . . . , I, the vector (c i , J i ) solves the set of heat equations

(2.7)    ∂ t c i + ∇ x • J i = 0, (t, x) ∈ R + × Ω ∇ x c i = -κJ i ,
satisfying the initial and boundary conditions

(2.8) c 1 (0, x), . . . , c I (0, x) = (c in 1 (x), . . . , c in I (x)) ∈ (L ∞ (Ω)) I , J i • n x = ∇c i (t, x) • n x = 0, (t, x) ∈ (0, ∞) × ∂Ω, i = 1, . . . , I,
i.e. the same as those for the Maxwell-Stefan system.

The proof

We base our proof on the following existence and uniqueness result, stated in papers [START_REF] Bothe | On the Maxwell-Stefan approach to multicomponent diffusion[END_REF][START_REF] Herberg | Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics[END_REF]: 

Theorem 3.1. Let Ω ⊂ R d be
c in i (x) = 1.
Then, there exists a unique local-in-time solution -in the L p -sense -to the system (2.1)-(2.2)-(2.3) for t ∈ (0, T ), T > 0. The solution is, in fact, classical.

We now write the flux (gradient) relationship of the Maxwell-Stefan system (2.1) by using both the explicit form of the binary diffusion coefficients given in (2.6) and the equimolar diffusion condition (2.2). We obtain:

(3.1) ∇ x c ε i = -κJ ε i -ε   j =i δ ij c ε j   J ε i + εc ε i   j =i δ ij J ε j   .
For any .

vector v = (v 1 , . . . , v d ) ∈ R d ,
By performing the scalar product between Equation (3.1) and J ε i and then by integrating with respect to x in Ω, we deduce

Ω J ε i • ∇ x c ε i dx = -κ Ω |J ε i | 2 dx -ε j =i δ ij Ω c ε j |J ε i | 2 dx + ε j =i δ ij Ω c ε i J ε j • J ε i dx.
On the other hand, if we multiply the continuity equation in (2.1) by c ε i and then integrate the resulting equation with respect to x in Ω, we obtain 1 2

d dt Ω |c ε i | 2 dx = - Ω c ε i ∇ x • J ε i dx = Ω J ε i • ∇ x c ε i dx,
where the second equality is a consequence of the homogeneous Neumann boundary conditions for all species.

The previous two equations allow us to conclude that 1 2

d dt Ω |c ε i | 2 dx = -κ Ω |J ε i | 2 dx -ε j =i δ ij Ω c ε j |J ε i | 2 dx + ε j =i δ ij Ω c ε i J ε j • J ε i dx.
We know that, for all i, 0 ≤ c ε i ≤ 1 and, for all i, j, |δ ij | ≤ 1. Hence we can deduce the inequality 1 2

d dt Ω |c ε i | 2 dx ≤ -κ Ω |J ε i | 2 dx + ε(I -1) Ω |J ε i | 2 dx + ε j =i Ω |J ε j • J ε i | dx ≤ -κ Ω |J ε i | 2 dx + 3 2 ε(I -1) Ω |J ε i | 2 dx + ε 2 j =i Ω |J ε j | 2 dx.
By summing over all i, we have that

1 2 d dt Ω I i=1 |c ε i | 2 dx ≤ (-κ + 2ε(I -1)) Ω I i=1 |J ε i | 2 dx
which implies, for all ε < κ/(2I -2) and for all T > 0, that (3.2)

Ω I i=1 |c ε i (t, x)| 2 dx ≤ Ω I i=1 |c in i (x)| 2 dx
and, at the same time, that

(3.3) (0,T )×Ω I i=1 |J ε i | 2 dxdt ≤ 1 2(κ -2ε(I -1)) Ω I i=1 |c in i (x)| 2 dx.
The previous inequality (3.3) proves that, for any ε < κ/(2I -2), for all i = 1, . . . , I and for all T > 0, the family {J ε i } ε>0 is uniformly bounded in L 2 ((0, T ) × Ω) with respect to ε. If now we integrate inequality (3.2) with respect to t in (0, T ), we deduce that the family {c ε i } ε>0 is uniformly bounded in L 2 ((0, T ) × Ω) -with respect to ε -for any ε > 0.

As a consequence of this result, we can deduce a stronger bound for the familiy {c ε i } ε>0 . Indeed, using the elementary inequality

n k=1 a k 2 ≤ n n k=1 a 2 k , a k ∈ R,
from equation (3.1) we have that, for all ε < κ/(2I -2),

|∇ x c ε i | 2 = -   ε j =i δ ij c ε j + κ   J ε i + εc ε i   j =i δ ij J ε j   2 ≤ 2   (κ + ε) 2 |J ε i | 2 + ε 2 (I -1) j =i |J ε j | 2   ≤ 2κ 2   1 + 1 2(I -1) 2 |J ε i | 2 + 1 4(I -1) j =i |J ε j | 2   .
By integrating the above inequality with respect to (t, x) in (0, T ) × Ω and summing over all i, we deduce, for all ε < κ/(2I -2), that

I i=1 (0,T )×Ω |∇ x c ε i | 2 dxdt ≤ 2κ 2 1 + 1 2(I -1) 2 + 1 4 I i=1 (0,T )×Ω |J ε i | 2 dxdt ≤ 2κ 2 1 + 1 2(I -1) 2 + 1 4 1 2(κ -2ε(I -1)) Ω I i=1 |c in i (x)| 2 dx. (3.4) 
Consider now, for i = 1, . . . , I ∈ N the solution (c i , J i ) of the system of heat equations (2.7) with initial and boundary conditions (2.8). We can prove that c ε i → c i strongly in L 2 ((0, T ) × Ω) in the limit as ε → 0 + . Let g ε i := c ε i -c i and Θ ε i := J ε i -J i , for all i = 1 . . . , I. Therefore, from systems (2.1) and (2.7), we have that

(3.5)        ∂ t g ε i + ∇ x • Θ ε i = 0, (t, x) ∈ R + × Ω ∇ x g ε i = -κΘ ε i - j =i εδ ij (c ε j J ε i -c ε i J ε j ),
together with the relationship

I i=1
g ε i = 0, for all t ∈ R + and for all x ∈ Ω, with initial and boundary conditions (3.6)

g ε 1 (0, x), . . . , g ε I (0, x) = (0, . . . , 0), Θ ε i (t, x) • n x = 0, (t, x) ∈ R + × ∂Ω, i = 1, . . . , I. We now multiply the first equation of system (3.5) by g ε i and then perform the scalar product between Θ i and both sides of the second equation of system (3.5). After integrating with respect to the spacetime variables in (0, t) × Ω, with t ∈ (0, T ), and then summing over all i, by the fundamental theorem of calculus, and using the initial and boundary conditions (3.6), we deduce, for all ε < κ/(2I -2), that 1 2

I i=1 Ω [g ε i (t, x)] 2 dx = -κ I i=1 (0,t)×Ω |Θ ε i | 2 dxds -ε I i=1 j =i δ ij (0,t)×Ω (c ε j J ε i -c ε i J ε j ) • Θ ε i dxds, which implies that 1 2 I i=1 Ω [g ε i (t, x)] 2 dx ≤ -κ I i=1 (0,t)×Ω |Θ ε i | 2 dxds + ε I i=1 (0,t)×Ω j =i c ε j |J ε i • Θ ε i |dxds + ε I i=1 j =i (0,t)×Ω c ε i |J ε j • Θ ε i |dxds,
where we used the bound |δ ij | ≤ 1. Thanks to the elementary inequality 2|a • b| ≤ |a| 2 + |b| 2 and to condition (2.4), we obtain

(3.7) 1 2 I i=1 Ω [g ε i (t, x)] 2 dx ≤ -κ - ε 2 I I i=1 (0,t)×Ω |Θ ε i | 2 dxds + ε 2 I I i=1 (0,t)×Ω |J ε i | 2 dxds.
We finally deduce 1 2

I i=1 Ω [g ε i (t, x)] 2 dx ≤ ε 2 I I i=1 (0,T )×Ω |J ε i | 2 dxds ≤ εIT 4(κ -2ε(I -1)) I i=1 Ω |c in i (x)| 2 dx,
where the last inequality is a direct consequence of estimate (3.3). Since the last expression in the above inequality is independent of t, we can hence conclude that

I i=1 g ε i 2 L 2 ((0,T )×Ω) = I i=1 c ε i -c i 2 L 2 ((0,T )×Ω) ≤ εIT 2(κ -2ε(I -1)) I i=1 Ω |c in i (x)| 2 dx.
We have hence that c ε i → c i strongly in L 2 ((0, T ) × Ω) as ε → 0 + with a rate of order at least √ ε. Moreover, from (3. We finally have that J ε i → J i strongly in (L 2 ((0, T ) × Ω)) d×I as ε → 0 + with a rate of order at least √ ε. Consider now Equation (3.1). Because of the L 2 bounds on c ε i and J ε i given by (3.2) and (3.3), we deduce that

-ε   j =i δ ij c ε j   J ε i + εc ε i   j =i δ ij J ε j   0
weakly in L 2 ((0, T ) × Ω) d . As a consequence, the limits c i and J i satisfy the heat equation system (2.7) in distributional sense with homogeneous Neumann boundary conditions.

i 2 (L 2 (

 22 7) and estimate (3.3), we deduce that κ -(0,T )×Ω)) d ≤ εIT 2(κ -2ε(I -1)) (2κ -εI) I i=1 Ω |c in i (x)| 2 dx.

  a bounded domain with smooth boundary. Let the initial data (c in 1 , . . . , c in I ) to the quasi-linear problem (2.1)-(2.2)-(2.3) be non-negative measurable functions such that

	I
	i=1

  denote by |v| its Euclidean norm, i.e.

	d	1/2
	|v| =	v 2 l
	l=1	
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