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Abstract. The context of this paper is the two-choice paradigm which is deeply used in balanced
online resource allocation, priority scheduling, load balancing and more recently in population protocols.
The model governing the evolution of these systems consists in throwing balls one by one and indepen-
dently of each others into n bins, which represent the number of agents in the system. At each discrete
instant, a ball is placed in the least filled bin among two bins randomly chosen among the n ones. A
natural question is the evaluation of the difference between the number of balls in the most loaded and
the one in the least loaded bin. At time t, this difference is denoted by Gap(t). A lot of work has
been devoted to the derivation of asymptotic approximations of this gap for large values of n. In this
paper we go a step further by showing that for all t ≥ 0, n ≥ 2 and σ > 0, the variable Gap(t) is less
than a(1 + σ) ln(n) + b with probability greater than 1 − 1/nσ, where the constants a and b, which are
independent of t, σ and n, are optimized and given explicitly, which to the best of our knowledge has
never been done before.

1 Introduction

In this paper we address the important issue of the two-choice paradigm analysis [10]. To illustrate the
multi-choice paradigm, suppose that we have a set of m balls which are sequentially throws into n bins,
where each ball is placed in the least filled bin among d ≥ 1 ones randomly chosen among the n bins.
Azar et al. [5] have characterized this problem by those three values (m,n, d). A natural question is the
analysis of the maximum load in any of the bins, or the maximal gap that may exist between the least
loaded bin and the most loaded one. It has been proven that in the simplest case where d = 1 (see for

example [13]), the maximum load is equal to m/n + Θ
(√

(m/n) lnn
)
, leading to a gap that increases

with the square root of m. Now, instead of choosing a single bin at random, d ≥ 2 bins are independently
and randomly chosen, and the least loaded bin one among those d ones receives a ball. Then Azar et
al. [5] have shown that when m = n the maximum load is ln(ln(n))/ ln(2) +O(1), and the largest gap is
also equal to ln(ln(n))/ ln(2)+O(1). These results show that by simply introducing a small choice we get
a drastically improved balanced load among all the urns. Citing Mitzenmacher et al [10], ”having just
two random choices (i.e., d = 2) yields a large reduction in the maximum load over having one choice,
while each additional choice beyond two decreases the maximum load by just a constant factor”. Hence
the name of the two-choice paradigm. Later Berenbrink et al. [7] have studied the case (m,n, d) for d ≥ 2
and m ≫ n, and proved that the maximum load is equal to m/n + O(ln(ln(n))). Note that a simpler
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proof of this result has been recently found by Talwar and Wieder [14]. Very recently, Peres et al. [11,12],
using a measurement based on the hyperbolic cosine, have generalized the problem in the (1 + β)-choice
problem. The (1 + β)-choice consists, with probability 1 − β, in choosing one bin uniformly at random
and to throw a ball in it, and with probability β, in choosing two bins uniformly at random and to throw
a ball in the least loaded one. The name comes from the fact that E{d} = 1 + β. We can note that in
their model, each ball is assigned with a random weight. They found a logarithmic bound for both the
gap between the maximum loaded bin and the average one [11], and for the gap between the maximum
loaded bin and the minimum one [12]. In both cases the gap is O (log(n)/β).

The two-choice paradigm can be used in a multitude of applications, including balanced online resource
allocation (where jobs need to be dynamically allocated to the least loaded processor) [1, 6, 8], priority
scheduling [4], load balancing [2, 7, 9], and very recently, population protocols [3]. In the later case, the
model governing the evolution of these systems consists in throwing balls one by one and independently
of each others into n bins, which represents the number of agents in the system. At each discrete instant,
a ball is placed in the least filled bin among two bins randomly chosen among the n ones. A natural
question is the evaluation of the difference between the number of balls in the most loaded and the one
in the least loaded bin. At time t, this difference is denoted by Gap(t). A lot of work has been devoted
to the derivation of asymptotic approximations of this gap for large values of n. In this paper we go a
step further by showing that for all t ≥ 0, n ≥ 2 and σ > 0,

P {Gap(t) ≥ a(1 + σ) ln(n) + b} ≤ 1

nσ
, (1)

where the constants a and b, which are independent of t, σ and n, are optimized and given explicitly,
which to the best of our knowledge has never been done before.

The remaining of the paper is structured as follows. In Section 2 we present the addressed problem
and a simple algorithm to solve it. Section 3 is the main contribution of our work which consists in
providing an accurate bound of the distribution of the gap between any two nodes. Section 4 evaluates
constants a and b obtained by our analysis and compares it to constants that we derived from the work
of [4]. The gain in accuracy we obtained by our analysis is significant. Finally Section 5 provides a
summary of simulations results.

2 Problem description

We consider a very large set of n nodes (also called agents), interconnected by a complete graph, that
asynchronously start their execution in a given state. Agents do not maintain nor use identifiers (agents
are anonymous and cannot determine whether any two interactions have occurred with the same agents
or not). However, for ease of presentation the agents are numbered 1, 2, . . . , n. Each agent keeps a local
counter, initialized at 0. Agents communicate through random pairwise interactions. On each interaction,
the two interacting agents compare their counters, and the one with the lower counter value increments its
local counter. The objective of this simple algorithm is the construction of a global clock by guaranteeing
that the values of all agent counters are concentrated according to Relation (1). As interactions are
uniformly random, this can be related to the classic two choices load balancing process [12]. The goal of
the paper is to evaluate the gap between any two agents, that is the maximal difference that may exist
at any time t between any two local counters, by accurately evaluating constants a and b. By accurately
estimating the maximal gap between any two counter nodes, other population protocols can use it as a
global clock to perform actions in a probabilistic synchronized way.

We denote by C
(i)
t the state of agent i at time t. The stochastic process C = {Ct, t ≥ 0}, where

Ct = (C
(1)
t , . . . , C

(n)
t ), represents the vector state of the system at time t.

The choice of the two agents which interact is made using a uniform distribution. Given the pair (i, j)
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of agents which interact at time t, we consider the following evolution of the agents states

(
C

(i)
t+1, C

(j)
t+1

)
=


(
C

(i)
t + 1, C

(j)
t

)
if C

(i)
t ≤ C

(j)
t

(
C

(i)
t , C

(j)
t + 1

)
if C

(i)
t ≥ C

(j)
t .

Note that in the case where agents i and j interact at time t with C
(i)
t = C

(j)
t then either of two agents

can be chosen to have its value increased by 1 at time t+ 1. A particular choice is made below.
The state space of process C is thus Nn and a state of this process is also called a protocol configu-

ration. At time 0, we set C
(i)
t = 0, for every i = 1, . . . , n. At each instant the value of only one agent is

increased by 1 which means that we have, for every t ≥ 0,

n∑
i=1

C
(i)
t = t.

For every i = 1, . . . , n, we introduce the quantities xi(t) = C
(i)
t − t/n, which leads, for every t ≥ 0, to

n∑
i=1

xi(t) = 0.

The value C
(i)
t maintained by agent i is its own view of the global clock t of the system divided by n.

More precisely, the approximation of time t, provided by agent i, is nC
(i)
t .

At each discrete time t ≥ 0, any two indices i and j are uniformly chosen to interact, independently
of the vector state with probability 1/(n(n− 1)).

In order to simplify the presentation, we suppose without any loss of generality that at each instant
t, the values of xi(t) are reordered in a decreasing way, assigning an arbitrary order to agents with the
same value. More precisely, at time t the reordering gives

x1(t) = max
i=1,...,n

(C
(i)
t − t/n) ≥ · · · ≥ xn(t) = min

i=1,...,n
(C

(i)
t − t/n).

We denote by X the rank of the agent whose value is incremented when interaction occurs between 2

agents. In the case where two agents interacting, say i and j, are such that C
(i)
t = C

(j)
t , we choose to

increase by 1 the one with the highest rank. If X1 and X2 are the ranks of the successive agents which
interact, then the probability pℓ that agent of rank ℓ is incremented is given, for ℓ = 1, . . . , n, by

pℓ = P{X = ℓ} = P{X1 = ℓ,X2 < ℓ}+P{X1 < ℓ,X2 = ℓ} =
1

n

(
ℓ− 1

n− 1

)
+

(
ℓ− 1

n

)
1

n− 1
=

2(ℓ− 1)

n(n− 1)
(2)

As mentioned in the introduction, the goal of the paper is the evaluation of the distribution of
difference between the maximum and the minimum of the entries of vector Ct. This difference is denoted
by Gap(t) and is given, for t ∈ N, by

Gap(t) = max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t = x1(t)− xn(t).

In order to bound the complementary distribution of Gap(t), we introduce the following potential func-
tions defined, for α ∈ R, by

Φ(t) =
n∑

i=1

eαxi(t), Ψ(t) =
n∑

i=1

e−αxi(t) and Γ(t) = Φ(t) + Ψ(t).

The use of these two functions has been proposed in a very clever way by Y. Peres et al. in [12]. The
potential function Γ(t) is then related to function Gap(t) by the following lemma.
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Lemma 2.1 For every t ≥ 0, we have

Γ(t) ≥ 2eαGap(t)/2. (3)

Proof. The exponential function being convex, we have, for every a, b ∈ R, 2e(a+b)/2 ≤ ea+eb. Recalling
that Gap(t) = x1(t)− xn(t), we obtain

Γ(t) =
n∑

i=1

eαxi(t) +
n∑

i=1

e−αxi(t) ≥ eαx1(t) + e−αxn(t) ≥ 2eα(x1(t)−xn(t))/2 = 2eαGap(t)/2,

which completes the proof.

This result will be used at the end of the paper for the evaluation of the distribution of Gap(t) which
is based on the evaluation of the one of Γ(t), which forms the main part of the paper.

3 Analysis

We first need the two following technical lemmas which are proved in the Appendix.

Lemma 3.1 For all x ∈ R, we have 1 + x ≤ ex. For all x ∈ (−∞, c], we have ex ≤ 1 + x+ x2, where c
is the unique positive solution to equation ec − 1− c− c2 = 0. The value of c satisfies 1.79 < c < 1.8.

Lemma 3.2 Let u = (uk)k≥1 and v = (vk)k≥1 be two monotonic sequences of real numbers and let mn

be the sequence of mean values of sequence v defined, for n ≥ 1, by

mn =
1

n

n∑
k=1

vk.

If the sequences u and v are both non-decreasing or both non-increasing then we have

n∑
k=1

ukvk ≥ mn

n∑
k=1

uk.

If one of these two sequences is non-increasing and the other is non-decreasing then we have

n∑
k=1

ukvk ≤ mn

n∑
k=1

uk.

For every t ≥ 0, we introduce the notation x(t) = (x1(t), . . . , xn(t)).

Lemma 3.3 For all α ∈ (−1, 1), we have

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi −

(
α

n
− α2

n2

)
Φ(t). (4)

Proof. Since the xi(t)’s are ordered, they may change value at each time. We can thus define a

permutation on {1, 2, . . . , n} named σt such that, for every u = 1, . . . , n, if xi(t) = C
(u)
t − t/n then

xσt(i)(t + 1) = C
(u)
t+1 − (t + 1)/n. Suppose that the rank of the agent (say agent u), whose value is

incremented at time t, is equal to i. In this case, we have

xσt(i)(t+ 1) = C
(u)
t+1 −

t+ 1

n
= C

(u)
t + 1− t+ 1

n
= C

(u)
t − t

n
+ 1 +

t

n
− t+ 1

n
= xi(t) + 1− 1

n
.
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This leads, for every i = 1, . . . , n, to xσt(i)(t+1) = xi(t) + 1{X=i} − 1
n , where 1A is the indicator function

of event A. We then get

Φ(t+1)−Φ(t) =
n∑

i=1

(
eαxi(t+1) − eαxi(t)

)
=

n∑
i=1

(
eαxσt(i)

(t+1) − eαxi(t)
)
=

n∑
i=1

(
eα(1{X=i}−1/n) − 1

)
eαxi(t).

Using the fact that ex ≤ 1 + x+ x2 for x ≤ 1, see Lemma 3.1, we obtain, since α(1{X=i} − 1/n) ≤ 1,

eα(1{X=i}−1/n) − 1 ≤ α(1{X=i} − 1/n) + α2(1{X=i} − 1/n)2

= α(1{X=i} − 1/n) + α2

(
1{X=i}(1−

2

n
) +

1

n2

)
=

(
α+ α2

(
1− 2

n

))
1{X=i} −

(
α

n
− α2

n2

)
.

Taking the expectation of Φ(t+ 1)− Φ(t), given x(t), we obtain since E{1{X=i}} = pi,

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
n∑

i=1

[
pi

(
α+ α2

(
1− 2

n

))
−
(
α

n
− α2

n2

)]
eαxi

=

(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi −

(
α

n
− α2

n2

)
Φ(t),

which completes the proof.

The following relations will be frequently used in the sequel. Since, for i = 1, . . . , n, pi = 2(i −
1)/(n(n− 1)), we have for all λ ∈ (0, 1) with λn ∈ N,

1

n

n∑
i=1

pi =
1

n
(5)

1

λn

λn∑
i=1

pi =
λn− 1

n(n− 1)
≤ λ

n
(6)

1

(1− λ)n

n∑
i=λn+1

pi =
(1 + λ)n− 1

n(n− 1)
≥ 1 + λ

n
(7)

Corollary 3.4 For all α ∈ (0, 1), we have

E{Φ(t+ 1)− Φ(t) | x(t)} ≤ α2

n

(
1− 1

n

)
Φ(t).

Proof. To prove this result, observe that sequence (eαxi)i is a non-increasing sequence and (pi)i is an
non-decreasing sequence, so using Relation (5) and applying Lemma 3.2 we obtain

n∑
i=1

pie
αxi(t) ≤ 1

n

(
n∑

i=1

pi

)(
n∑

i=1

eαxi(t)

)
=

Φ(t)

n
.

Putting this result in inequality (4), we get

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi −

(
α

n
− α2

n2

)
Φ(t)

≤
[
α

n
+

α2

n

(
1− 2

n

)
−
(
α

n
− α2

n2

)]
Φ(t) =

α2

n

(
1− 1

n

)
Φ(t),

which completes the proof.
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Lemma 3.5 For all α ∈ (−1, 1), we have

E{Ψ(t+ 1)−Ψ(t) | x(t)} ≤
(
−α+ α2

(
1− 2

n

)) n∑
i=1

pie
−αxi +

(
α

n
+

α2

n2

)
Ψ(t). (8)

Proof. It suffices to replace α by −α in the proof of Lemma 3.3.

Corollary 3.6 For all α ∈ (0, 1), we have

E{Ψ(t+ 1)−Ψ(t) | x(t)} ≤ α2

n

(
1− 1

n

)
Ψ(t)

Proof. Observe that for α ∈ [0, 1], we have −α + α2(1 − 2/n) ≤ 0. It follows that the sequence(
(−α+ α2(1− 2/n))e−αxi

)
i
is a non-increasing sequence. Sequence (pi)i is an non-decreasing sequence,

so using Relation (5) and applying Lemma 3.2 we obtain(
−α+ α2

(
1− 2

n

)) n∑
i=1

pie
−αxi(t) ≤

(
−α

n
+

α2

n

(
1− 2

n

)) n∑
i=1

e−αxi(t) =

(
−α

n
+

α2

n

(
1− 2

n

))
Ψ(t).

Putting this result in the inequality (8), we get

E{Ψ(t+ 1)−Ψ(t) | x(t)} ≤
(
−α+ α2

(
1− 2

n

)) n∑
i=1

pie
−αxi +

(
α

n
+

α2

n2

)
Ψ(t)

≤
[
−α

n
+

α2

n

(
1− 2

n

)
+

(
α

n
+

α2

n2

)]
Ψ(t) =

α2

n

(
1− 1

n

)
Ψ(t),

which completes the proof.

The two previous lemmas, which give a bound of the increase of functions Φ(t) and Ψ(t), will be used
to prove Theorem 3.11. The proof of the results follow the clever ideas of the seminal paper [12] in which
the authors prove that Gap(t) is less than O(ln(n)) with high probability. In [4], Alistarh et al. provide
a more rigorous proof from which we have extracted constants associated with this asymptotic behavior.
Those constants are given at the end of Section 4.

The main original idea of our paper is to parametrize as much as possible the proofs in order to
obtain the smallest values of constants a and b used in Relation (1) which is proved in Theorem 3.13.
The numerical evaluation of these constants, obtained in Section 4, shows that they are remarkably small
with respect to the ones of [4].

In the following, we introduce two variable parameters µ, ρ ∈ (0, 1/2) (which are fixed to 1/4 in [12]
and [4]). Since xi’s are non-increasing we have xρn ≥ x(1−µ)n. Lemmas 3.7 and 3.8 deal with the balanced
conditions case that is xρn ≥ 0 ≥ x(1−µ)n. The unbalanced conditions that are the complementary cases
xρn ≥ x(1−µ)n > 0 and 0 > xρn ≥ x(1−µ)n are considered respectively in Lemmas 3.9 and 3.10. Theo-
rem 3.11 examines systematically each case which lead to recurrence relation for E{Γ(t)}. Theorem 3.12
uses this recurrence relation to bound E{Γ(t)}. Finally, Theorem 3.13 gives a precise lower bound of Γ(t)
with high probability.

Lemma 3.7 Let α, µ ∈ (0, 1) with µn ∈ N and µ > α/(1 + α). If x(1−µ)n(t) ≤ 0 then we have

E{Φ(t+ 1) | x(t)} ≤
(
1− α

n

[
µ− α(1− µ) +

α(1− 2µ)

n

])
Φ(t) + α+ α2

(
1− 2

n

)
≤
(
1− α

n
[µ− α(1− µ)]

)
Φ(t) + α+ α2. (9)
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Proof. If x(1−µ)n ≤ 0 we have eαxi(t) ≤ 1 for every i > (1− µ)n, so

n∑
i=1

pie
αxi(t) ≤

(1−µ)n∑
i=1

pie
αxi(t) +

n∑
i=(1−µ)n+1

pi ≤
(1−µ)n∑
i=1

pie
αxi(t) + 1.

We now use Lemma 3.3. Sequence
(
eαxi(t)

)
i
is a non-increasing sequence and (pi)i is an non-decreasing

sequence. Using Relation (6) and applying Lemma 3.2 we obtain

(1−µ)n∑
i=1

pie
αxi(t) ≤ (1− µ)n− 1

n(n− 1)

(1−µ)n∑
i=1

eαxi(t)

 ≤ (1− µ)Φ(t)

n

and so
n∑

i=1

pie
αxi(t) ≤ (1− µ)Φ(t)

n
+ 1.

Plugging this bound in inequality of Lemma 3.3 leads to

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi −

(
α

n
− α2

n2

)
Φ(t)

≤
(
α+ α2

(
1− 2

n

))(
(1− µ)Φ(t)

n
+ 1

)
−
(
α

n
− α2

n2

)
Φ(t)

≤
[(

α+ α2

(
1− 2

n

))(
1− µ

n

)
− α

n
+

α2

n2

]
Φ(t) + α+ α2

(
1− 2

n

)
= −α

n

[
µ− α(1− µ) +

α(1− 2µ)

n

]
Φ(t) + α+ α2

(
1− 2

n

)
.

We complete the proof observing that E{Φ(t) | x(t)} = Φ(t). The second inequality is immediate.

An analogous result is obtained for Ψ(t) in the following lemma.

Lemma 3.8 Let α, ρ ∈ (0, 1) with ρn ∈ N and ρ > α/(1− α). If xρn(t) ≥ 0 then we have

E {Ψ(t+ 1) | x(t)} ≤
(
1− α

n

[
ρ− α(1 + ρ) +

α(1 + 2ρ)

n

])
Ψ(t) + αρ(1 + ρ)

≤
(
1− α

n
[ρ− α(1 + ρ)]

)
Ψ(t) + αρ(1 + ρ). (10)

Proof. For α ∈ (0, 1), we have −α+ α2(1− 2/n) ≤ 0. We thus have(
−α+ α2

(
1− 2

n

)) n∑
i=1

pie
−αxi(t) ≤

(
−α+ α2

(
1− 2

n

)) n∑
i=ρn+1

pie
−αxi(t).

The sequence
(
(−α+ α2(1− 2/n))e−αxi(t)

)
i
is a non-increasing sequence and the sequence (pi)i is an

non-decreasing sequence, so using Relation (7) and applying Lemma 3.2 we obtain, since xρn ≥ 0(
−α+ α2

(
1− 2

n

)) n∑
i=ρn+1

pie
−αxi(t) ≤

(
−α+ α2

(
1− 2

n

))
(1 + ρ)n− 1

n(n− 1)

n∑
i=ρn+1

e−αxi(t)

≤
(
−α+ α2

(
1− 2

n

))
1 + ρ

n

(
Ψ(t)−

ρn∑
i=1

e−αxi(t)

)

≤
(
−α+ α2

(
1− 2

n

))
(1 + ρ)(Ψ(t)− ρn)

n
.
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Plugging this bound in inequality of Lemma 3.5, leads to

E{Ψ(t+ 1)−Ψ(t) | x(t)} ≤
(
−α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi +

(
α

n
+

α2

n2

)
Ψ(t)

≤
(
−α+ α2

(
1− 2

n

))
(1 + ρ)(Ψ(t)− ρn)

n
+

(
α

n
+

α2

n2

)
Ψ(t)

≤ −α

n

[
ρ− α(1 + ρ) +

α(1 + 2ρ)

n

]
Ψ(t) + ρα(1 + ρ)

(
1− α

(
1− 2

n

))
≤ −α

n

[
ρ− α(1 + ρ) +

α(1 + 2ρ)

n

]
Ψ(t) + ρα(1 + ρ).

We complete the proof observing that E{Ψ(t) | x(t)} = Ψ(t). The second inequality is immediate.

Lemma 3.9 Let α, µ ∈ (0, 1/2) with µn ∈ N and µ ∈ (α/(1 + α), (1− 2α)/(1− α)), let µ′ ∈ (0, 1) with
µ′n ∈ N and µ′ ∈ (µ/(1− µ), 1/(1 + α)) and let γ1 ∈ (0, 1).

If x(1−µ)n > 0 and E{Φ(t+1)−Φ(t) | x(t)} ≥ −
(
1− µ′(α+ 1)

) αγ1
n

Φ(t) and Φ(t) ≥ λ1Ψ(t) then we

have Γ(t) ≤ c1n, where

c1 =

(
1 +

1

λ1

)
C1

(
C1

µλ1

)µ/((1−µ)µ′−µ)

, C1 =
(1− µ′) (2 + α)

(1− γ1) (1− µ′(1 + α))
, and λ1 =

1− µ− α(2− µ)

2α
.

The condition µ < (1 − 2α)/(1 − α) is needed ta assure that constant λ1 > 0. The value of λ1 will
be used in Theorem 3.11. The condition µ′ > µ/(1 − µ) is needed to assure that the power involved in
constant c1 is positive.

Proof. See Appendix

Lemma 3.10 Let α, ρ ∈ (0, 1/2) with ρn ∈ N and ρ ∈ (α/(1 − α), 1/(1 + α)), let ρ′ ∈ (ρ/(1 − ρ), (1 −
2α)/(1− α)) with ρ′n ∈ N and let γ2 ∈ (0, 1).

If xρn < 0 and E{Ψ(t + 1) − Ψ(t) | x(t)} ≥ −
[
1− 2α− ρ′(1− α)

] αγ2
n

Ψ(t) and Ψ(t) ≥ λ2Φ(t) then

we have Γ(t) ≤ c2n, where

c2 =

(
1 +

1

λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)

, C2 =
(1− ρ′) (2− 2α− ρ′(1− α))

(1− γ2) (1− 2α− ρ′(1− α))
, and λ2 =

1− ρ(1 + α)

2α
.

The condition ρ < 1/(1 +α) is needed ta assure that constant λ2 > 0. The value of λ2 will be used in
Theorem 3.11. The condition ρ′ > ρ/(1− ρ) is needed to assure that the power involved in constant c2 is
positive.

Proof. See Appendix.

Theorem 3.11 Let α, µ, ρ ∈ (0, 1/2) with µn, ρn ∈ N, µ ∈ (α/(1 + α), (1 − 2α)/(1 − α)) and ρ ∈
(α/(1−α), 1/(1+α)). Let µ′ ∈ (µ/(1−µ), 1/(1+α)) with µ′n ∈ N and let ρ′ ∈ (ρ/(1−ρ), (1−2α)/(1−α))
with ρ′n ∈ N. Let γ1, γ2 ∈ (0, 1). We then have

E{Γ(t+ 1) | x(t)} ≤
(
1− c4

α

n

)
Γ(t) + c3,

8



where

c4 = min

{
µ− α(1− µ), ρ− α(1 + ρ), γ1

(
1− µ′(α+ 1)

)
,
α (1− µ− α(2− µ))

1− µ(1− α)
,

γ2
(
1− 2α− ρ′(1− α)

)
,
α (1− ρ(1 + α))

1− ρ(1− α) + 2α

}
and

c3 = max
{
α (1 + α+ ρ(1 + ρ)) , α(1− µ)(2− µ), (α+ c4)αc1, α+ α2, (α+ c4)αc2

}
,

in which

c1 =

(
1 +

1

λ1

)
C1

(
C1

µλ1

)µ/((1−µ)µ′−µ)

, C1 =
(1− µ′) (2 + α)

(1− γ1) (1− µ′(1 + α))
, λ1 =

1− µ− α(2− µ)

2α

and

c2 =

(
1 +

1

λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)

, C2 =
(1− ρ′) (2− 2α− ρ′(1− α))

(1− γ2) (1− 2α− ρ′(1− α))
, λ2 =

1− ρ(1 + α)

2α
.

Proof. See Appendix.

We are now able to give a upper bound of the expected value of Γ(t).

Theorem 3.12 For all t ≥ 0, under the hypothesis of Theorem 3.11, we have E{Γ(t)} ≤ c3n/(αc4).

Proof. We prove this result by induction. For t = 0, we have Γ(0) = 2n. Moreover, we have

c3 ≥ α (1 + α+ ρ(1 + ρ)) ≥ α and c4 ≤ µ− α(1− µ) ≤ µ ≤ 1/2,

which implies that c3/(αc4) ≥ 2. We thus have E{Γ(0)} = 2n ≤ c3n/(αc4). Suppose that the result is
true for a fixed t ≥ 0. From Theorem 3.11, we have

E{Γ(t+ 1)} = E {E{Γ(t+ 1) | x(t)}} ≤ E
{(

1− c4
α

n

)
Γ(t) + c3

}
≤
(
1− c4

α

n

) c3
αc4

n+ c3 =
c3
αc4

n.

which completes the proof.

Theorem 3.13 For all t ≥ 0 and σ > 0, under the hypothesis of Theorem 3.11, we have

P

{
Gap(t) ≥ 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)}
≤ 1

nσ

Proof. From Lemma 2.1 and Theorem 3.12, we have

Γ(t) ≥ 2eαGap(t)/2 and
c3n

αc4
≥ E{Γ(t)}.

It follows that
2eαGap(t)/2 ≥ nσ c3n

αc4
=⇒ Γ(t) ≥ nσ c3n

αc4
=⇒ Γ(t) ≥ nσ

E{Γ(t)}.

Using Markov inequality, we obtain

P

{
Gap(t) ≥ 2(σ + 1)

α
ln (n) +

2

α
ln

(
c3

2αc4

)}
= P

{
2eαGap(t)/2 ≥ nσ c3n

αc4

}
≤ P {Γ(t) ≥ nσ

E{Γ(t)}} ≤ 1

nσ
,

which completes the proof.
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The following corollary shows that at any time, and for any agent, its local counter approximates the
global clock with high probability.

Corollary 3.14 For all t ≥ 0 and σ > 0, under the hypothesis of Theorem 3.11, we have

P

{∣∣∣∣C(i)
t − t

n

∣∣∣∣ < 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)
, ∀i = 1, . . . , n

}
≥ 1− 1

nσ

Proof. By definition, we have xi = C
(i)
t − t/n, and since xn ≤ 0 ≤ x1, we have |xi| ≤ x1 − xn = Gap(t).

It follows, from Theorem 3.13, that

P

{∣∣∣∣C(i)
t − t

n

∣∣∣∣ ≥ 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)
, ∀i = 1, . . . , n

}
≤ P

{
Gap(t) ≥ 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)}
≤ 1

nσ

which completes the proof.

4 Evaluation of the constants

This section is devoted to the evaluation of constants a and b of Relation (1) and, to compare them with
the ones that we can derive from the analysis of Alistarh et al. [4].
From Theorem 3.13, we have

a =
2

α
and b =

2

α
ln

(
c3

2αc4

)
,

where c3 and c4 are given by Theorem 3.11. First of all, note that constraints given in Theorem 3.11
imply the following inequality: ρ/(1 − ρ) < (1 − 2α)/(1 − α), that is, ρ ≤ (1 − 2α)/(2 − 3α), which
combined with ρ ≥ α/(1− α), leads to α ≤ (5−

√
5)/10 ≈ 0.276.

For a fixed value of α, we have to determine the values of parameters µ, ρ, µ′, ρ′, γ1, γ2 that minimize
constant b. This is achieved by applying a simple Monte-Carlo algorithm. Figure 1 shows several optimal
values of the constants a and b, used in Theorem 3.13, and computed for several values of α.

α 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27

a = 2/α 11.77 11.12 10.53 10 9.53 9.10 8.70 8.34 8 7.70 7.41

b = (2/α) log(c3/(2αc4)) 59 63 68 74 82 93 109 134 179 281 739

Figure 1: Optimal values of a and b in function of α

Let us now evaluate constants a and b obtained in the paper of Alistarh et al. [4]. Note that the goal
of their work was not necessarily focused on the optimization of a and b constants. Nevertheless, as we
will see, the evaluation of a and b constants is an important motivation of our work. From Relations (1)
and (2) of [4] and as β = 1, we get 0 < δ ≤ ε = 1/16 and thus we obtain, for γ > 0 and c ≥ 2,

1 + γ + cα(1 + γ)2

1− γ − cα(1 + γ)2
≤ 17

16
,

which gives,

α ≤ 1

33c(1 + γ)2
− 1

c(1 + γ)2
≤ 1

33c(1 + γ)2
≤ 1

66
.

Considering the difference between the lower bound and the upper bound of the inequality following (11),
we obtain

exp

(
αB

n

(
3− 1

1− λ

))
≤ 16λC(ε)

ε
,

10



which can also be written as

exp

(
αB

(1− λ)n

)
≤
(
16λC(ε)

ε

)1/(2−3λ)

.

Using the last inequality obtained in the proof of Lemma 4.8, we get

Γ(t) ≤ 4 + ε

ε
λnC(ε) exp

(
αB

(1− λ)n

)
≤ 4 + ε

ε
λnC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

.

Using this result, we obtain from Lemma 4.11, E{Γ(t)} ≤ 4Cn/(α̂ε), where

C =
4 + ε

ε
λC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

, C(ε) =
(1 + δ)/λ− 1 + 3ε

3ε− ε/3
and α̂ = α(1− γ − cα(1 + γ)2).

Following the same ideas we used to prove Theorem 3.13, we get

a =
2

α
and b =

2

α
ln

(
2C

α̂ε

)
.

Since α ≤ 1/66, we have a ≥ 132. Moreover, since 0 ≤ δ ≤ ε = 1/16, λ = 2/3− 1/54 = 35/54, γ > 0 and
c ≥ 2, we obtain

C(ε) =
(1 + δ)/λ− 1 + 3ε

3ε− ε/3
≥ 1/λ− 1 + 3ε

3ε− ε/3
=

1227

280

which leads to

C =
4 + ε

ε
λC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

≥ 26585

144

(
6544

9

)18

.

Regarding α̂, we have α̂ = α(1− γ − cα(1 + γ)2) ≤ α ≤ 1/66. Therefore, we have

b =
2

α
ln

(
2C

α̂ε

)
≥ 132 ln

(
1169740

3

(
6544

9

)18
)

≥ 17354.

It follows that constants a and b obtained from [4] satisfy a ≥ 132 and b ≥ 17354, which are at least two
orders of magnitude larger than the ones we derived (see Figure 1).

5 Simulations

We complete this paper by giving a summary of the experiments we have carried out to illustrate the
performances of our protocol. Recall that n is the number of nodes in the system, and T = t/n is the
total number of interactions divided by n, which is often called the parallel time. We have conducted two
types of experiments, the first one illustrates the expected proportion of nodes YT (n, k) whose counter is
equal to T + k at time nT , for different values of n and k. More precisely, YT (n, k) is defined by

YT (n, k) =
1

n

n∑
i=1

1{C(i)
nT=T+k}.

We show in Figure 2 the expected value of YT (n, k), for n = 1000 and k = −2,−1, 0, 1, as a function
of the parallel time T . These results have been obtained after running 10, 000 independent experiments.
Figure 2 shows that the expected value of YT (n, k) seems to converge when T goes to infinity, and this
convergence is reached very quickly. Note that for other values of k, proportions of nodes are too close
to 0 to be depicted, as shown in Table 1. Table 1 shows the expected proportion of nodes YT (n, k)
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Figure 2: Expected proportion YT (n, k) of nodes as a function of parallel time T , for n = 1000, and
k = −2,−1, 0, 1, from bottom to the top.

HHHHHHk
n

103 104 105 106 107

-13 0.0 0.0 0.0 1.4E-9 1.42E-9
-12 0.0 2.0E-8 8.0E-9 9.0E-9 6.14E-9
-11 2.0E-7 4.0E-8 2.2E-8 2.8E-8 3.048E-8
-10 2.0E-7 8.0E-8 1.88E-7 1.436E-7 1.4814E-7
-9 4.0E-7 8.0E-7 7.7E-7 7.438E-7 7.2784E-7
-8 3.0E-6 3.6E-6 3.586E-6 3.48E-6 3.6029E-6
-7 1.42E-5 1.8E-5 1.8222E-5 1.7767E-5 1.7758E-5
-6 8.98E-5 8.602E-5 8.7176E-5 8.7372E-5 8.72753E-5
-5 4.372E-4 4.2706E-4 4.2957E-4 4.2901E-4 4.29349E-4
-4 0.0021144 0.0021023 0.0021071 0.0021092 0.0021086
-3 0.0102474 0.0102890 0.0102777 0.0102800 0.0102810
-2 0.0481626 0.0483366 0.0483382 0.0483465 0.0483437
-1 0.1930704 0.1932864 0.1933165 0.1933143 0.1933182
0 0.4389352 0.4380932 0.4380715 0.4380374 0.4380346
1 0.2824746 0.2827344 0.2826797 0.2827057 0.2827070
2 0.0243744 0.0245499 0.0245973 0.0245953 0.0245949
3 7.6E-5 7.224E-5 7.2248E-5 7.27752E-5 7.27974E-5
4 0.0 0.0 0.0 4.0E-10 3.6E-10

Table 1: Expectation of Y50(n, k) from number of nodes n and shift k
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Figure 3: Minimum, average and maximun gap as a function of n.

whose counter is equal to T + k at time T = 50, for different values of n = 103, 104, 105, 106, 107 and
k = −13, . . . , 4. These results have been obtained after running 5, 000 independent experiments, for each
value of n. The expected value of Y50(n, k) seems to be almost independent of n for large values of n.

The second experiment illustrates the gaps (i.e., the maximal, average, and minimal) for different
values of the size n of the system. Let B = 2× 109 be the total number of interactions considered. The
maximal gap is computed as max100n≤t≤B Gap(t), the minimal one is given by min100n≤t≤B Gap(t), and
the average gap is given by

1

B − 100n

B−1∑
t=100n

Gap(t).

Figure 3 shows respectively the minimal, average and maximal gap in a system of size n over the interval
[100n,B] of interactions. As one may expect, the logarithmic progression of the Gap is clearly shown.

6 Conclusion

In this article we have gone a step further in the study of the two-choice paradigm by providing an
accurate analysis of the gap problem. An important application of this study would be the improvement
of leaderless population protocols. Indeed, we have shown in this paper that agents can construct a global
clock by guaranteeing that the values of all agent counters are concentrated according to Relation (1),
and thus can locally use this global clock to determine the instants at which some specific actions need
to be triggered, or the instants from which all the agents of the system have converged to a given state.
In the former case, this would allow agents to solve more complex problems by triggering a series of
population protocols, whereas in the latter case this would allow agents to determine the instant from
which all the agents have successfully computed a given feature of the population. The construction of
efficient leaderless population protocols inspired from this orchestration is left for future work.
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Appendix

This appendix is devoted to the proofs of the Lemmas of the previous sections. These proofs need the
following technical results.

Lemma 3.1 For all x ∈ R, we have 1 + x ≤ ex. For all x ∈ (−∞, c], we have ex ≤ 1 + x+ x2, where c
is the unique positive solution to equation ec − 1− c− c2 = 0. The value of c satisfies 1.79 < c < 1.8.

Proof of Lemma 3.1. The first inequality follows from the study of function ex − 1 − x. The second
inequality can be proved in the same way by studying the function ex − 1 − x − x2 and its derivative
ex − 1− 2x. It is easily checked that c ∈ (1.79, 1.8).
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Lemma 3.2 Let u = (uk)k≥1 and v = (vk)k≥1 be two monotonic sequences of real numbers and let mn

be the sequence of mean values of sequence v defined, for n ≥ 1, by

mn =
1

n

n∑
k=1

vk.

If the sequences u and v are both non-decreasing or both non-increasing then we have

n∑
k=1

ukvk ≥ mn

n∑
k=1

uk.

If one of these two sequences is non-increasing and the other is non-decreasing then we have

n∑
k=1

ukvk ≤ mn

n∑
k=1

uk.

Proof of Lemma 3.2. Suppose that the two sequences are non-decreasing. Let h be the index such
that vh ≤ mn ≤ vh+1. Since

∑n
k=1(vk −mn) = 0, we have

−
h∑

k=1

(vk −mn) =
n∑

k=h+1

(vk −mn) ≥ 0

and thus

n∑
k=1

ukvk −mn

n∑
k=1

uk =
n∑

k=1

uk(vk −mn) =
h∑

k=1

uk(vk −mn) +
n∑

k=h+1

uk(vk −mn)

≥ uh

h∑
k=1

(vk −mn) + uh+1

n∑
k=h+1

(vk −mn) = (uh+1 − uh)

n∑
k=h+1

(vk −mn) ≥ 0

By multiplying both sequences by −1, we get the case where both sequences are non-increasing case. The
last case is obtained by multiplying only one sequence by −1.

The following technical lemma is needed in the proofs of Lemmas 3.9 and 3.10.

Lemma A.1 Let a, b, c, d > 0.

If ad− bc ≥ 0 then
a+ b

c+ d
≤ a

c
.

If ad− bc ≤ 0 and c− d > 0 then
a− b

c− d
≤ a

c
.

Proof. If ad− bc ≥ 0 then

a+ b

c+ d
− a

c
=

ac+ bc− ac− ad

(c+ d)c
=

bc− ad

(c+ d)c
≤ 0.

If ad− bc ≤ 0 and c− d > 0 then

a− b

c− d
− a

c
=

ac− bc− ac+ ad

(c− d)c
=

ad− bc

(c− d)c
≤ 0,

which completes the proof.
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We suppose in the following lemma that the main hypothesis of Lemma 3.7 is not satisfied, i.e. we
suppose that we have x(1−µ)n > 0. In order to simplify the writing, we introduce the following notation,
for all λ ∈ (0, 1) such that λn ∈ N,

Φ≤λn(t) =
λn∑
i=1

eαxi(t), Φ>λn(t) =
n∑

i=λn+1

eαxi(t), Ψ≤λn(t) =
λn∑
i=1

e−αxi(t), and Ψ>λn(t) =
n∑

i=λn+1

e−αxi(t).

Lemma 3.9 Let α, µ ∈ (0, 1/2) with µn ∈ N and µ ∈ (α/(1 + α), (1− 2α)/(1− α)), let µ′ ∈ (0, 1) with
µ′n ∈ N and µ′ ∈ (µ/(1− µ), 1/(1 + α)) and let γ1 ∈ (0, 1).

If x(1−µ)n > 0 and E{Φ(t+ 1)−Φ(t) | x(t)} ≥ −
(
1− µ′(α+ 1)

) αγ1
n

Φ(t) and Φ(t) ≥ λ1Ψ(t) then we

have Γ(t) ≤ c1n, where

c1 =

(
1 +

1

λ1

)
C1

(
C1

µλ1

)µ/((1−µ)µ′−µ)

, C1 =
(1− µ′) (2 + α)

(1− γ1) (1− µ′(1 + α))
, and λ1 =

1− µ− α(2− µ)

2α
.

The condition µ < (1 − 2α)/(1 − α) is needed ta assure that constant λ1 > 0. The value of λ1 will
be used in Theorem 3.11. The condition µ′ > µ/(1 − µ) is needed to assure that the power involved in
constant c1 is positive.

Proof. Since −(α/n− α2/n2) ≤ 0, we have, using Lemma 3.3

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi(t) −

(
α

n
− α2

n2

)
Φ(t)

≤
(
α+ α2

(
1− 2

n

)) µ′n∑
i=1

pie
αxi(t) +

(
α+ α2

(
1− 2

n

)) n∑
i=µ′n+1

pie
αxi(t) −

(
α

n
− α2

n2

)
Φ≤µ′n(t).

The sequence
(
eαxi(t)

)
i
is a non-increasing sequence and the sequence (pi)i is an non-decreasing sequence,

so setting successively

mn =
1

µ′n

µ′n∑
i=1

pi =
µ′n− 1

n(n− 1)
=

µ′

n
− 1− µ′

n(n− 1)
≤ 1

n

(
µ′ − 1− µ′

n

)
and next

mn =
1

(1− µ′)n

n∑
i=µ′n+1

pi =
1

n

(
1 + µ′ +

µ′

n− 1

)
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and applying Lemma 3.2 we obtain

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
[(

µ′ − 1− µ′

n

)
1

n

(
α+ α2

(
1− 2

n

))
−
(
α

n
− α2

n2

)]
Φ≤µ′n(t)

+

(
α+ α2

(
1− 2

n

))
1

n

(
1 + µ′ +

µ′

n− 1

)
Φ>µ′n(t)

=

[(
µ′ − 1− µ′

n

)(
1 + α

(
1− 2

n

))
−
(
1− α

n

)] α
n
Φ≤µ′n(t)

+

(
1 + α

(
1− 2

n

))(
1 + µ′ +

µ′

n− 1

)
α

n
Φ>µ′n(t)

= −
[
1− µ′(α+ 1) +

1− µ′

n
+ αµ′

(
1 +

2

n

)]
α

n
Φ≤µ′n(t)

+

[
1 + α− 2α(1 + µ′)

n
+ µ′(1 + α) +

µ′(1 + α)

n− 1
− 2αµ′

n(n− 1)

]
α

n
Φ>µ′n(t)

= −
[
1− µ′(α+ 1) +

1− µ′

n

]
α

n
Φ≤µ′n(t)

+

[
1 + α− 2α(1 + µ′)

n
+ µ′(1 + α) +

µ′(1 + α)

n− 1
− 2αµ′

n(n− 1)

]
α

n
Φ>µ′n(t).

Using the fact that Φ≤µ′n(t) = Φ(t)− Φ>µ′n(t), we get

E{Φ(t+ 1)− Φ(t) | x(t)} = −
[
1− µ′(α+ 1) +

1− µ′

n

]
α

n
Φ(t)

+

[
2 + α+

1− α(2 + µ′)

n− 1
− 1− µ′ − 2α

n(n− 1)

]
α

n
Φ>µ′n(t).

Using now the second hypothesis which satisfies

E{Φ(t+ 1)− Φ(t) | x(t)} ≥ −
(
1− µ′(α+ 1)

) αγ1
n

Φ(t) ≥ −
(
1− µ′(α+ 1) +

1− µ′

n

)
αγ1
n

Φ(t),

we get[
2 + α+

1− α(2 + µ′)

n− 1
− 1− µ′ − 2α

n(n− 1)

]
α

n
Φ>µ′n(t) ≥

[
1− µ′(α+ 1) +

1− µ′

n

]
α(1− γ1)

n
Φ(t).

Note that the condition µ′ < 1/(1 + α) implies that 1− µ′(α+ 1) > 0.
Let us introduce the notation B(t) =

∑n
i=1max(0, xi(t)). The sequence (xi(t))i being non-increasing,

we have, for every ℓ = 1, . . . , n,

ℓxℓ(t) ≤
ℓ∑

i=1

xi(t) ≤ B.

It follows in particular that we have xµ′n(t) ≤ B(t)/(µ′n) and so

Φ>µ′n(t) =
n∑

i=µ′n+1

eαxi(t) ≤ (1− µ′)neαxµ′n(t) ≤ (1− µ′)neαB(t)/(µ′n).
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This leads to

Φ(t) ≤
2 + α+

1− α(2 + µ′)

n− 1
− 1− µ′ − 2α

n(n− 1)

(1− γ1)

(
1− µ′(α+ 1) +

1− µ′

n

) Φ>µ′n

≤
(1− µ′)

(
2 + α+

1− α(2 + µ′)

n− 1
− 1− µ′ − 2α

n(n− 1)

)
(1− γ1)

(
1− µ′(α+ 1)− 1− µ′

n

) neαB(t)/(µ′n).

We now make use of Lemma A1. Let us define

a = 2+ α, b =
1− α(2 + µ′)

n− 1
− 1− µ′ − 2α

n(n− 1)
, c = 1− µ′(α+ 1) and d =

1− µ′

n
. We have a, c, d > 0. If

b ≤ 0 then we clearly have
a+ b

c+ d
≤ a

c
. If b > 0 we obtain, after some algebra,

(ad− bc)n(n− 1) = [(n− 1)(1 + 3α)− µ′](1− µ′) + (n− 1)αµ′(2− µ′ − 2α− αµ′) + µ′α(1− αµ′).

Since α < 1/2, the condition µ′ < 1/(1+α) implies that µ′ < 2(1−α)/(1+α) which in turn implies that

2 − µ′ − 2α − αµ′ > 0. We deduce that ad − bc > 0 and using Lemma A1, we obtain
a+ b

c+ d
≤ a

c
. This

leads to

Φ(t) ≤ n(1− µ′) (2 + α)

(1− γ1) (1− µ′(α+ 1))
eαB(t)/(µ′n).

Introducing the notation C1 =
(1− µ′) (2 + α)

(1− γ1)
(
1− µ′(α+ 1)

) , we can write

Φ ≤ C1ne
αB(t)/(µ′n).

The exponential function being convex, the Jensen’s inequality gives

Ψ(t) ≥ Ψ>(1−µ)n(t) =

n∑
i=(1−µ)n+1

e−αxi(t) ≥ µn exp

(
−
α
∑n

i=(1−µ)n+1 xi(t)

µn

)
.

Consider the sum
∑n

i=(1−µ)n+1 xi(t) and recall that the sequence (xi(t))i is non increasing. Since
x(1−µ)n(t) > 0, this sum contains all the negative xi(t) whose sum is equal to −B(t). Let r be the
number of positive xi(t) in this sum. Noting that r ∈ {0, . . . , µn− 1}, we have, using (11),

n∑
i=(1−µ)n+1

xi(t) = −B(t) +

(1−µ)n+r∑
i=(1−µ)n+1

xi(t) ≤ −B(t) +B(t)

(1−µ)n+r∑
i=(1−µ)n+1

1

i
≤ −B(t) +

rB(t)

(1− µ)n+ r
.

The function f defined, for r ∈ [0, µn], by f(r) = rB/((1− µ)n+ r) being non decreasing, we have

rB(t)

(1− µ)n+ r
= f(r) ≤ f(µn) = µB(t),

which leads to
n∑

i=(1−µ)n+1

xi(t) ≤ −B(t) + µB(t) = −(1− µ)B(t)
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and so, we get

Ψ(t) ≥ µn exp

(
−
α
∑n

i=(1−µ)n+1 xi(t)

µn

)
≥ µneα(1−µ)B(t)/(µn).

The hypothesis Φ(t) ≥ λ1Ψ(t) gives

C1ne
αB/(µ′n) ≥ Φ(t) ≥ λ1Ψ(t) ≥ λ1µne

α(1−µ)B(t)/(µn),

which in turn gives

C1

λ1µ
≥ exp

(
αB(t)

n

(
1− µ

µ
− 1

µ′

))
= exp

(
αB(t)

µ′n

(
(1− µ)µ′ − µ

µ

))
,

that is

eαB(t)/(µ′n) ≤
(

C1

λ1µ

) µ
(1−µ)µ′−µ

.

We finally arrive to

Γ(t) = Φ(t) + Ψ(t) ≤
(
1 +

1

λ1

)
Φ(t) ≤

(
1 +

1

λ1

)
C1ne

αB/(µ′n)

≤
(
1 +

1

λ1

)
C1n

(
C1

λ1µ

) µ
(1−µ)µ′−µ

,

which completes the proof.

We suppose in the following lemma that the main hypothesis of Lemma 3.8 is not satisfied, i.e. we
suppose that we have xρn < 0.

Lemma 3.10 Let α, ρ ∈ (0, 1/2) with ρn ∈ N and ρ ∈ (α/(1− α), 1/(1 + α)), let ρ′ ∈ (ρ/(1− ρ), (1−
2α)/(1− α)) with ρ′n ∈ N and let γ2 ∈ (0, 1).

If xρn < 0 and E{Ψ(t + 1) − Ψ(t) | x(t)} ≥ −
[
1− 2α− ρ′(1− α)

] αγ2
n

Ψ(t) and Ψ(t) ≥ λ2Φ(t) then

we have Γ(t) ≤ c2n, where

c2 =

(
1 +

1

λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)

, C2 =
(1− ρ′) (2− 2α− ρ′(1− α))

(1− γ2) (1− 2α− ρ′(1− α))
, and λ2 =

1− ρ(1 + α)

2α
.

The condition ρ < 1/(1 + α) is needed ta assure that constant λ2 > 0. The value of λ2 will be used
in Theorem 3.11. The condition ρ′ > ρ/(1 − ρ) is needed to assure that the power involved in constant
c2 is positive.

Proof. Using lemma 3.5 and since −α+ α2(1− 2/n) ≤ 0, we have

E{Ψ(t+1)−Ψ(t) | x(t)} ≤
(
−α+ α2

(
1− 2

n

)) n∑
i=1

pie
−αxi(t) +

(
α

n
+

α2

n2

)
Ψ(t)

≤
(
−α+ α2

(
1− 2

n

)) n∑
i=(1−ρ′)n

pie
−αxi(t) +

(
1 +

α

n

) α

n
Ψ>(1−ρ′)n(t) +

(
1 +

α

n

) α

n
Ψ≤(1−ρ′)n(t).

The sequence
((
−α+ α2(1− 2/n)

)
eαxi(t)

)
i
is a non-increasing sequence and the sequence (pi)i is an

non-decreasing sequence, so setting

mn =
1

ρ′n

n∑
i=(1−ρ′)n+1

pi =
1

n

(
2− ρ′ +

1− ρ′

n− 1

)
≥ 2− ρ′

n
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and applying Lemma 3.2 we obtain

E{Ψ(t+ 1)−Ψ(t) | x(t)}

≤ mn

(
−α+ α2

(
1− 2

n

))
Ψ>(1−ρ′)n(t) +

(
1 +

α

n

) α

n
Ψ>(1−ρ′)n(t) +

(
1 +

α

n

) α

n
Ψ≤(1−ρ′)n(t)

≤
[
(2− ρ′)

(
−1 + α

(
1− 2

n

))
+ 1 +

α

n

]
α

n
Ψ>(1−ρ′)n(t) +

(
1 +

α

n

) α

n
Ψ≤(1−ρ′)n(t)

= −
[
1− 2α− ρ′(1− α) +

α(3− 2ρ′)

n

]
α

n
Ψ>(1−ρ′)n(t) +

(
1 +

α

n

) α

n
Ψ≤(1−ρ′)n(t).

Using the fact that Ψ>(1−ρ′)n(t) = Ψ(t)−Ψ≤(1−ρ′)n(t), we get

E{Ψ(t+ 1)−Ψ(t) | x(t)}

≤ −
[
1− 2α− ρ′(1− α) +

α(3− 2ρ′)

n

]
α

n
Ψ(t) +

[
2− 2α− ρ′(1− α) +

α(4− 2ρ′)

n

]
α

n
Ψ≤(1−ρ′)n(t).

Using the second hypothesis, we have

E{Ψ(t+ 1)−Ψ(t) | x(t)} ≥ −
[
1− 2α− ρ′(1− α)

] αγ2
n

Ψ(t)

≥ −
[
1− 2α− ρ′(1− α) +

α(3− 2ρ′)

n

]
αγ2
n

Ψ(t)

and thus, we obtain[
2− 2α− ρ′(1− α) +

α(4− 2ρ′)

n

]
α

n
Ψ≤(1−ρ′)n(t) ≥ (1− γ2)

[
1− 2α− ρ′(1− α) +

α(3− 2ρ′)

n

]
α

n
Ψ(t).

Note that the condition ρ′ < (1− 2α)/(1− α) and α < 1/2 implies that 1− 2α− ρ′(1− α) > 0.
Let us introduce the notation B(t) =

∑n
i=1max(0, xi(t)). The sequence (xi(t))i being non-increasing,

we have, for every ℓ = 1, . . . , n,

−B(t) ≤
n∑

i=ℓ+1

xi(t) ≤ (n− ℓ)xℓ(t). (11)

It follows in particular that we have x(1−ρ′)n(t) ≥ −B(t)/(ρ′n) and so

Ψ≤(1−ρ′)n(t) =

(1−ρ′)n∑
i=1

e−αxi(t) ≤ (1− ρ′)ne−αx(1−ρ′)n(t) ≤ (1− ρ′)neαB(t)/(ρ′n).

This leads to

Ψ(t) ≤

[
2− 2α− ρ′(1− α) +

α(4− 2ρ′)

n

]
(1− γ2)

[
1− 2α− ρ′(1− α) +

α(3− 2ρ′)

n

]Ψ≤(1−ρ′)n

≤
(1− ρ′)

[
2− 2α− ρ′(1− α) +

α(4− 2ρ′)

n

]
(1− γ2)

[
1− 2α− ρ′(1− α) +

α(3− 2ρ′)

n

]neαB/(ρ′n).
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We now make use of Lemma A1. Let us define a = 1, b = α/n, c = 1 − 2α − ρ′(1 − α) and
d = α(3 − 2ρ′)/n. We have a, b, c, d > 0 and ad − bc = α(2 − ρ′)(1 + α)/n ≥ 0, so using Lemma A1, we

obtain
a+ b

c+ d
≤ a

c
, that is

2− 2α− ρ′(1− α) +
α(4− 2ρ′)

n

1− 2α− ρ′(1− α) +
α(3− 2ρ′)

n

= 1 +
1 +

α

n

1− 2α− ρ′(1− α) +
α(3− 2ρ′)

n

≤ 1 +
1

1− 2α− ρ′(1− α)

=
2− 2α− ρ′(1− α)

1− 2α− ρ′(1− α)
.

This leads to

Ψ(t) ≤ (1− ρ′) (2− 2α− ρ′(1− α))

(1− γ2) (1− 2α− ρ′(1− α))
neαB(t)/(µ′n).

Introducing the notation C2 =
(1− ρ′)

(
2− 2α− ρ′(1− α)

)
(1− γ2)

(
1− 2α− ρ′(1− α)

) , we can write

Φ ≤ C2ne
αB(t)/(ρ′n).

The exponential function being convex, the Jensen’s inequality gives

Φ(t) ≥ Φ≤ρn(t) =

ρn∑
i=1

eαxi(t) ≥ ρn exp

(
α
∑ρn

i=1 xi(t)

ρn

)
.

Consider the sum
∑ρn

i=1 xi(t) and recall that the sequence (xi(t))i is non increasing. Since xρn(t) < 0,
this sum contains all the positive xi(t) whose sum is equal to B(t) and at least one negative xi(t). Let r
be the number of negative xi(t) in this sum, Noting that r ∈ {1, . . . , ρn− 1}, we have, using (11),

ρn∑
i=1

xi(t) = B(t) +

ρn∑
i=ρn−r

xi(t) ≥ B(t)−B(t)

ρn∑
i=ρn−r

1

n− i
≥ B(t)− rB(t)

(1− ρ)n+ r
.

The function g defined, for r ∈ [1, ρn], by g(r) = −rB/((1− ρ)n+ r) being non increasing, we have

− rB(t)

(1− ρ)n+ r
= g(r) ≥ g(ρn) = −ρB(t),

which leads to
ρn∑
i=1

xi(t) ≥ B(t)− ρB(t) = (1− ρ)B(t)

and so, we get

Φ(t) ≥ ρn exp

(
α
∑ρn

i=1 xi(t)

ρn

)
≥ ρneα(1−ρ)B(t)/(ρn).

The hypothesis Ψ(t) ≥ λ2Φ(t) gives

C2ne
αB/(ρ′n) ≥ Ψ(t) ≥ λ2Φ(t) ≥ λ2ρne

α(1−ρ)B(t)/(ρn),

which in turn gives

C2

λ2ρ
≥ exp

(
αB(t)

n

(
1− ρ

ρ
− 1

ρ′

))
= exp

(
αB(t)

ρ′n

(
(1− ρ)ρ′ − ρ

ρ

))
,
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that is

eαB(t)/(ρ′n) ≤
(

C2

λ2ρ

) ρ
(1−ρ)ρ′−ρ

.

We finally arrive to

Γ(t) = Φ(t) + Ψ(t) ≤
(
1 +

1

λ2

)
Ψ(t) ≤

(
1 +

1

λ2

)
C2ne

αB/(ρ′n)

≤
(
1 +

1

λ2

)
C2n

(
C2

λ2ρ

) ρ
(1−ρ)ρ′−ρ

,

which completes the proof.

Theorem 3.11 Let α, µ, ρ ∈ (0, 1/2) with µn, ρn ∈ N, µ ∈ (α/(1 + α), (1 − 2α)/(1 − α)) and ρ ∈
(α/(1−α), 1/(1+α)). Let µ′ ∈ (µ/(1−µ), 1/(1+α)) with µ′n ∈ N and let ρ′ ∈ (ρ/(1−ρ), (1−2α)/(1−α))
with ρ′n ∈ N. Let γ1, γ2 ∈ (0, 1). We then have

E{Γ(t+ 1) | x(t)} ≤
(
1− c4

α

n

)
Γ(t) + c3,

where

c4 = min

{
µ− α(1− µ), ρ− α(1 + ρ), γ1

(
1− µ′(α+ 1)

)
,
α (1− µ− α(2− µ))

1− µ(1− α)
,

γ2
(
1− 2α− ρ′(1− α)

)
,
α (1− ρ(1 + α))

1− ρ(1− α) + 2α

}
and

c3 = max
{
α (1 + α+ ρ(1 + ρ)) , α(1− µ)(2− µ), (α+ c4)αc1, α+ α2, (α+ c4)αc2

}
,

in which

c1 =

(
1 +

1

λ1

)
C1

(
C1

µλ1

)µ/((1−µ)µ′−µ)

, C1 =
(1− µ′) (2 + α)

(1− γ1) (1− µ′(1 + α))
, λ1 =

1− µ− α(2− µ)

2α

and

c2 =

(
1 +

1

λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)

, C2 =
(1− ρ′) (2− 2α− ρ′(1− α))

(1− γ2) (1− 2α− ρ′(1− α))
, λ2 =

1− ρ(1 + α)

2α
.

Proof of Theorem 3.11. The proof proceeds by the analysis of the three following cases.

• Case 1 : xρn ≥ 0 and x(1−µ)n ≤ 0

• Case 2 : x(1−µ)n > 0

• Case 3 : xρn < 0.

Case 1 : Suppose that xρn ≥ 0 and x(1−µ)n ≤ 0. We can then use Lemmas 3.7 and 3.8. By adding
inequalities (9) and (10), we obtain

E{Γ(t+ 1) | x(t)} ≤
(
1− aα

n

)
Γ(t) + b ≤

(
1− c4α

n

)
Γ(t) + c3,

where
a = min (µ− α(1− µ), ρ− α(1 + ρ)) ≥ c4 and b = α (1 + α+ ρ(1 + ρ)) ≤ c3.

Case 2 : Suppose that x(1−µ)n > 0. We then consider the three following subcases.
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• Case 2.1 : E{Φ(t+ 1)− Φ(t) | x(t)} ≥ −
(
1− µ′(α+ 1)

) αγ1
n

Φ(t) and Φ(t) ≥ λ1Ψ(t)

• Case 2.2 : E{Φ(t+ 1)− Φ(t) | x(t)} < −
(
1− µ′(α+ 1)

) αγ1
n

Φ(t)

• Case 2.3 : Φ(t) < λ1Ψ(t).

Case 2.1 : Suppose that

E{Φ(t+ 1)− Φ(t) | x(t)} ≥ −
(
1− µ′(α+ 1)− α

n

) αγ1
n

Φ(t) and Φ(t) ≥ λ1Ψ(t).

We can then apply Lemma 3.9, which gives Γ(t) ≤ c1n.
By adding the inequalities obtained in Corollaries 3.4 et 3.6, we get

E{Γ(t+ 1)− Γ(t) | x(t)} ≤ α2

n

(
1− 1

n

)
Γ(t) ≤ α2c1,

and thus, using the fact that c1 ≥ Γ(t)/n,

E{Γ(t+ 1) | x(t)} ≤ Γ(t) + α2c1

= Γ(t)− c4αc1 + α2c1 + c4αc1

≤
(
1− c4

α

n

)
Γ(t) + (α+ c4)αc1

≤
(
1− c4

α

n

)
Γ(t) + c3.

Case 2.2 : Suppose that E{Φ(t+ 1)− Φ(t) | x(t)} < −
(
1− µ′(α+ 1)

) αγ1
n

Φ(t).

Since µ, ρ ∈ (0, 1/2), we have ρ < 1 − µ. The sequence (xi(t))i being non increasing, we have
xρn(t) ≥ x(1−µ)n(t) > 0. We can thus apply Lemma 3.8. Adding the previous inequality with the one in
Lemma 3.8 leads to

E{Γ(t+ 1)− Γ(t) | x(t)} = E{Φ(t+ 1)− Φ(t) | x(t)}+E{Ψ(t+ 1)−Ψ(t) | x(t)}

≤ −
(
1− µ′(α+ 1)

) αγ1
n

Φ− (ρ− α(1 + ρ))
α

n
Ψ(t) + αρ(1 + ρ)

≤ −min
{
γ1
(
1− µ′(α+ 1)

)
, (ρ− α(1 + ρ))

} α

n
Γ(t) + αρ(1 + ρ),

which gives

E{Γ(t+ 1) | x(t)} ≤
(
1−min

{
γ1
(
1− µ′(α+ 1)

)
, (ρ− α(1 + ρ))

} α

n

)
Γ(t) + αρ(1 + ρ)

≤
(
1−min

{
γ1
(
1− µ′(α+ 1)

)
, (ρ− α(1 + ρ))

} α

n

)
Γ(t) + α (1 + α+ ρ(1 + ρ))

≤
(
1− c4

α

n

)
Γ(t) + c3.

Case 2.3 : Suppose that Φ < λ1Ψ, with λ1 =
1− µ− α(2− µ)

2α
. We use here Corollary 3.4 and
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Lemma 3.8 in which we set ρ = 1− µ. We obtain, after some algebra,

E{Γ(t+ 1)− Γ(t) | x(t)} = E{Φ(t+ 1)− Φ(t) | x(t)}+E{Ψ(t+ 1)−Ψ(t) | x(t)}

≤ α2

n

(
1− 1

n

)
Φ−

[
ρ− α(1 + ρ) +

α(1 + 2ρ)

n

]
α

n
Ψ+ αρ(1 + ρ)

=
α2

n

(
1− 1

n

)
λ1Ψ−

[
1− µ− α(2− µ) +

α(3− 2µ)

n

]
α

n
Ψ+ α(1− µ)(2− µ)

=

[
−1− µ− α(2− µ)

2
− 1− µ+ α(4− 3µ)

2n

]
α

n
Ψ+ α(1− µ)(2− µ)

≤ −1− µ− α(2− µ)

2

α

n
Ψ+ α(1− µ)(2− µ)

= −λ1
α2

n
Ψ+ α(1− µ)(2− µ).

Noting that Φ(t) ≤ λ1Ψ(t) =⇒ Φ(t) + Ψ(t) ≤ (1 + λ1)Ψ(t) =⇒ Ψ(t) ≥ Γ(t)

1 + λ1
, we get

E{Γ(t+ 1)− Γ(t) | x(t)} ≤ − λ1

1 + λ1

α2

n
Γ + α(1− µ)(2− µ)

= −
(
α (1− µ− α(2− µ))

1− µ(1− α)

)
α

n
Γ + α(1− µ)(2− µ),

that is

E{Γ(t+ 1) | x(t)} ≤
(
1−

(
α (1− µ− α(2− µ))

1− µ(1− α)

)
α

n

)
Γ(t) + α(1− µ)(2− µ)

≤
(
1− c4

α

n

)
Γ(t) + c3.

Case 3 : Suppose that xρn < 0. We then consider the three following subcases.

• Case 3.1 : E{Ψ(t+ 1)−Ψ(t) | x(t)} ≥ −
(
1− 2α− ρ′(1− α)

) αγ2
n

Ψ(t) and Ψ(t) ≥ λ2Φ(t)

• Case 3.2 : E{Ψ(t+ 1)−Ψ(t) | x(t)} < −
(
1− 2α− ρ′(1− α)

) αγ2
n

Ψ(t)

• Case 3.3 : Ψ(t) < λ2Φ(t).

Case 3.1 : Suppose that

E{Ψ(t+ 1)−Ψ(t) | x(t)} ≥ −
(
1− 2α− ρ′(1− α)

) αγ2
n

Ψ(t) and Ψ(t) ≥ λ2Φ(t).

We can then apply Lemma 3.10, which gives Γ(t) ≤ c2n.
By adding the inequalities obtained in Corollaries 3.4 et 3.6, we get

E{Γ(t+ 1)− Γ(t) | x(t)} ≤ α2

n

(
1− 1

n

)
Γ(t) ≤ α2c2,

and thus, using the fact that c2 ≥ Γ(t)/n,

E{Γ(t+ 1) | x(t)} ≤ Γ(t) + α2c2

= Γ(t)− c4αc2 + α2c2 + c4αc2

≤
(
1− c4

α

n

)
Γ(t) + (α+ c4)αc2

≤
(
1− c4

α

n

)
Γ(t) + c3.
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Case 3.2 : Suppose that E{Ψ(t+ 1)−Ψ(t) | x(t)} < −
(
1− 2α− ρ′(1− α)

) αγ2
n

Ψ(t).

Since µ, ρ ∈ (0, 1/2), we have ρ < 1 − µ. The sequence (xi(t))i being non increasing, we have
x(1−µ)n(t) ≤ xρn(t) < 0. We can thus apply Lemma 3.7. Adding the previous inequality with the one in
Lemma 3.7 leads to

E{Γ(t+ 1)− Γ(t) | x(t)} = E{Φ(t+ 1)− Φ(t) | x(t)}+E{Ψ(t+ 1)−Ψ(t) | x(t)}

≤ − (µ− α(1− µ))
α

n
Φ(t)− γ2

(
1− 2α− ρ′(1− α)

) α
n
Ψ(t) + α+ α2

≤ −min
{
µ− α(1− µ), γ2

(
1− 2α− ρ′(1− α)

)} α

n
Γ(t) + α+ α2,

which gives

E{Γ(t+ 1) | x(t)} ≤
(
1−min

{
µ− α(1− µ), γ2

(
1− 2α− ρ′(1− α)

)}) α
n
Γ(t) + α+ α2

≤
(
1− c4

α

n

)
Γ(t) + c3.

Case 3.3 : Suppose that Ψ(t) < λ2Φ(t), with λ2 =
1− ρ(1 + α)

2α
. We use here Corollary 3.4 and

Lemma 3.7 in which we set µ = 1− ρ. We obtain, after some algebra,

E{Γ(t+ 1)− Γ(t) | x(t)} = E{Φ(t+ 1)− Φ(t) | x(t)}+E{Ψ(t+ 1)−Ψ(t) | x(t)}

≤ −
(
µ− α(1− µ) +

α(1− 2µ)

n

)
α

n
Φ(t) +

α2

n

(
1− 1

n

)
Ψ(t) + α+ α2

(
1− 2

n

)
≤ −

(
1− ρ(1 + α)− α(1− 2ρ)

n

)
α

n
Φ(t) +

α2

n

(
1− 1

n

)
λ2Φ+ α+ α2

= −1

2

(
1− ρ(1 + α) +

1− ρ(1− 3α)− 2α

n

)
α

n
Φ(t) + α+ α2.

Note that for ρ ∈ (0, 1/2), we have (1− ρ)/(3− 2ρ) > 1/2 which implies that α < (1− ρ)/(3− 2ρ) which
is equivalent to 1− ρ(1− 3α)− 2α > 0. This gives

E{Γ(t+ 1)− Γ(t) | x(t)} ≤ −
(
1− ρ(1 + α)

2

)
α

n
Φ(t) + α+ α2 = −λ2α

2

n
Φ(t) + α+ α2.

Noting that Ψ(t) ≤ λ2Φ(t) =⇒ Φ(t) + Ψ(t) ≤ (1 + λ2)Φ(t) =⇒ Φ(t) ≥ Γ(t)

1 + λ2
, we get

E{Γ(t+ 1)− Γ(t) | x(t)} ≤ − λ2α
2

(1 + λ2)n
Γ(t) + α+ α2 = −

(
α(1− ρ(1 + α))

1− ρ(1− α) + 2α

)
α

n
Γ(t) + α+ α2,

that is

E{Γ(t+ 1) | x(t)} ≤
(
1−

(
α(1− ρ(1 + α))

1− ρ(1− α) + 2α

)
α

n

)
Γ(t) + α+ α2

≤
(
1− c4

α

n

)
Γ(t) + c3,

which completes the proof.
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