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Abstract
We study the genealogy of a solvable population model with N particles on the real line

which evolves according to a discrete-time branching process with selection. At each time
step, every particle gives birth to children around a times its current position, where a > 0
is a parameter of the model. Then, the N rightmost new-born children are selected to form
the next generation. We show that the genealogical trees of the process converge to those of
a Beta coalescent as N → ∞. The process we consider can be seen as a toy-model version
of a continuous-time branching process with selection, in which particles move according to
independent Ornstein-Uhlenbeck processes. The parameter a is akin to the pulling strength
of the Ornstein-Uhlenbeck motion.

1 Introduction
A branching-selection particle system is a Markov process of particles on the real line that evolves
through the repeated application of the two following steps:

Branching step: each particle currently alive in the process independently gives birth to children
according to a point process whose law depends on the position of the particle.

Selection step: some of the newborn children are selected to form the next generation and repro-
duce at the next branching step, while the other particles are “discarded” from the process.

From a biological perspective, such models can be thought of as toy-models for the competition
between individuals in a population evolving in an environment with limited resources. In this
sense, the positions of particles (also seen as individuals) may be interpreted as their fitness: indi-
viduals with large fitness have more propensity to reproduce and transfer their genetic advantage
to their offspring.

Branching-selection particle systems are also of physical relevance. They are related to noisy
reaction-diffusion phenomena and to the F-KPP equation [5, 6], hence they are often used to de-
scribe the evolution of disordered systems having two homogeneous steady states. The prototypical
example of such systems is the so-called N -branching random walk: in this process, particles make
independently children around their current position, and at each step only the N rightmost chil-
dren are kept alive. Based on numerical simulations and the analysis of solvable models (see [5,6]),
it has been conjectured that many branching random walks with similar selection procedure satisfy
universal properties. The cloud of particles travels at a deterministic speed vN that should satisfy

vN − v∞ = −χ
(logN + 3 log logN + o(log logN))2 . (1.1)

Moreover, the genealogical trees of such models should converge to those of a Bolthausen-Sznitman
coalescent.
∗aser.cortinespeixoto@math.uzh.ch
†mallein@math.univ-paris13.fr
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Some of these conjectures have been verified for individual models. Bérard and Gouéré [1]
proved that the corrections to the speed v − vN of many N -branching random walks are of the
order (logN)−2, in accordance with the conjectures from [6]. These results haven been extended
to branching random walks with different integrability conditions in [2,10,15], and to other related
models in [7, 14, 17]. Maillard [13] proved that the barycentre of a N -branching Brownian motion
converges, after proper scaling, to a Lévy process. This result indicates the validity of the second
order corrections in (1.1). Other results on the hydrodynamic limit of the shape of the front were
obtained in [11,12].

As for the genealogical structure of such models, the authors in [3] show that the genealogy
of a branching Brownian motion with quasi-critical absorption converges toward the Bolthausen-
Sznitman coalescent. To the best of our knowledge this is the only example lying on the N -
branching random walk universality class for which the conjectures from [6] about the genealogy
have been verified. Nevertheless results on related models [6, 8, 9] indicate the robustness of this
conjecture. We studied in [9] the so-called exponential model from [6], which shares many common
features with N -branching random walks, even though it does not belong to the same universality
class. We showed that when the selection procedures favours the rightmost individuals, the ge-
nealogy of the process converges toward the Bolthausen–Sznitman coalescent. This result lead to
the natural question: under which conditions do different genealogical behaviours arise?

It is well known that the genealogy of neutral population models, such as Wright–Fisher and
Moran models, converge to the Kingman coalescent [16]. On the other hand, if the rightmost
particles are favoured by the selection procedure, then the Bolthausen–Sznitman coalescent is
expected. Hence we look for coalescent processes arising in branching-selection particle systems,
which interpolate between these two behaviours. Such a family appears in the context of Galton-
Watson trees [20], where the so-called Beta coalescent forms a 1-parameter family interpolating
between the Kingman and the Bolthausen–Sznitman coalescent.

In this paper, we consider a variant of the exponential model from [6], in which particles are
subjected to a pulling force attracting them to zero. Let N ∈ N denote the size of the population
and a ∈ R+ be a positive parameter governing the intensity of the attractive force. The process is
defined as follows: it starts with N particles scattered on the on the real line. At each discrete time
n, every particle gives birth to children whose position are determined by independent Poisson point
processes. More precisely, the offspring of an individual located at x ∈ R are positioned according
to a Poisson point process with intensity eax−ydy on R. We then select the N rightmost newborn
individuals to form the next generation of the process. We call this process the (N, a)-exponential
model.

In the coming section, we will show that the (N, a)-exponential model is well-defined for all
n ∈ N, and that it is a reversible Markov process. Hence we can construct a version of it for all
n ∈ Z. Thanks to this bi-infinite construction, we define the ancestral partition process ΠN of the
process as follows: for every n ∈ N, let ΠN

n be the partition of {1, . . . , N} such that i and j belong
to the same block if and only if the ith and the jth rightmost particles at time 0 share a common
ancestor at time −n. Our main result concerns the asymptotic behaviour of ΠN as N →∞.

Theorem 1.1. As N →∞, we have:

a) If 0 < a < 1/2, then (ΠN
btNc, t ≥ 0) converges in law to the Kingman coalescent.

b) If a = 1/2, then (ΠN
btN/ logNc, t ≥ 0) converges in law to the Kingman coalescent.

c) If 1/2 < a < 1, then (ΠN

btN(1−a)/ac, t ≥ 0) converges in law to the Beta(2− a−1, a−1)-coalescent.

d) If a = 1, then (ΠN
bt logNc, t ≥ 0) converges in law to the Bolthausen-Sznitman coalescent.

e) If a > 1, then ΠN converges in law toward a discrete coalescent on N.

We refer to [4, Example 3, p72] for the precise definitions of the limiting processes, and Sec-
tion 2.2 of the same book for the topology in which the above convergence takes place.

In view of the above result, a = 1 marks a phases transition in the coalescent behaviour. We
can also observe this transition in the dynamical behaviour of the cloud of particles. As long as
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a < 1, the cloud of particles remains within finite distance from 0. When a = 1, we proved in [9]
that it drifts toward ∞ at positive speed. Finally, one can easily show that when a > 1 the cloud
moves away from 0 at exponential rate. For a < 1, we have the following more precise estimates
on the extremal positions of the cloud of particles.

Proposition 1.2. Given a ∈ (0, 1), we denote by Mn and mn the largest and smallest positions at
time n in the (N, a)-exponential model. Then, if the initial conditions are bounded in L1 uniformly
in N , we have

lim
N→∞

lim
n→∞

(E(Mn)− logN) = γ − log(1− a)
1− a and lim

N→∞
lim
n→∞

E(mn) = − log(1− a)
1− a ,

where γ is the Euler-Mascheroni constant.

Proposition 1.2 shows that the cloud of particle in the (N, a)-exponential model is roughly of
size logN , which is typical in many branching selection particle systems.

The proofs of both Proposition 1.2 and Theorem 1.1 rely on the observation that the distribution
of the children at time n+1 is a Poisson point process with exponential intensity around the position
of a unique fictional particle. This construction was introduced in [6], and further developed in [9],
from where we borrow the approach.

Outline of the paper: In the next section, we prove the two main results of the paper, namely,
Theorem 1.1 and Proposition 1.2. In Section 3, we define the branching Ornstein-Uhlenbeck pro-
cesses and discuss its relationship with the (N, a)-exponential model.

2 Proofs of the main results
We start with the mathematical definition of the (N, a)-exponential model. Let (Pn,j , n ∈ N, j ∈ N)
be an infinite array of i.i.d. copies of a Poisson point processes with intensity measure e−xdx and
X1(0) > X2(0) > · · · > XN (0) denote the ranked position of the particles at time 0, that we
shall assume distinct for the sake of simplicity. At each time n, the position of the ith largest
individual is denoted by Xn(i), and its children at time n + 1 are distributed according to the
point process Pn+1,i shifted by aXn(i). Then, we select the N -rightmost, new-born individuals
to form the (n + 1)th generation and denote by X1(n + 1) > · · · > XN (n + 1) their ranked
positions. To keep track of the genealogical structure of the process, we shall label individuals
with An+1(k) ∈ {1, . . . N} according the the index of their parents.

In other words, for each n ∈ N and k ≤ N , we have that

i) Xn+1(k) is the kth largest atom of the point process
∑N
j=1

∑
p∈Pn+1,j

δaXn(j)+p,

ii) An+1(k) is the (unique) integer j ≤ N such that Xn+1(k)− aXn(j) ∈ Pn+1,j .

It can be readily checked using standard properties of Poisson point processes that the above
process is well defined for all n. Moreover, the law of (Xn+1(k), k ≤ N) from (i) may be obtained
as the N largest points in a Poisson point process centered at

Xn(eq) := log

 N∑
j=1

eaXn(j)

 . (2.1)

Therefore, one may think of Xn(eq) as the “equivalent” position of the front, that is, a fictional
particle that generates the entire front in generation n+ 1. In the next lemma we prove the above
claim and characterize the (conditional) law of An(·).

Lemma 2.1. The point processes
∑N
j=1 δXn+1(j)−Xn(eq), n ∈ N are i.i.d. with common distribution

given by the N rightmost points in a Poisson point process with intensity measure e−xdx. Moreover,
let H := σ (Xn(j), j ≤ N,n ∈ N) and k1, . . . , kN ∈ Z+ such that k1 + . . .+ kN = N , then

P (An+1(j) = kj ; 1 ≤ j ≤ N |H) =
N∏
j=1

θn(kj), where θn(k) := eaXn(k)∑N
i=1 eaXn(i)

.
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Proof. This result is obtained with a reasoning similar to [9, Proposition 1.3 and Lemma 1.6], we
will therefore only outline the main parts of the proof and omit the technical details.

First, using the superposition property of Poisson point processes, we obtain that

N∑
j=1

∑
p∈Pn+1,j

δaXn(j)+p
(d)=
∑
p∈P

δXn(eq)+p,

where P is a Poisson point process with intensity measure e−xdx.
Next, we note that for all i, j, n ∈ N

P (An+1(j) = i|H ) = P (Xn+1(j)− aXn(i) ∈ Pn+1,i|H )

= e−Xn+1(j)−aXn(j)∑N
k=1 e

−(Xn+1(j)−aXn(k))
= eaXn(j)∑N

k=1 eaXn(k)
.

Moreover, the An+1(j)’s are (conditionally) independent, which concludes the proof.

Using Lemma 2.1, we observe that for any n ∈ N, we have the following recursion equation:

Xn+1(eq)− aXn(eq) = log

 N∑
j=1

ea(Xn+1(j)−Xn(eq))

 (d)= log

 N∑
j=1

ea∆j

 ,

where (∆j , j ∈ N) are the ranked atoms of a Poisson point process with intensity measure e−xdx.
As a result, writing (ξj , j ∈ N) for an i.i.d. sequence of random variables with the same law as
X1(eq)− aX0(eq), we have

Xn(eq) (d)=
n−1∑
j=0

ajξn−j + anX0(eq). (2.2)

In other words, (Xn(eq), n ∈ N) behaves as a perpetuity process.

Proof of Proposition 1.2. We recall that Mn and mn denote respectively the positions of the right-
most and the leftmost particles at time n. Using Lemma 2.1, we observe that

Mn −Xn−1(eq) (d)= p1 and mn −Xn−1(eq) (d)= pN ,

where pj is the jth largest atom in a Poisson point process with intensity e−xdx. Hence, we have
by standard Poisson computations that

E(Mn) = E(Xn−1(eq)) + γ and E(mn) = E(Xn−1(eq))− ψ(N) (2.3)

where ψ(N) := Γ′(N)/Γ(N) is the digamma function, which satisfies ψ(N) = logN +O(N−1) as
N →∞. It is therefore enough to compute the asymptotic behaviour of E(Xn(eq)) as n→∞ and
then N →∞ to conclude the proof.

For what follows in the proof, we shall assume that a < 1 and E(X0(eq)) < ∞. Thus, taking
the expected value in (2.2), one gets

E(Xn(eq)) = an E(X0(eq)) + 1− an

1− a E(ξ1), yielding lim
n→∞

E(Xn(eq)) = 1
1− a E(ξ1). (2.4)

It remains therefore to compute E(ξ1). For this propose, we will first compute the Laplace trans-
form Λ(λ) of ξ1, then recover its mean via E(ξ1) = −(log Λ)′(0).

By [9, Proposition 4.2], we remark that

eξ1 =
N∑
j=1

ea∆j
(d)= eaZn

n∑
j=1

eaEj ,
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where (Ej , j ≥ 1) are i.i.d. exponential random variables with parameter 1 and ZN is an inde-
pendent random variable whose distribution has density (N !)−1e−(N+1)x−e−x with respect to the
Lebesgue measure. Therefore, we have

Λ(λ) := E
(
e−λξ1

)
= E


 N∑
j=1

eaEj
−λ

E
(
e−λaZN

)
.

By direct computations, we obtain E
(
e−λaZN

)
= Γ(N + 1 + aλ)/Γ(N + 1) and

E


 N∑
j=1

eaEj
−λ

 = 1
Γ(λ)

∫ ∞
0

tλ−1 E
(
e
−t
∑N

j=1
eaEj

)
dt = 1

Γ(λ)

∫ ∞
0

tλ−1I(t)Ndt, (2.5)

where I(t) is the function defined by

I(t) := E
(

e−te
aE1
)

=
∫ ∞

0
e−xe−te

ax

dx = t1/a

a

∫ ∞
t

u−(1+1/a)e−udu.

Making the change of variable t = x/N in the right-hand side of (2.5) one obtains

E


 N∑
j=1

eaEj
−λ

 = 1
Nλ

∫ ∞
0

I(x/N)N x
λ−1dx
Γ(λ) =: JN (λ)

Nλ
,

where JN (λ) is a smooth function such that JN (0) = 1. Collecting all pieces, we obtain that
Λ(λ) = JN (λ)Γ(N+aλ+1)

NλΓ(N+1) , which yields

E (ξ1) = − (log Λ)′ (0) = logN − aψ(N + 1)− J ′N (0), (2.6)

where we recall that ψ(x) = Γ′(x)/Γ(x) is the digamma function and (log JN )′(0) = J′N (0)
JN (0) = J ′N (0).

To compute J ′N (0), we will take the λ→ 0 limit of

JN (λ)− 1
λ

= 1
λΓ(λ)

∫ ∞
0

xλ−1(I(x/N)N−e−x)dx = 1
Γ(λ+ 1)

∫ ∞
0

xλ−1(I(x/N)N−e−x)dx. (2.7)

By definition, I(t) ≤ e−t for all t ∈ R+ which implies∣∣xλ−1(I(x/N)N − e−x)
∣∣ ≤ 2e−x for all x ≥ 1 and λ ∈ (0, 1). (2.8)

On the other hand, we observe that for all t ∈ (0, 1], we have

I(t) = t1/a

a

(∫ ∞
t

u−(1+1/a)(1− u)du+
∫ ∞
t

u−(1+1/a)(e−u − 1 + u)du
)

= t1/a

a

(
at−1/a + t1−1/a

1− 1/a +
∫ ∞
t

u−(1+1/a)(e−u − 1 + u)du
)

= 1− t

1− a +O(tb) as t→ 0,

for some b > 1. Indeed, we have t1/a
∫∞

1 u−(1+1/a)(e−u− 1 + u)du = O(t1/a) as t→ 0, and relying
on the fact that (e−u − 1 + u) = O(u2) for all u ≤ 1 one gets

t1/a
∫ 1

t

u−(1+1/a)(e−u − 1 + u)du =


O(t1/a) if a > 1/2;
O(t1/a) log t if a = 1/2;
O(t2) if a < 1/2.
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As a result, we obtain |IN (x/N)N − e−x| ≤ a
a−1x+C

(
xb

Nb−1 + x2
)

for all x ≤ 1, where C > 0 is a

constant not depending on N . Thus, one can find a (possibly larger) constant C̃ > 0 such that∣∣xλ−1(I(x/N)N − e−x)
∣∣ ≤ C̃, for all x < 1. (2.9)

Thanks to (2.8) and (2.9), we can apply dominated convergence in (2.7), to obtain

J ′N (0) = lim
λ→∞

JN (λ)− 1
λ

=
∫ ∞

0
x−1(IN (x/N)N − e−x)dx.

Now, we plug the above in (2.6) and use the fact that limN→∞ ψ(N + 1)− logN = 0 to get

E(ξ1) = (1− a) logN +
∫ ∞

0
x−1(e−x − IN (x/N)N )dx+ o(1) as N →∞. (2.10)

Finally, we notice that IN (x/N)N tends to e−
x

1−a as N → ∞. Therefore, we can rely again on
(2.8) and (2.9), to apply dominated convergence thereby obtaining

lim
N→∞

∫ ∞
0

x−1(e−x − IN (x/N)N )dx =
∫ ∞

0
x−1(e−x − e−

x
1−a )dx

=
∫ ∞

0

∫ 1
1−a

1
e−uxdudx =

∫ 1
1−a

1

du
u

= − log(1− a),

which, in sight of (2.3), (2.4) and (2.10) concludes the proof.

We now turn to the proof of Theorem 1.1. We first use Lemma 2.1 to construct a bi-infinite
version (Xn, An, n ∈ Z) of the (N, a)-exponential model.
Remark 2.2. Let (Pn, n ∈ Z) be i.i.d. Poisson point processes with intensity e−xdx and write
(pn,j , j ∈ N) for the sequence of atoms in Pn ranked in the decreasing order. We set X0(eq) = 0,
and for n ∈ Z \ {0}

Xn(eq) =
{∑n

j=1 ζja
n−j if n ≥ 1;

−
∑n
j=−1 ζja

n−j if n ≤ 1,

where ζn := log
∑N
j=1 eapn,j . The position of the N particles Xn(1) > . . . > Xn(N) in generation

n ∈ Z is then defined as

Xn(k) = Xn−1(eq) + pn,k; k = 1, . . . N.

Next, we assign labels to the particles as follows: the particle Xn(k) bears the label An(k) ∈
{1, . . . N} such that

P(An(k) = j | Pn−1) = eapn−1,j
/∑N

i=1 eapn−1,i .

In the bi-infinite version (X,A) of the (N, a)-exponential model, the family (An, n ∈ Z) is i.i.d.
We can now use the A’s to reconstruct the ancestral partition process of the process as follows: for
every n ∈ N, we say that i and j belong to the same block of ΠN

n if

A−n(A−(n−1)(. . . A−1(i))) = A−n(A−(n−1)(. . . A−1(j))).

This allows us to express the law of ΠN in terms of a population dynamics with independent
generation. Precisely, let

θn(j) = eaX−n(j)∑N
k=1 eaX−n(k)

= eapn−1,j∑N
i=1 eapn−1,i

.

Then conditionally on (θn(j),−n ∈ N, j ≤ N), each individual at generation n ≤ −1 chooses
its parent at generation n − 1 independently at random, selecting the parent j with probability
θn−1(j). This is often called a Cannings model defined by a multinomial distribution with N
independent trials and (random) probabilities outcomes (θ1(j), j ≤ N) (see [4, Section 2.2.3] for a
definition of such processes).

Thanks to this last observation, we finally prove Theorem 1.1.
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Proof of Theorem 1.1. Thinking of ΠN as the ancestral partition process of a Canning model,
Lemma 2.1 together with [9, Proposition 4.2] yields

{θ1(i), i ≤ N} :=
{

eaX−1(i)∑N
k=1 eaX−1(k)

, i ≤ N

}
(d)=
{

eaEi∑N
k=1 e

aEk
, i ≤ N

}
,

where (Ej , j ∈ N) i.i.d. exponential random variables with mean 1. Moreover, for any y ≥ 1,
we have P(eaEj ≥ y) = y−1/a. Therefore, applying [8, Theorem 1.2], we conclude the proof of
Theorem 1.1.

3 The branching Ornstein-Uhlenbeck processes
In this section, we draw a parallel between branching Ornstein-Uhlenbeck processes and the (N, a)-
exponential model we have introduced here. We first recall that an Ornstein-Uhlenbeck process is
a continuous time diffusion that solves the stochastic differential equation:

dXt = −µXtdt+ σdWt, (3.1)

where µ ≥ 0 is the pulling strength of the process, σ > 0 is the diffusion coefficient and W is a
standard Brownian motion. Therefore, the branching Ornstein-Uhlenbeck process with parameters
(β, µ, σ) is a continuous-time branching process, whose underlying motion is governed by Xt. It
starts with a unique particle at 0. This particle (or individual) evolves according to an Ornstein-
Uhlenbeck process with parameters (µ, σ) for an independent exponential time with mean β. At
that time, the individual splits into two children, that start independent branching Ornstein-
Uhlenbeck processes from the position of their parents. Up to a space-time linear transforms, we
may assume without loss of generality that β = σ = 1.

To the best of our knowledge, there is a reduced number of rigorous results about this branch-
ing process. The authors in [18, 19] study the behaviour of particles in the bulk and show that a
CLT type result holds when the branching rate is weak (or analogously the pulling force is small),
whereas a completely different behaviour takes place in the large branching rate case. In [21], a
branching Ornstein-Uhlenbeck type process with infinite branching rate is introduced. Neverthe-
less, the behaviour of extreme particles and the genealogy associated to the process with selection
remain open. We believe there exists a straight connection between branching Ornstein-Uhlenbeck
processes with selection and the (N, a)-exponential models. In both models particles are subjected
to a pulling strength that depends linearly on the position of particles. In view of this connec-
tion and the results from the previous section, one can expect that the genealogy of branching
Ornstein-Uhlenbeck processes with selection has non-trivial behaviour.

As noticed in [6], the time step n 7→ n + 1 in the (N, 1)-exponential model is associated to a
O((logN)2) time step for the associated N -branching random walk. Hence, as the genealogical
tree of the (N, 1)-exponential model converges in the (logN) scale, the genealogical tree of the N -
branching random walk should converge in the (logN)3 scale. These conjecture were verified in [3]
to the case of branching Brownian motion with quasi-critical absorption. Similarly, a time step
in the (N, a)-exponential model should correspond to a time interval of the order (logN)2 in the
evolution of the branching Ornstein-Uhlenbeck process with selection. If this connection is precise,
it is reasonable to choose a pulling force µN depending on the size of the system. A reasonable
choice would then be γ/(logN)2 with γ > 0 a parameter. We notice that an Ornstein-Uhlenbeck
process X with pulling strength µN and starting position x satisfies E(X(logN)2) = xe−γ .

We ran a few simulations that reinforce the above heuristics. We considered discrete-time/space
branching-selection particles systems which mimic branching Ornstein-Uhlenbeck processes. The
results are displayed in Figure 3. We observe that when the pulling strength has the order
(logN)−2, then the average coalescent time of two individuals chosen uniformly at random seems
to grow polynomial with N . This type of behaviour is compatible with Beta coalescent. This leads
us to the following conjecture.

Conjecture 3.1. Let γ > 0 and N ∈ N, there exists a sequence (ρN ) which is cγ-regularly varying,
with cγ ∈ [0, 1] such that (ΠN

bρN tc, t ≥ 0) converges toward a Beta(1− cγ , 1 + cγ)-coalescent.
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Figure 1: Average age of the most recent common ancestor of two individuals selected at random

Roughly speaking, this conjectures state that a branching Ornstein-Uhlenbeck process with
pulling strength γ(logN)−2 and selection of the N rightmost individuals can be associated to a
(N, (cγ + 1)−1)-exponential model. Even though we were not able to push the simulations far
enough to guess the function cγ , it is worth noting that it seems to be close to 1 for γ > 1, and
that c0.1 ≈ 0.5.
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ematical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro, 2009.
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[16] M. Möhle and S. Sagitov. A classification of coalescent processes for haploid exchangeable
population models. Ann. Probab., 29(4):1547–1562, 2001.

[17] M. Pain. Velocity of the L-branching Brownian motion. Electron. J. Probab., 21:Paper No.
28, 28, 2016.
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