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The Sendov conjecture asserts that if all the zeros of a polynomial p lie in the closed unit disk then there must be a zero of p ′ within unit distance of each zero. In this paper we give a partial result when p has simple zeros.

Introduction

The well-known Sendov conjecture ([4] Problem 4.5) asserts that if p(z) = n j=1 (z -z j ) is a polynomial with |z j | ≤ 1 (1 ≤ j ≤ n), then each disk |z -z j | ≤ 1 (1 ≤ j ≤ n) contains a zero of p ′ . Notice that by the Gauss-Lucas theorem the zeros w k (1 ≤ k ≤ n -1) of p ′ lie in the closed convex hull of the zeros of p, hence

|w k | ≤ 1 for 1 ≤ k ≤ n -1.
This conjecture has been verified for polynomials of degree n ≤ 8 or for arbitrary degree n if there are at most eight distinct roots: See Brown and Xiang [START_REF] Brown | Proof of the Sendov conjecture for polynomials of degree at most eight[END_REF] and the references therein. It is also true in general (n ≥ 2) when p(0) = 0 ( [START_REF] Schmeisser | On Ilyeff's Conjecture[END_REF]). The Sendov conjecture is true with respect to the root z j of p if |z j | = 1 ([6]). Recently ( [START_REF] Dégot | Sendov conjecture for high degree polynomials[END_REF]) it has been verified when n is larger than a fixed integer depending on the root z j of p. We refer the reader to Marden [START_REF] Marden | Geometry of polynomials[END_REF] and Sendov [START_REF] Bl | Generalization of a conjecture in the geometry of polynomials[END_REF] for further information and bibliographies.
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In this paper we prove the following theorem.

Theorem 1 Suppose that p has simple zeros z j , j = 1,

• • • , n in the closed unit disk D(0, 1). Let r = 1 n min 1≤j≤n min i =j |z i -z j | , a n = n 1 n-1 -1 , A 2p = 2p( r 2 a 2p 24 ) p and A 2p+1 = (2p + 1)a p+1 2p+1 ( r 2 √ 3 72 ) p .
Then the Sendov conjecture holds for p when |p(0)| ≤ A n .

Our proof will make use of the the so-called Coincidence Theorem, a variant of Grace's Apolarity Theorem ( [START_REF] Marden | Geometry of polynomials[END_REF]). We begin with the following definition.

Definition Φ(x 1 , • • • , x p ) is a symmetric p-linear form of total degree p in the variables x j ( 1 ≤ j ≤ p) belonging to C if it is symmetric in these variables and if Φ is a polynomial of degree 1 in each x j separately such that Φ(x, • • • , x) is a polynomial of degree p in x.
A circular region is an open or closed disk or halfplane in C, or the complement of any such set. Now we recall Walsh's Coincidence Theorem ( [START_REF] Marden | Geometry of polynomials[END_REF]).

Theorem 2 Let Φ be a symmetric p-linear form of total degree p in x 1 , • • • , x p and let C be a circular region containing the p points α 1 , • • • , α p . Then in C there exists at least one point

x such that Φ(α 1 , • • • , α p ) = Φ(x, • • • , x).
Finally we also need the next result.

Theorem 3 ([3]) Let q(z) = r j=1 (z -u j ) k j , r j=1 k j = m, be a polynomial of degree m whose zeros u 1 , • • • , u r are distinct and have mul- tiplicity k 1 , • • • , k r , respectively. For any zero u j of q, let M j = min i =j |u i - u j |, j = 1, • • • , r.
Then q has no nontrivial critical point (the critical points which are not zeros of the polynomial) in

r j=1 {z ∈ C ; |z -u j | < k j m M j } .
In Section 2 we give some preliminary results. Theorem 1 is proved in Section 3.

Preliminaries

We begin with the following lemma.

Lemma 1

The Sendov conjecture is true with respect to the root

z j if |z j | ≤ a n .
Proof. Since p ′ (z j ) = q(z j ), where q(z) = p(z)/(z -z j ), we have

n n-1 k=1 (z j -w k ) = k =j (z j -z k ) . Then n n-1 k=1 |z j -w k | = k =j |z j -z k | ≤ (1 + |z j |) n-1 ≤ n ,
and the lemma follows.

Distinguish one of the zeros of p, say z n , and let z n = a. By a rotation, if necessary, and using Lemma 1 we may suppose that a n < a < 1. Let

0 < s ≤ r and set z 0 = a 2 + i 2 √ 4 -a 2 . Let v 1 (z 0 , s), v 2 (z 0 , s) ∈ ∂D(0, 1) ∩
∂D(z 0 , s) with Re v 1 (z 0 , s) < Re v 2 (z 0 , s). We denote by L(z 0 , s) the line through v 1 (z 0 , s) and v 2 (z 0 , s) and by H(z 0 , s) the closed halfplane bounded by L(z 0 , s) such that 0 / ∈ H(z 0 , s). We set A(z 0 , s) = D(0, 1) ∩ H(z 0 , s). Finally let v 3 (z 0 , s) ∈ L(z 0 , s) ∩ ∂D(a, 1) with Re v 3 (z 0 , s) < a/2.

Lemma 2 With the above notations we have

Re v 1 (z 0 , s) = 1 4 (a(2 -s 2 ) -s((4 -a 2 )(4 -s 2 )) 1 2 ) , Im v 1 (z 0 , s) = -a 4 √ 4 -a 2 (a(2 -s 2 ) -s((4 -a 2 )(4 -s 2 )) 1 2 ) + 2 -s 2 √ 4 -a 2 , Re v 2 (z 0 , s) = 1 4 (a(2 -s 2 ) + s((4 -a 2 )(4 -s 2 )) 1 2 ) , Im v 2 (z 0 , s) = -a 4 √ 4 -a 2 (a(2 -s 2 ) + s((4 -a 2 )(4 -s 2 )) 1 2 ) + 2 -s 2 √ 4 -a 2 , L(z 0 , s) = {c + id ; c , d ∈ R and d √ 4 -a 2 = -ac + 2 -s 2 } , and 
Re v 3 (z 0 , s) = 1 4 (a(6 -a 2 -s 2 ) -((4 -a 2 )(4 -a 2 -s 2 )(a 2 + s 2 )) 1 2 ) . 3 Moreover a 2 -Re v 3 (z 0 , s) > s 2 6 .
Proof. We only prove the inequality since all the other formulas follow from elementary computations. Set

∆ = (4 -a 2 )(4 -a 2 -s 2 )(a 2 + s 2 ) .
We can write

a 2 -Re v 3 (z 0 , s) = a 2 + 1 4 ( √ ∆ -a(6 -a 2 -s 2 )) = a 2 + 1 4 ∆ -a 2 (6 -a 2 -s 2 ) 2 √ ∆ + a(6 -a 2 -s 2 ) = 1 4 2a √ ∆ + 2a 2 (6 -a 2 -s 2 ) + ∆ -a 2 (6 -a 2 -s 2 ) 2 √ ∆ + a(6 -a 2 -s 2 ) = 1 4 N D . Since √ ∆ > a((4 -a 2 )(4 -a 2 -s 2 )) 1 2 > a(4 -a 2 -s 2 ) , we get N = 2a √ ∆ + 2a 2 (6 -a 2 -s 2 ) + ∆ -a 2 (6 -a 2 -s 2 ) 2 = 2a √ ∆ + ∆ -a 2 (6 -a 2 -s 2 )(4 -a 2 -s 2 ) > 2a 2 (4 -a 2 -s 2 ) + s 2 (4 -a 2 )(4 -a 2 -s 2 ) -a 2 (4 -a 2 -s 2 )(2 -s 2 ) = 4s 2 (4 -a 2 -s 2 ) > 8s 2 . Since D < √ 32 + 6 < 12, we get a 2 -Re v 3 (z 0 , s) > s 2 6 . Lemma 3 Suppose that there exists k ∈ {1, • • • , n-1} such that Re w k ≤ a/2 and Im w k ≥ Im v 3 (z 0 , r 2 ). Then Re w k < Re v 3 (z 0 , r 2 
).

Proof. We claim that p ′ has no critical point in A(z 0 , r 2 ). Then the lemma follows. To verify this claim suppose first that p(z 0 ) = 0. Since p has simple zeros Theorem 3 implies that p ′ (z) = 0 for all z ∈ D(z 0 , r) and the claim is true in this case. Now assume that p(z 0 ) = 0. If there exists

z j ∈ D(z 0 , r 2 
) ∩ D(0, 1) such that p(z j ) = 0 for some j ∈ {1, • • • , n -1}, again Theorem 3 implies that p ′ has no critical point in D(z j , r) and the claim is true. Finally, if p(z) = 0 for z ∈ D(z 0 , r 2 ) ∩ D(0, 1), the Gauss-Lucas Theorem implies that p ′ (z) = 0 for z ∈ A(z 0 , r 2 ).

Remark 1. Let z ′ 0 = a 2 - i 2 √ 4 -a 2 .
Lemmas similar to Lemma 2 and Lemma 3 hold if we consider the point z ′ 0 instead of z 0 .

Lemma 4 Let

α j = sin(2jπ)/n 1 -cos(2jπ)/n , 1 ≤ j ≤ n -1 . Then α 1 • • • α p-1 = 1 when n = 2p and α 1 • • • α p ≥ ( √ 3/3) p when n = 2p + 1.
Proof. Let n = 2p. For j ∈ {1, • • • , p -1} we have

α p-j = sin(jπ/p) 1 + cos(jπ/p) = 1 -cos(jπ/p) sin(jπ/p) = 1 α j ,
and the result follows. Now let n = 2p + 1 with p ≥ 2. We can write

α 1 • • • α p = k j=1 α j α p-j+1 if p = 2k, k ≥ 1 , and 
α 1 • • • α p = α k+1 k j=1 α j α p-j+1 if p = 2k + 1, k ≥ 1 .
For j ∈ {1, • • • , k} we have

α j α p-j+1 = sin(2jπ/(2p + 1)) 1 -cos(2jπ/(2p + 1))
sin((2j -1)π/(2p + 1)) 1 + cos((2j -1)π/(2p + 1)) = cos(jπ/(2p + 1)) sin(jπ/(2p + 1)) sin((2j -1)π/(2p + 1)) 1 + cos((2j -1)π/(2p + 1))

≥ cos(jπ/(2p + 1)) sin(jπ/(2p + 1)) sin(jπ/(2p + 1)) 1 + cos(jπ/(2p + 1)) = cos(jπ/(2p + 1)) 1 + cos(jπ/(2p + 1)) ≥ cos(π/3) 1 + cos(π/3) = 1 3 .
Now when p = 2k + 1 we have

α k+1 = cos((k + 1)π/(4k + 3)) sin((k + 1)π/(4k + 3)) ≥ cos(π/3) sin(π/3) = √ 3 3 . 
The lemma follows.

Lemma 5 1) We have

r 2 24 < a 2p 2 α p-1 if n = 2p and r 2 24 < a 2p+1 2 α p if n = 2p + 1 . 2) Let v ∈ C be such that Re v < a 2 -b , where b > 0 is such that b < a 2p 2 α p-1 if n = 2p and b < a 2p+1 2 α p if n = 2p + 1 . Then |(v -a) n -v n | > B n (b) ,
where

B 2p (b) = 2p(ba 2p ) p and B 2p+1 = (2p + 1)a p+1 2p+1 (b √ 3 3 ) p .
Proof. 1) is easily verified since r ≤ 2/n.

2) Let

C n (y) = n-1 j=1 (b 2 + (y - a 2 α j ) 2 ) , y ∈ R .
We have

C 2p (y) = (b 2 + y 2 ) p-1 j=1 (b 2 + (y - a 2 α j ) 2 )(b 2 + (y + a 2 α j ) 2 ) , and 
C 2p+1 (y) = p j=1 (b 2 + (y - a 2 α j ) 2 )(b 2 + (y + a 2 α j ) 2 ) .
Since a > a n we get

(b 2 + (y - a 2 α j ) 2 )(b 2 + (y + a 2 α j ) 2 ) ≥ b 2 a 2 α 2 j
for 1 ≤ j ≤ p and y ∈ R .

Then Lemma 4 implies that

C 2p (y) > b 2p a 2(p-1) 2p
and C 2p+1 (y) > b 2p a 2p 2p+1 3 -p for y ∈ R .

Now the solutions v j (1 ≤ j ≤ n -1) of (v -a) n -v n = 0 , are given by v j = a 2 (1 + iα j ) , 1 ≤ j ≤ n -1 . (1) 
Therefore

|(v -a) n -v n | 2 = n 2 a 2 n-1 j=1 ((Re v - a 2 ) 2 + (Im v - a 2 α j ) 2 ) ≥ n 2 a 2 C n (Im v) > B n (b) 2 .

Proof of Theorem 1

Define

k(z, u 1 , • • • , u n-1 ) = z n + n-1 k=1 (-1) k n n -k ×( 1≤i 1 <•••<i k ≤n-1 u i 1 • • • u i k )z n-k , for z, u 1 , • • • , u n-1 ∈ C. We have k(z, w 1 , • • • , w n-1 ) = p(z) -p(0) . Let C = {z ∈ C ; Re z < a 2 - r 2 24 } . Suppose that |a -w k | > 1 for k = 1, • • • , n -1. Then Re w k < a/2 for k = 1, • • • , n -1.
Using Lemma 2 with s = r/2, Lemma 3 and Remark 1 we Since v = v j for some j ∈ {1, • • • , n -1}, (1) implies that v / ∈ E and we reach a contradiction.

obtain Re w k < a 2 - r 2 24 for k = 1, • • • , n -1. Theorem 2 implies that there exists v ∈ C such that -p(0) = k(a, w 1 , • • • , w n-1 ) = k(a, v, • • • , v) = (a -v) n + (-1) n-1 v n .

Lemma 5 Remark 2 .-t for k = 1 ,

 521 with b = r 2 /24 implies that v / ∈ C and we reach a contradiction. Suppose that the zeros of p are not necessarily simple. Using Walsh's Coincidence Theorem we can give a new proof of Sendov's conjecture when p(0) = 0. By a rotation, if necessary, we may suppose that p has the formp(z) = (z -a) n-1 j=1 (z -z j ) , where a ∈ (0, 1] is a simple root. Suppose that |a-w k | > 1 for k = 1, • • • , n-1. Since Re w k < a/2, there exists t > 0 such that Re w k < a 2 • • • , n -1. Let E = {z ∈ C ; Re z < a 2 -t }. Theorem 2 implies that there exists v ∈ E such that 0 = k(a, w 1 , • • • , w n-1 ) = k(a, v, • • • , v) = (a -v) n + (-1) n-1 v n .