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Abstract

In the field of storytelling, speech synthesis is trying to move
from a neutral machine-like to an expressive voice. For para-
metric and unit-selection systems, building new features or cost
functions is necessary to allow a better expressivity control. The
present article investigates the classification task between di-
rect and narrative discourse phrases to build a new expressivity
score. Different models are trained on different speech units
(syllable, word and discourse phrases) from an audiobook with
3 sets of features. Classification experiments are conducted
on the Blizzard corpus which features children English audio-
books and contains various characters and emotional states. The
experiments show that the fusion of SVM classifiers trained
with different prosodic and phonologic feature sets increases
the classification rate from 67.4% with 14 prosodic features to
71.8% with the 3 merged sets. Also the addition of a decision
threshold achieves promising results for expressive speech syn-
thesis according to the strength of the constraint required on
expressivity: 71.8% with 100% of the words, 79.9% with 50%
and 82.6% with 25%.

Index Terms: discourse phrases, narration, classification, au-
diobook, expressive speech synthesis

1. Introduction

Speech synthesis usually consists in the conversion process of a
written text to a speech sound, named as Text-To-Speech (TTS).
Nowadays, TTS tries to move from a neutral and machine-like
style to expressive speech with different speaking styles under
various emotional states. Especially in the field of storytelling,
Expressive Speech Synthesis (ESS) systems should be able to
read books of different literary genres using various discourse
modes and speaking styles.

Following this trend, in 2016 and 2017, the Blizzard synthe-
sis Challenge proposed to the participants to build an expressive
voice from children audiobooks in English [1, 2]. The system
presented by IRISA team in 2017 [3] proposed an expressiv-
ity score which evaluates how expressive a speech segment is
in the acoustic space of the speaker. This score is then intro-
duced in a unit-selection system assuming that narrative parts
are less expressive than dialogs. The purpose of this score is
to favor the concatenation of units bearing similar expressivity
levels. At this stage, the score has not been evaluated through
classification but synthesis.

Audiobooks gather many characteristics which are suitable
for ESS. They contain both a text of interest and the correspond-
ing audio speech signal [4]. The reader usually uses different
speaking styles and emotions [5]. He also personifies the differ-
ent characters of the story by changing his way of speaking [6].
Some unsupervised approaches for automatic annotation of ex-
pressive styles have been investigated. Expressive clusters are
associated with different voice styles considering glottal source
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parameters [7], prosodic features [8, 9], wavelets [10], spec-
tral features [11] or voice quality [12]. For instance, in [13],
the authors classified narrative structures using linguistic fea-
tures. They obtained a F1 score of 71.5% on a specific narrative
structure classification experiment. As far as we know, no ex-
periments were conducted on both phonological and acoustic
levels.

The present article investigates the classification of speech
segments according to the two following classes: narrative and
direct speech. Different models are trained on discourse phrases
as direct or narrative parts from audiobooks with different sets
of prosodic and phonologic features and also the state of the art
Opensmile feature set [14]. Those models are then combined to
improve the results.

Three data-driven approaches co-exist for TTS systems:
unit selection, statistical parametric systems (mainly Hidden
Markov Models or Deep Neural Networks) and hybrid systems.
Generally speaking, while a parametric representation enables
more flexibility, the unit-selection has the advantage of sound
quality. For instance, interpolation between styles contained
in the database is possible using such methods [15]. Several
approaches are used to give the systems more flexibility like
model adaptation to specific voices or prosodic styles [16, 17],
symbolic constraints (diphone identity, position, etc.) [18] or
prosodic constraints [19, 20]. These elements are usually used
in the speech synthesizer directly in the cost function of unit se-
lection systems or as input features during the construction of
the acoustic model of parametric systems [21]. In the present
work, we build a classifier whose prediction can be included as
a feature or in the cost function in the form of an expressivity
score assessing the expressivity level of a speech segment [3].

The remainder of the paper is organized as follows: sec-
tion 2 presents the Blizzard audio corpus and feature sets. The
different models used for classifying narrative and direct dis-
course phrases are described in section 3. The results are pre-
sented in section 4.

2. Material and data

2.1. Expressive audiobook corpora

Table 1: Blizzard expressive corpus characteristics.

Blizzard corpus ‘ train test  validation
# utterances 546 272 350
# words 29,190 10,771 17,331
# discourse phrases 3,256 980 1,727
# syllable 41,036 14,941 24,543
Fy Hz (std) 192 (58) 187 (57) 188 (56)

The English Blizzard audiobook corpus [2] designed for ex-



pressive speech synthesis is described in Table 1. Children’s
audiobooks were read by a professional British female speaker.
Around 6.5 hours of material were made available to partici-
pants of the challenge in 2017. This corpus is expressive as the
reader embodies different characters, thus changing her voice to
fit the suitable expressivity. Voice changes are notably remark-
able through pitch variations (see the high F{ standard devia-
tion in table 1). Speech signals were segmented in phone units
and aligned with the corresponding text. Additional linguistic,
syntactic and phonological information has been automatically
added to the corpus. Discourse phrases segmentation and anno-
tation mainly relies on quotes which are present in the text. The
data has been split into 3 parts on the number of books, 50% for
training the models, 25% for development purposes and 25%
for the future final speech synthesis evaluation. Additional ex-
periments have been set up on the French SynPaFlex audiobook
corpus [22], however, the full results will not be presented in
this paper.

2.2. Acoustic features

Three sets of acoustic features are extracted at the syllable, word
and speech style levels on both corpora.

Proso is a set of prosodic features developed by the team.
It consists of low-level features such as fundamental frequency
(Fop) in semitone (min, max, range, average, standard devia-
tion, slope, discrete level), energy (min, max, range, average),
duration, articulation and speech rates. The Fp discrete level
consists in assigning a level between 1 and 5 relatively to the
whole corpus. In total, 14 features are extracted at word and
discourse phrase levels. Only Fp features are extracted at the
syllable level.

0s385 is a reference set in affective computing. In this pa-
per the Interspeech 2009 challenge configuration is used [14]. It
consists of 12 low-level features combined with 14 functionals
and their derivatives, in other words 384 features to which we
add the segment duration. In order to enable Opensmile extrac-
tion possible, we restricted the studied items to those which last
more than 50 ms.

Phono is a set of 6 phonological features developed by the
team. It consists of the number of phonemes, the number of
vowels and of consonants over the total number of phonemes,
the number of opened syllables over the total number of syl-
lables, the average phoneme frequency and the average vowel
frequency. Frequencies are extracted from the whole corpus.

3. Discourse models

The aim is to train models able to distinguish narrative and di-
rect phrases in read speech. Therefore, we present different
techniques to predict whether an unknown sample belongs to
narrative or direct speech class. The choice for the different sta-
tistical models tested in this paper is driven by speaker identi-
fication and emotion recognition techniques: Gaussian Mixture
Models (GMM) and Support Vector Machines (SVM). How-
ever, direct speech samples can also be considered as outliers
among narrative samples and outlier detection techniques [23]
such as one-class models, are also considered.

3.1. Two class models

The classification task consists in automatically labelling an un-
known speech signal z. To do so, during the learning stage, two
functions M g, and M4 are built to represent respectively
the direct phrases and the narrative phrases in speech. When

comes a new speech signal z, the difference A (x) between each
model is computed (eq. 1). The predicted class ¢(z) depends on
the sign of A (eq. 2).

A(z) = Muarr(2) — Mair () 9]

_ ) narrif A(z) >0
o(z) = {direct if A(z) <0 @

GMM models We first try to classify narrative and direct
speech using Gaussian Mixture Models using speaker identi-
fication techniques. These are trained on the three acoustic
feature sets presented before. More precisely, two GMM \;
are trained for each discourse phrase. The number of Gaus-
sians were limited to 10 in order to better generalize the data.
This number in then optimized according to the BIC criterion
on training data. Furthermore, Gaussians weights which rep-
resent less than 25% of the data are set to zero, the others are
updated in order that the total sum of weights remains equal to
1. This change is done to avoid too specialized gaussians. Dur-
ing the decoding part, the GMM function is defined according
to M;(z) = log p(x| ).

SVM models We also trained SVM models using standard
protocols used in emotion recognition frameworks. SVM pa-
rameters (kernel, complexity and -y) are optimized using a grid
search cross-validation technique using the unweighted aver-
age recall (UAR) measure. During the decoding part, the SVM
function depends on the distance to hyperplane obtained while
testing a new sample = with the model M;(x) = dist;(x).

3.2. One class (OC) models

Founded on outliers detection techniques, one class models are
also tested. A single model is trained on narrative utterances
and should represent the “normal” speech. A pseudo-likelihood
threshold AL is extracted from development data according to
eq 3 where U; is the set of samples belonging to class ¢. Fi-
nally, when comes a new sample z, the difference A(zx) of
the log-likelihood obtained on the one-class model and AL is
computed (eq. 4). The predicted class c(z) is defined by eq. 2.
When A(z) is high, the sample is considered as abnormal (di-
rect speech), on the contrary it is considered as normal (narra-
tive speech).

1
AL=g | mean M(@)+ meanM(@)| )
A(l’) = Mna’r’r(m) — AL (4)

We have also tested to train models on all narrative
and direct phrases following the methods typically used for
speaker identification. Indeed, a universal background model
(UBM) [24] should capture the most general characteristics of
speech. However, the results obtained with this method were
not convincing, consequently we decided not to present them.

3.3. Random Forest models

Random Forests (RF) have the advantage of being very fast and
of not overfitting the data. Overfitting is highly probable in our
case since the training corpus is quite small (as most of emo-
tional speech databases). Models are learnt with 50 estimators
and the entropy criterion. The predicted class c(x) is the one
with the highest likelihood across the trees. An additional Ad-
aBoost classifier has also been set up.



Table 2: UAR (UAF'1) classification results on Blizzard corpus after model optimization. Features are extracted on syllable and word
units and also on discourse phrases (DP).

Item  #utt narr/dial Set | GMM 0C-GMM SVM OC-SVM RF RF-BOOST
2 train: 11632/11632  0s385 | 63.8(60.4) 57.1(53.9) 68.2(61.1) 55.8(49.1) 60.0(48.2) 64.4(56.8)
= test: 11549/2819  Phono | 52.8 (40.0) 48.3(47.9) 58.2(53.9) 50.3(45.2) 51.8(46.0) 52.2(46.3)
= Proso | 63.2(59.8) 50.0 (44.6) 66.5(62.5) 60.3(52.7) 59.3(49.8) 64.0(56.6)
- train: 8763/8763 0s385 | 53.5(30.7) 59.8(59.6) 64.8(51.2) 552 (41.7) 61.1(48.9) 659 (58.2)
5 test: 8455/2194 Phono | 54.3(51.7) 49.6(43.7) 57.7(55.2) 49.8(45.7) 56.1(49.1) 52.6 (47.1)
= Proso | 64.5(61.7) 58.5(59.6) 67.4(63.1) 61.1(54.0) 61.2(52.3) 65.4(59.6)
o train: 1365/1365 0s385 | 68.7(67.6) 56.8(51.5) 80.3(80.4) 59.2(59.1) 73.8(73.2) 79.3(78.9)
A test: 502/378 Phono | 69.6(69.3) 58.9(57.4) 71.7(70.7) 57.9(57.8) 66.7(65.5) 66.6(66.6)

4. Classification experiments

Models are trained on the balanced training subcorpus, opti-
mized in cross-validation on the training subcorpus and evalu-
ated on the test subcorpus. The remaining evaluation subcorpus
is left for future evaluation with speech synthesis. Performances
are measured on the test subcorpora with the unweighted aver-
age recall (UAR) and unweighted average F1 measure (UAF1).

4.1. Classification results

Classification rates obtained with the 6 models (GMM, OC-
GMM, SVM, OC-SVM, RF, RF-BOOST), 3 feature sets
(Os385, Phono, Proso) and 3 speech units (syllable, word, seg-
ment) are summarized in table 2. From this table, we learn that
one-class models are not able to classify correctly discourse
parts. Also, simple RF models underperform GMMs. How-
ever, the boosting technique helps in improving performance
thus making RF-Boost better than GMMs. Finally SVMs seem
to better classify discourse phrases whatever the feature set and
the speech unit.

Concerning the feature sets, it appears that the difference in
the number of features (385 vs. 14) has no significant impact on
the results. For example with SVM models, Proso features are
better than Os385 in classifying word units, whereas it is the
contrary on syllable units. In all cases, Phono set reaches the
worst results while being over the random guess. In section 4.3,
we will see that the fusion of phonological and acoustic features
is of interest.

No significant differences are noticeable between syllable
and word speech units. However, the results obtained on dis-
course phrases are significantly higher. A reason can be the
small number of test segments (see Table 2). But it is also
known that emotion detection systems are usually designed
at the segment level because it enables to model the whole
prosodic contours of the sentence. It appears that such an ap-
proach could be relevant for discourse phrases classification
also. Considering the limited number of samples for discourse
phrase units, only word units classification will be investigated
in the rest of the paper.

The classification results obtained on the French corpus,
follow the same trends. SVM classification with Os385 reaches
the best performances on syllables (65.6%), words (67.8%) and
discourse phrases (76.7%). The followings describe two ad-
ditional techniques we propose for improving classification of
words units with SVMs. We remind the reader, that the classifi-
cation of discourse speech units aims at designing an expressive
speech synthesis system in the form of an expressivity score.

4.2. Addition of a threshold value and intermediate class

In GMM models decoding, we can easily integrate a log-
likelihood threshold ¢ as it is usually done in speaker identifica-
tion [24]. Together we propose to add an intermediate discourse
class: words which do not strongly belong to direct or narrative
phrases, are classified in this intermediate class, following eq. 5.
This threshold can also be defined as a distance to hyperplane
in the case of SVM models. If the distance is too small, the item
belongs to the intermediate class.

indirect if A > ¢
c(x) = S direct if A < —e (5)
other if|A]<e

The introduction of this threshold brings two issues: first
how to set the ¢ threshold value, second how to evaluate mod-
els. Indeed no ground truth is available for the intermediate
class, thus making the classification rate obtained on the three
classes out of purpose. In speaker verification techniques, the
threshold is usually obtained using a set of impostors. In our
case, the classification rate (here UAR) obtained on the direct
and narrative words (without taking into account words classi-
fied in the intermediate class) will be used to evaluate models.
As a consequence, the required threshold is a compromise be-
tween the UAR, and the ratio R between the number of words
being classified as belonging to either direct or narrative phrases
and the total number of words. In order to compare different
settings, we propose to normalize the threshold between 0 and
100. In the results presented in table 3, only SVM models are
used since they outperform the other tested models on this task.

This work aims at controlling expressivity in unit-selection
TTS systems through discourse phrases. Therein, according to
the context of the text to synthesize, the system should automat-
ically select adequate speech units before concatenation. For
example, if the text should be declaimed by a character of the
story, the system should select speech units preferably in words
belonging to the direct class. e threshold must be adapted to
the strength of the expressive constraint the user wants. If the
user wants to emphasize the differences between dialogs and
narration, he should select a high threshold, thus reducing the
number of words correctly classified as belonging to direct or
narrative phrases (R decreases) and increasing the UAR.

In order to have a general idea, the results obtained when
the intermediate class contains R = 50% and R = 25% of the
words are reported in the first three lines of Table 3. The intro-
duction of an intermediate class induces an average increase of
5.4 percentage point (pp) when R ~ 50 and of 10.1 pp when



Table 3: Classification results with SVMs without and with a threshold € in the decision value and weights optimization for each model
fusion. €: normalized threshold, UAR: unweighted averaged recall [percentage points increase], R: relative number of items correctly

classified in direct or indirect speech classes.

Set #feat. | UAR(é=0) | ¢ UAR R(%) | ¢ UAR R (%)

) 0s385 385 | 64.8[0.0] 7 69.3 [4.5] 53.8 | 11 77.41128] 27.6

‘éb Phono 6 | 58.210.0] 19 623 4.1 51.6 | 24 654172 26.1

2] Proso 14 | 67.410.01[00] | 22 75.21[7.8] 50.0 | 27 77.7110.3] 24.5

£ 3 o Proso+0s385 399 | 68.9 (15 | 18 785 525 | 30 803 24.5
g g 5 Proso+Phono 20 | 68.1 25 73.7 502 | 39 792 25.0
£ %3 g 0s385+Phono 391 | 58.2 19 625 52.1 | 24  66.1 26.5
< 0s385+Phono+Proso 419 | 70.4 [30] | 26 779 504 | 40 82.8 26.0
<82 Proso+0s385 399 | 70.4 30] | 14 779 49.8 | 24 81.0 24.7
g E < Proso+Phono 20 | 69.1 25 748 519 | 40 794 24.4
2 = g 0s385+Phono 391 | 68.5 10 741 500 | 18 778 25.7
< 0Os385+Phono+Proso 419 | 71.8 441 | 20 79.9 504 | 32 82.6 25.1

R ~ 25. In some cases, the UAR reaches an optimal maximum
at a given R then decreases. This means that classification per-
formances can not be improved by a sole threshold.

4.3. Fusion of the different models

SVM models trained with different feature sets are merged at
the prediction function level. Precisely, distances to hyper-
planes are merged using a weighted sum. Labels are still pre-
dicted according to eq. 5. The weights are either set to 1 (bal-
anced case) or optimized for each ¢ (weighted case) as detailed
in Table 3. The fusion of predicted classes have also been tested
but no significant results emerged from that. The fusion of
acoustic and prosodic features allows to improve model’s per-
formance of 1.5 pp. from Proso only (¢ = 0) and the addition
of phonological features deeper improves the performance of
3.0 pp. from Proso only. Weights optimization helps to im-
prove even more the classification rates thus reaching a global
improvement of 4.4 pp. Also, the addition of a threshold leads
to better performance. However, it seems that weight optimiza-
tion has very few impact when the threshold increases.

5. Discussion

We can see on Figure 1 that in reality the prediction function
M better fits with a continuous representation than discrete cat-
egories. However discrete classification allows to find the best
representation for discourse phrases. Blue crosses correspond
to samples labelled as direct (left) or narrative (right) phrases
while red points correspond to the intermediate class. Inter-
estingly, when the prediction function decreases, F{y values are
more scattered. Indeed, it is related to the high variations in
intonation in direct phrases.

6. Conclusion

The global aim of the presented experiments is to control ex-
pressivity in a unit-selection TTS system through discourse
phrases. To do so, the speech units contained in the voice corpus
are classified as belonging to either direct, narrative or interme-
diate phrases. Different models (two classes, one class), fea-
ture sets (acoustic, prosodic or phonological) and speech units
(syllable, word and discourse phrase) are tested. SVM with
prosodic features gives the best performance. The experiments

500 FO values (Hz) according to prediction values

400 -
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200+

100+

0 . " "y .
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Figure 1: Fo(z) wrt. M(x) obtained with SVM trained with
0s385 on words units.

at the word level show that the fusion of the 3 feature sets in-
creases the classification rate from 4.4 pp. Also the addition
of a decision threshold achieves promising results for discourse
phrases classification: 71.8% with 100% of the words, 79.9%
with 50% and 82.6% with 25%.

The results show that classification rates were better at the
phrase level than at the word or syllable level, in agreement
with emotion recognition studies. To solve the problem of the
relatively low number of units in that case, we could consider
some context at the word level.

This work is part of a project on expressive speech synthe-
sis. With this in mind, we plan to synthesize speech using the
proposed expressivity score. To do so, we need to introduce a
new cost to the concatenation and target costs used in our unit-
selection system.

7. Acknowledgements

This study has been realized under the ANR (French National
Research Agency) project SynPaFlex ANR-15-CE23-0015 and
also with the support of the funding AtlanSTIC 2020 from the
region Pays de la Loire.



[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

8. References

S. King and V. Karaiskos, “The Blizzard Challenge 2016,” in Bliz-
zard Challenge (satellite of Interspeech), Cupertino, USA, 2016.

S. King, L. Wihlborg, and W. Guo, “The Blizzard Challenge
2017 in Blizzard Challenge (satellite of Interspeech), Stock-
holm, Sweden, 2017.

P. Alain, N. Barbot, J. Chevelu, G. Lecorvé, D. Lolive, C. Simon,
and M. Tahon, “The irisa text-to-speech system for the blizzard
challenge 2017, in Blizzard Challenge (satellite of Interspeech),
Stockholm, Sweden, 2017.

M. Charfuelan and I. Steiner, “Expressive speech synthesis in
MARY TTS using audiobook data and EmotionML,” in Inter-
speech, Lyon, France, 2013, pp. 1564-1568.

E. Székely, J. Kane, S. Scherer, C. Gobl, and J. Carson-
Berndsen, “Detecting a targeted voice style in an audiobook using
voice quality features,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012, pp.
4593-4596.

J. Y. Zhang, A. W. Black, and R. Sproat, “Identifying speakers in
children’s stories for speech synthesis,” in EuroSpeech, Geneva,
Switerland, 2003, pp. 2041-2044.

E. Székely, J. Cabral, P. Cahill, and J. Carson-Berndsen, “Clus-
tering expressive speech styles in audiobooks using glottal source
parameters,” in Interspeech, Firenze, Italy, 2011, pp. 2409-2412.

D. Doukhan, A. Rilliard, S. Rosset, M. Adda-Decker, and
C. d’Alessandro, “Prosodic analysis of a corpus of tales,” in In-
terspeech, Firenze, Italy, 2011, pp. 3129-3132.

F. Eyben, S. Buchholz, N. Braunschweiler, V. W. J. Latorre,
M. J. F. Gales, and K. Knill, “Unsupervised clustering of emotion
and voice styles for expressive tts,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan,
2012, pp. 4009-4012.

Eva Székely, T. G. Csap6, T. Bélint, P. Mihajlik, and J. Carson-
Bernsden, “Synthesizing expressive speech from amateur audio-
book recordings,” in Spoken Language Technology Workshop
(SLT). Miami, Florida, USA: IEEE, 2012, pp. 297-302.

L. Chen and M. Gales, “Exploring rich expressive information
from audiobook data using cluster adaptive training,” in Inter-
speech, Portland, USA, 2012, pp. 959-962.

R. M. no and F. Alias, “The role of prosody and voice quality in
indirect storytelling speech: Annotation methodology and expres-
sive categories,” Speech Communication, vol. 85, pp. 8-18, 2016.

J. Ouyang and K. McKeown, “Towards automatic detection of
narrative structure,” in LREC, Reykavik, Island, 2014, pp. 4624—
4631.

B. Schuller, S. Steidl, and A. Batliner, “The interspeech 2009
emotion challenge,” in Interpseech, Brighton, UK, 2009, pp. 312—
315.

M. Schroder, Expressive Speech Synthesis: Past, Present, and
Possible Futures. London: Springer London, 2009, pp. 111—
126.

H. Kanagawa, T. Nose, and T. Kobayashi, “Speaker-independent
style conversion for HMM-based expressive speech synthesis,” in
IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, Canada, 2013, pp. 7864—7868.

Y.-Y. Chen, C.-H. Wu, and Y.-F. Huang, “Generation of emotion
control vector using MDS-based space transformation for expres-
sive speech synthesis,” in Interspeech, San Fransisco, USA, 2016,
pp- 3176-3180.

P. Alain, J. Chevelu, D. Guennec, G. Lecorvé, and D. Lolive, “The
IRISA Text-To-Speech system for the Blizzard Challenge 2016,”
in Blizzard Challenge (satellite of Interspeech), Cupertino, USA,
2016.

I. Steiner, M. Schroder, M. Charfuelan, and A. Klepp, “Symbolic
vs. acoustics-based style control for expressive unit selection,” in
ISCA Speech Synthesis Workshop (SSW7), Kyoto, Japan, 2010.

[20]

[21]

[22]

[23]

[24]

M. S. Ribeiro, O. Watts, J. Yamagishi, and R. A. J. Clark,
“Wavelet-based decomposition of FO as a secondary task for
DNN-based speech synthesis with multi-task learning,” in Inter-
national Conference on Acoustics, Speech and Signal Processing,
Shanghai, China, 2016, pp. 5525-5529.

S. Pammi and M. Charfuelan, “HMM-based sCost quality con-
trol for unit selection speech synthesis,” in ISCA Speech Synthesis
Workshop, Barcelona, Spain, 2013, pp. 53-57.

A. Sini, D. Lolive, G. Vidal, M. Tahon, and E. Delais-Roussarie,
“SynPaFlex-Corpus: An expressive French audiobooks corpus
dedicated to expressive speech synthesis.” in LREC, Myazaki,
Japan, 2018.

C. Fayet, A. Delhay, D. Lolive, and P.-F. Marteau, “Big five
vs. prosodic features as cues to detect abnormality in SSPNET-
personality corpus,” in Interspeech, Stockholm, Sweden, 2017,
pp. 3281-3285.

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verifi-
cation using adapted gaussian mixture models,” in Digital Signal
Processing, vol. 10, 2000, pp. 19-41.



