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ADJOINT-BASED FORMULATION FOR COMPUTING DERIVATIVES WITH

RESPECT TO BED BOUNDARY POSITIONS IN RESISTIVITY

GEOPHYSICS

T. CHAUMONT-FRELET1, M. SHAHRARI1 AND D. PARDO2,1,3

Abstract. In inverse geophysical resistivity problems, it is common to optimize for certain re-

sistivity values and bed boundary positions, as needed, for example, in geosteering applications.
When using gradient-based inversion methods such as Gauss-Newton, we need to estimate the

derivatives of the recorded measurement with respect to the inversion parameters. In this article,
we describe an adjoint-based formulation for computing the derivatives of the electric potential

and electromagnetic fields with respect to the bed boundary positions. The key idea to obtain

this adjoint-based formulation is to separate the tangential and normal components of the field,
and treat them differently. We then apply this method to a 1.5D borehole resistivity problem.

We illustrate its accuracy and some of its convergence properties via numerical experimentation

by comparing those results vs. both the analytical results when available and a finite differences
approximation of the derivative.

Keywords. resistivity inversion, adjoint state, potential field inversion, electromagnetic, bore-

hole geophysics

1. Introduction

We consider resistivity measurements to characterize the electrical properties of the subsurface.
There exist: (a) on surface resistivity measurements acquisition systems such as controlled source
electromagnetic (CSEM) [3, 2, 9, 16] and Magnetotellurics (MT) [1, 14], and (b) borehole logging
measurements such as those obtained with logging-while-drilling (LWD) devices [21], including the
so called deep and extra-deep [17, 8] logging devices used for geosteering purposes [4]. Recently
developed LWD resistivity measurements are able to measure all nine components of the magnetic
field, namely Hxx, Hxy, Hxz, Hyx, Hyy, Hyz, Hzx, Hzy, Hzz, where the first and second sub-
indexes indicate the orientation of the transmitter and the receiver, respectively.

In LWD resistivity measurements, the original Earth’s subsurface model is often approximated
by a sequence of 1D layer models [7, 15, 13]. Such an approximation often provides reasonable
results due to the limited depth of investigation of LWD resistivity measurements compared to
the assumed thickness of the geological layers. In presence of a 3D point source, a 1D formation
model allows to reduce the dimensionality of the problem from 3D to the so-called 1.5D via a
Hankel transform (or two Fourier transforms) [19, 5, 12]. This 1.5D approximation can also be
used to obtain an initial subsurface resistivity distribution from marine CSEM measurements [20].

Resistivity measurements are inverted in order to map the Earth’s subsurface [15, 9, 7]. Using
gradient-based inversion techniques (e.g., Gauss-Newton), we need to estimate the derivatives of
the simulated measurements with respect to the inversion variables in order to form the Jacobian
matrix. These inversion variables are often the (constant) resistivity values of certain layers
and their bed boundary positions. It is well-known how to compute derivatives with respect
to the (constant) resistivity values for each layer, both numerically and semi-analytically (see,
e.g.,[15, 9, 13, 7, 18]). However, to the best of our knowledge, a fast adjoint-based formulation to
compute derivatives with respect to the bed boundary positions in resistivity geophysical problems
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has not been published before. Such formulation would allow to more rapidly compute accurate
approximations of the derivatives than those obtained with a traditional finite differences approach.

The main contribution of this work is to provide an adjoint-state formulation to compute
derivatives of resistivity measurements with respect to the bed boundary positions and analyze
its performance.. The key idea to obtain such formula is to treat separately the tangential and
normal components of the field.

Section 2 introduces notation. In Section 3, we examine the 3D potential equation and derive
an adjoint-state formulation to compute the derivative of a measurement with respect to a bed
boundary position. The corresponding formulations for 3D Maxwell’s equations are provided in
Section 4. Section 5 describes the associated 1.5D Maxwell’s formulations. We verify and analyze
the main advantages and limitations of our adjoint-based method via numerical experimentations
in Section 6. Conclusions are in Section 7.

2. Notation

For the sake of simplicity, we focus on the case of a transversally isotropic (TI) media composed
of only two layers, separated by a horizontal interface (see Figure 1). Nevertheless, the proposed
method easily extends to an arbitrary number of interfaces. In Figure 1, zi indicates the vertical
location of the planar interface that separates the two materials. The conductivity tensor σzi of
the formation is:

(1) σzi =

{
σ− z < zi
σ+ z > zi

,

where

(2) σ± =

 σ±t 0 0
0 σ±t 0
0 0 σ±n

 ,

and σ±t and σ±n are positive constants. In (2), subscript t indicates the tangential xy-plane and n
the normal component.

We employ a similar notation for vector fields. Thus, if w is a vector, wt denotes the 2D vector
that consists of its two components along the interface plane, and wn is the normal component.

σ−

σ+

zi

Figure 1. 1D TI media composed of two different materials.

3. The potential equation

We consider the following 3D potential equation:

−∇ · (σzi∇φzi) = f, in Ω,

φzi = 0, on Γ = ∂Ω,
(3)

where φzi is the electric potential, and f is the electric source. Ω is the problem domain and Γ
its boundary.

Let v be an arbitrary test function and v its complex conjugate. Pre-multiplying (3) by v and
using integration by parts, we obtain the following variational formulation:

(4) bzi(v, φzi) =

∫
Ω

(∇v)Tσzi∇φzidx =

∫
Ω

vfdx,

where v, φzi ∈ H1
0 (Ω), and

(5) H1
0 (Ω) = {v ∈ L2(Ω) : ∇v ∈ L2(Ω), v = 0 on Γ}.



ADJOINT-BASED FORMULATION FOR COMPUTING DERIVATIVES WITH RESPECT TO BED BOUNDARY POSITIONS IN RESISTIVITY GEOPHYSICS3

We assume the measurement of interest m = m(zi) depends linearly on φzi . Hence, we have:

(6) m(zi) :=

∫
Ω

gφzidx,

for some g, where the dependence upon zi is explicit in the notation.
In order to obtain the adjoint-based formula that expresses the derivative of the measurements,

it is convenient to introduce the adjoint solution φ∗zi , which satisfies:

(7) bzi(φ
∗
zi , v) =

∫
Ω

gvdx, ∀v ∈ H1
0 (Ω).

An important property of the adjoint solution is that we have:

(8) bzi(φ
∗
zi , φzi) = m(zi).

We emphasize that (7) and (8) are valid for any interface position zi.
In the following, we obtain an expression for the derivative of m with respect to zi using the

adjoint state method. To this end, we introduce a small perturbation ε for a given position zi.
Since the right-hand-side of (7) is independent of the trial function, for the test function v = φzi+ε,
we obtain:

(9) bzi+ε(φ
∗
zi+ε, φzi+ε) = bzi(φ

∗
zi , φzi+ε).

Similarly, by using (4), we have:

(10) bzi(φ
∗
zi , φzi) = bzi+ε(φ

∗
zi , φzi+ε).

Hence, we have the following:

m(zi + ε)−m(zi) = bzi(φ
∗
zi , φzi+ε)− bzi+ε(φ

∗
zi , φzi+ε) =

∫
Ω

(
∇φ∗zi

)T
(σzi − σzi+ε)∇φzidΩ

=

∫
xt

∫ zi+ε

zi

(
∇φ∗zi

)T
(σ− − σ+)∇φzidxndxt.

(11)

At this point, the normal and tangential components of the gradients have to be treated sepa-
rately since they satisfy different compatibility conditions across the interface, namely:

(12) [(∇φzi+ε)t]zi+ε = 0, [σn,zi+ε(∇φzi+ε)n]zi+ε = 0,

where, for ψ and z̃,

(13) [ψ(x)]z̃ = lim
xn→z̃+

ψ(xt, xn)− lim
xn→z̃−

ψ(xt, xn)

denotes the jump of ψ across the interface located at z̃. Then, we rewrite (11) as

m(zi + ε)−m(zi) =

∫
xt

∫ zi+ε

zi

(∇φ∗zi)
T
t (σt,zi − σt,zi+ε)(∇φzi+ε)tdxndxt

+

∫
xt

∫ zi+ε

zi

(∇φ∗zi)
T
n (σn,zi − σn,zi+ε)(∇φzi+ε)ndxndxt

=

∫
xt

∫ zi+ε

zi

(∇φ∗zi)
T
t (σt,zi − σt,zi+ε)(∇φzi+ε)tdxndxt

−
∫
xt

∫ zi+ε

zi

(ρn,zi − ρn,zi+ε)
(
σn,zi∇φ∗zi

)T
n

(σn,zi+ε∇φzi+ε)n dxndxt,

(14)

where ρn,zi = (σn,zi)
−1

.
Recalling (12), we have:

(15)
(
∇φzi+ε

)
t

= (∇φzi)t + o(ε),
(
σn,zi+ε∇φzi+ε

)
n

=
(
σn,zi∇φzi

)
n

+ o(ε).
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Then, using Taylor’s series expansion, we show that for any smooth function ψ, we have:

∫
Ω

(σt,zi − σt,zi+ε)ψ(xt, z)dx =

∫
xt

∫ zi+ε

zi

(σt,zi − σt,zi+ε)ψ(xt, z)dxndxt =

∫
xt

∫ zi+ε

zi

[σt] (ψ(xt, zi) + o(ε)) dxndxt

=

∫
xt

ε[σt] (ψ(xt, zi) + o(ε)) dxt = ε[σt]

∫
Γi

ψ(xt, zi)dΓi + o(ε2),

(16)

where Γi = {x ∈ Ω : xn = zi} is the interface between the two materials. Following an analogous
argument for the normal component, we obtain:

m(zi + ε)−m(zi)

ε
=[σt]

∫
Γi

(
∇φ∗zi

)T
t

(∇φzi)t dΓi − [ρn]

∫
Γi

(
σn,zi∇φ∗zi

)T
n

(σn,zi∇φzi)n dΓi + o(ε),

(17)

where

(18) [σt] = σ+
t − σ−t , [ρn] = (σ+

n )−1 − (σ−n )−1.

Hence, letting ε→ 0, we have:

dm

dzi
(zi) :=[σt]

∫
Γi

(
∇φ∗zi

)T
t

(∇φzi)t dΓi − [ρn]

∫
Γi

(
σn,zi∇φ∗zi

)T
n

(σn,zi∇φzi)n dΓi.(19)

4. Maxwell’s equations

In this section, we consider 3D Maxwell’s equations to model the EM fields [11, 6]. Then, for
a given interface position zi, we have:

∇×Hzi = σ̃ziEzi ,(20)

∇× Ezi = iωµHzi + iωµM,(21)

where Ezi is the complex-valued electric field, Hzi is the magnetic field, ω = 2πf is the angular
frequency, where f > 0 is the frequency of the transmitter, and σ̃zi = σzi − iωε, where ε is the
permittivity tensor of the medium and i is the imaginary unit, and µ is the magnetic permeability
tensor of the media. For the sake of simplicity, we consider the case where ε = ε0I3 and µ = µ0I3
with I3 being the 3D identity matrix, and ε0 and µ0 are the vacuum permittivity and permeability,
respectively. To simplify derivations, we consider the whole 3D space as our domain, so that the
problem is set on Ω = R3.

Though it is possible to solve problem (20)-(21) directly, it is generally recast as a second order
system. For instance, by applying the curl operator to (20) and substituting (21) into the result,
we arrive at the magnetic field formulation:

(22) ∇×
(
σ̃−1zi ∇×Hzi

)
− iωµHzi = iωµM.

The above equation is complemented with the condition that the electromagnetic fields are
expected to decrease sufficiently fast when increasing the distance to the transmitter.

4.1. Weak formulation. Let F be an arbitrary test function and FT
its conjugate transpose.

Pre-multiplying Equation (22) by FT
and integrating over domain Ω, we obtain:

(23)

∫
Ω

FT
(∇× σ̃−1zi ∇×Hzi)dΩ − iωµ0

∫
Ω

FTHzidΩ = iωµ0

∫
Ω

FT
MdΩ.

We select F ∈ H(curl;Ω), where:

H(curl;Ω) = {F ∈ L2(Ω) : ∇×F ∈ L2(Ω)}.

Using integration by parts:

(24) bzi(F ,Hzi) = iωµ0

∫
Ω

FT
MdΩ,
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where

(25) bzi(F ,Hzi) =

∫
Ω

(∇×F)T (σ̃−1zi ∇×Hzi)dΩ − iωµ0

∫
Ω

FTHzidΩ,

and Hzi ∈ H(curl;Ω). We assume that the measurements are given by:

(26) m(zi) =

∫
Ω

K
THzi ,

for some K. Continuity of the electric displacement implies the following compatibility conditions:

[(Ezi+ε)t]zi+ε = 0,

[σ̃n,zi+ε (Ezi+ε)n]zi+ε = 0,
(27)

where σ̃n,zi = σn,zi − iωε0. By using (20), we obtain the following compatibility conditions for
the magnetic field:

[ρ̃t,zi+ε (∇×Hzi+ε)t]zi+ε = 0,

[(∇×Hzi+ε)n]zi+ε = 0,
(28)

where ρ̃t,zi = (σ̃t,zi)
−1 and σ̃t,zi = σt,zi − iωε0. The adjoint solution H∗zi is the solution to:

(29) bzi(H
∗
zi ,F) =

∫
Ω

K
TF , ∀F ∈ H(curl;Ω).

Similarly to the potential equation, our adjoint solution satisfies the following variational formu-
lation:

(30) bzi(H
∗
zi ,Hzi) = m(zi)

Following an analogous derivation as for the potential equation, we obtain:

dm

dzi
(zi) = [σ̃t]

∫
Γzi

(
ρ̃t,zi

(
∇×H∗zi

)
t

)T
(ρ̃t,zi (∇×Hzi)t) dΓzi − [ρ̃n]

∫
Γzi

(∇×H∗zi)
T
n (∇×Hzi)ndΓzi ,

(31)

where

(32) [σ̃t] = σ+
t − σ−t , [ρ̃n] = (σ+

n − iωε0)−1 − (σ−n − iωε0)−1.

5. 1.5D formulation

We consider the magnetic field in the Cartesian system of coordinates as Hzi = (Hx,zi ,Hy,zi ,Hz,zi).
For problems where material properties vary only in the z-direction, it is convenient to use a 2D

Fourier transform along the xy-plane. We consider Ĥzi to be the 2D Fourier transform of Hzi

along x and y directions. We have:

(33) Hzi(xt, xn) :=
1

4π2

∫ +∞

−∞

∫ +∞

−∞
Ĥzi(k, xn)eik·xtdk,

where k = (kx, ky). We change the system of coordinates from the Cartesian to a cylindrical one
according to the following transformations:

x = ρ · cosφ, y = ρ · sinφ,
kx = ξ · cos θ, ky = ξ · sin θ.(34)

Substituting (34) into (33), we obtain:

(35) Hzi(ρ) =
1

4π2

∫ +∞

0

∫ 2π

0

Ĥzi(ξ, θ, xn)eiξρ(cos θ cosφ+sin θ sinφ)dθξdξ,

where ρ = (ρ, φ, xn). Using the identity cos(φ− θ) = cos θ cosφ+ sin θ sinφ, we arrive at:

(36) Hzi(ρ) =
1

4π2

∫ +∞

0

∫ 2π

0

Ĥzi(ξ, θ, xn)eiξρ cos(φ−θ)dθξdξ.
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We have the following relation between exponentials and Bessel functions:

(37) eiξρ cos(φ−θ) =

∞∑
r=−∞

irJr(ξρ)e−ir(φ−θ).

Substituting (37) into (36), we obtain:

(38) Hzi(ρ) =
1

2π

∞∑
r=−∞

∫ +∞

0

Hr
zi(ξ, xn)Jr(ξρ)e−irφξdξ,

where

(39) Hr
zi(ξ, xn) =

1

2π

∫ 2π

0

Ĥzi(ξ, θ, xn)ireirθdθ.

Analogously, we consider the adjoint solution as follows:

(40) H∗zi(ρ) =
1

2π

∞∑
r=−∞

∫ +∞

0

H∗,rzi (ξ, xn)Jr(ξρ)e−irφξdξ,

For an arbitrary function g(ξ, z) = (gx(ξ, xn), gy(ξ, xn), gz(ξ, xn)) in the spectral domain, we
define:

g+(ξ, xn) =
gx(ξ, xn)− igy(ξ, xn)

2
,

g−(ξ, xn) =
gx(ξ, xn) + igy(ξ, xn)

2
,

(41)

and

Πξ
+ (g(ξ, xn)) :=

∂g+(ξ, xn)

∂z
+
ξ

2
gz(ξ, xn),

Πξ
− (g(ξ, xn)) :=

∂g−(ξ, xn)

∂z
− ξ

2
gz(ξ, xn),

Πξ
z (g(ξ, xn)) = ξ (g−(ξ, xn) + g+(ξ, xn)) .

(42)

Using the Hankel representation given by Equation (40), and proper orthogonality properties of
Bessel functions, Equation (25) reduces to:

(43) b(Fq,m,H) = b(Fm,Hm) = b1(Fm,Hm)− b2(Fm,Hm),

where

b1(Fm,Hm) =2〈Πξq
− (Fm) , σ̃−1zi Π

ξq
− (Hm)〉L2 + 2〈Πξq

+ (Fm) , σ̃−1h Π
ξq
+ (Hm)〉L2 + 〈Πξq

z (Fm) , σ̃−1v Πξq
z (Hm)〉L2 ,

b2(Fm,Hm) =iωµ0

(
2〈Fm− , Hm

− 〉L2 + 2〈Fm+ , Hm
+ 〉L2 + 〈Fmz , Hm

z 〉L2

)
.

(44)

and 〈f, g〉L2 =
∫
z
f̄gdz. For the above formulation to be integrable, we need Hm,Fm ∈ V (R),

where V (R) = H1(R)×H1(R)× L2(R), and

(45) H1(R) = {v ∈ L2(R) :
∂v

∂z
∈ L2(R)}.

For a detailed derivation of the 1.5D variational formulation, see [19]. Using (44), the derivative
of the magnetic field with respect to boundary position becomes:

dm

dzi
(zi) =2[σ̃t,zi ]zi

(
ρ̃t,ziΠ

ξq
− (H∗,mzi )ρ̃t,ziΠ

ξq
− (Hm

zi) + ρ̃t,ziΠ
ξq
+ (H∗,mzi )ρ̃t,ziΠ

ξq
+ (Hm

zi)
)

(zi)

− [ρ̃n,zi ]zi

(
Π
ξq
z

(
H∗,mzi

)
Πξq
z

(
Hm

zi

))
(zi).

(46)
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6. Numerical experiments

6.1. Model problem A: 2D potential equation. We consider a 2D potential equation set in
the unit square Ω = (0, 1)2:

(47) −∇ · (σzi∇φzi) = f,

where f is a given right-hand-side and σzi = σziI2, where

(48) σzi(x) =

{
σ− if z < zi
σ+ if z > zi

is the conductivity of a 1D layered media that consist of two different layers, and σ± are two
positive values. In this example, we consider σ− = 1Sm−1 and σ+ = 10Sm−1, and f = −2. The
boundary conditions are:

(49) φzi(x, 0) =
∂φzi
∂z

(x, 1) = 0,
∂φzi
∂x

(0, z) =
∂φzi
∂x

(1, z) = 0.

The analytical solution for this problem is:

(50) φzi(x) =

{
ρ−z(z − 2) if z < zi
ρ+z(z − 2)− [ρ]zi(zi − 2) if z > zi.

In addition, we fix g = −2. Therefore, the direct and adjoint solutions are the same, and we have:

(51) m(zi) = −2

∫
Ω

φzi(x, z)dΩ = −2[ρ]

(
2

3
z3i − 2z2i + 2zi

)
+

4

3
ρ+,

as well as

(52)
dm

dzi
(zi) = −4[ρ] (zi − 1)

2
.

Figure 2 compares the derivative of m computed using adjoint state expression (19) vs the
analytical expression (52). As shown there, the numerical result is highly accurate. Figure 3
analyses the convergence of the adjoint-based gradient with respect to the finite element mesh size
for the case zi = 0.5, and we observe a linear convergence rate.

10−4 10−3 10−2 10−1 100 101

10−2

10−1

100

dm

dzi
(V.m−1)

z
(m

)

Numerical vs
Exact

Figure 2. Model problem A. Analytical and numerical gradient.
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10−210−1

10−2

10−1

h

h (m)

R
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at
iv

e
er

ro
r

on
d
m d
z i

Figure 3. Model problem A. Convergence of the numerical gradient at point zi = 0.5.

6.2. 1.5D borehole application. For Maxwell’s equation, we consider K and M to be vectorial
delta distributions corresponding to point sources. We use the multi-scale Hankel finite element
method implemented in FORTRAN 90 and described in [19] to compute the derivatives given by
Equation (46). We use a fast inverse Hankel transform based on digital filters to transfer our
solution to the space domain (see [10] for details). Moreover, to have a tractable computational
domain, we truncate it along z direction with Ωz = (z0, z1). Since the magnetic field decays
exponentially fast as we move away from the transmitter, we impose a zero Drichlet boundary
condition at z = z0 and at z = z1.

In addition, for the sake of simplicity, we consider coaxial tools in a vertical well. As a result, the
transmitter and receiver are oriented along the z axis, and we have K = (0, 0, δRx), M = (0, 0, δTx),
where Rx and Tx respectively denote the position of the receiver and transmitter.

We only make these assumptions to simplify the presentation. It is possible to consider triaxial
tools with general trajectories.

6.2.1. Model problem B: two-layer media. Figure 4 describes the logging instrument used in this
model problem. The conductivity of the two-layer media is given by σzi = σziI3, where:

(53) σzi(x) =

{
1 Sm−1 if 0 < z < zi
10−2 Sm−1 if zi ≤ z < 6,

and zi = 3.15 m.
In this example, the measurement is the value of the z component of the magnetic field at

the receiver. To simplify notation, we denote H = Hzi,z(Rx) to the recorded value, and we have
m(zi) = H.

Figure 5 shows the real and imaginary parts, and the absolute value of H for different tool
positions. Figure 6 compares the derivative with respect to the bed boundary position using the
1.5D adjoint formulation (46) vs that obtained with a finite differences approximation. The finite
differences approximation experiences some oscillations due to numerical errors. The solution
using the adjoint state method shows superior accuracy and avoids any spurious oscillation.

Rx Tx

0.6 meters

2MHz

Figure 4. Model problem B. Logging instrument. Tx and Rx denote the trans-
mitter and the receiver, respectively.
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Figure 5. Model problem B. zz-component of the magnetic field for a vertical well.
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Figure 6. Model problem B. Derivative with respect to bed boundary position
of the zz-component of the magnetic field for a vertical well.

6.2.2. Model problem C: multi-layer media. Figure 7 describes the logging instrument used for this
model problem. In this example, the conductivity model features four layers. zi = (zi,1, zi,2, zi,3)
represents the location of the three interfaces. The conductivity of the media is σzi

= σzi
I3,

where:

(54) σzi
(x) =


1 Sm−1 if 0 < z < zi,1
10−2 Sm−1 if zi,1 ≤ z < zi,2,
1 Sm−1 if zi,2 ≤ z < zi,3
10−2 Sm−1 if zi,3 ≤ z < 10,

with zi = (3, 5, 7).



10 T. CHAUMONT-FRELET1, M. SHAHRARI1 AND D. PARDO2,1,3

500 kHz

Tx1 Tx2Rx1 Rx2

0.40 m
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Figure 7. Model problem C. Logging instrument. Rx1 and Rx2 are the first
and the second receivers, respectively. Tx1 and Tx2 are the first and the second
transmitters, respectively.

For this problem, we consider the attenuation and the phase difference of the magnetic field
between the two receivers. These are the quantities often recorded in borehole geophysical mea-
surements. For details, see Appendix A.

Figure 8 describes the attenuation and the phase difference for the zz-component of the magnetic
field. Figures 9 and 10 show the derivatives of the attenuation and the phase difference with respect
to all bed boundary positions of the media using the adjoint state formulation vs those obtained
with a finite difference method. As shown in the figures, the derivatives using the adjoint state
method coincide with the finite differences ones for all cases. Indeed, the adjoint-based derivatives
produce enhanced accuracy (see Figure 11 displaying a zoom of the derivative). Additionally,
the adjoint-based method only requires the solution of one finite element problem with two right
hand sides, while the finite differences approach involves the solution of one additional problem
per interface (i.e., a total of Nint + 1 problems, where Nint is the number of interfaces whose
derivative is estimated).
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Figure 8. Model problem C. Attenuation and phase difference for the zz-
component of the magnetic field.
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Figure 9. Model problem C. Derivatives of the attenuation with respect to the
bed boundary positions.
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Figure 10. Model problem C. Derivatives of the phase difference with respect
to the bed boundary positions.
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Figure 11. Model problem C. Derivative of the attenuation with respect to the
first bed boundary position.

7. Conclusions

We have developed an adjoint-based formulation to compute the derivatives of geophysical
resistivity measurements with respect to the bed boundary positions. The formulation is first
deduced for the potential equation. Then, we extend the formulation to Maxwell’s equations. We
also consider a Hankel transform for the case of a 1D Earth model. We verified our formulations
by comparing the numerical results with those obtained using an analytical solution for a potential
equation and with a finite differences technique for a 1.5D Maxwell’s system. Using the adjoint
state method, we can compute the derivatives at (almost) no additional cost in time with respect to
that needed to solve the forward problem, and we obtain an accurate evaluation of the derivatives.
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Appendix A. Derivatives of the attenuation and the phase difference

This Appendix depicts how to compute the derivatives of the attenuation and the phase differ-
ence with respect to the bed boundary positions. To simplify, we introduce the notation

(55) Hkl = Hkzi,z(Rxl), (1 ≤ k, l ≤ 2)

to denote the quantity measured at the receiver l when the transmitter k is active. For l = 1, 2,
attenuation Al and phase difference P l are defined from Hl1 and Hl2 as:

(56) ln
Hl1
Hl2

= ln
| Hl1 |
| Hl2 |︸ ︷︷ ︸
Al

+i
(
ph(Hl1)− ph(Hl2)

)︸ ︷︷ ︸
Pl

,

where ph denotes the phase of a complex number. The final attenuation A and phase difference
P are defined by averaging:

(57) A =
1

2

(
A1 +A2

)
, P =

1

2

(
P1 + P2

)
.

It remains to compute the derivative of Al and P l with respect to the position zi,m of the mth

bed boundary. We have
(58)

Al := ln
| Hl1 |
| Hl2 |

= ln

√(
Hl,re1

)2
+
(
Hl,im2

)2
√(
Hl,re2

)2
+
(
Hl,im2

)2 =
1

2
ln

[(
Hl,re1

)2
+
(
Hl,im1

)2]
−1

2
ln

[(
Hl,re2

)2
+
(
Hl,im2

)2]
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where H1 = Hl,re1 + iHl,im1 and H2 = Hl,re2 + iHl,im2 . Using the chain rule, we obtain:

(59)
∂A
∂zi,m

=
1

| Hl1 |2

(
Hl,re1

∂Hl,re1

∂zi,m
+Hl,im1

∂Hl,im1

∂zi,m

)
− 1

| Hl2 |2

(
Hl,re2

∂Hl,re2

∂zi,m
+Hl,im2

∂Hl,im2

∂zi,m

)
For the phase difference, it holds that

(60) P(zi) := ph(H1)− ph(H2) = arctan

(
Hl,im1

Hl,re1

)
− arctan

(
Hl,im2

Hl,re2

)
.

Using again the chain rule, we obtain:

(61)
∂P
∂zi,m

=
1

| Hl1 |2

(
Hl,re1

∂Hl,im1

∂zi,m
−Hl,im1

∂Hl,re1

∂zi,m

)
− 1

| Hl2 |2

(
Hl,re2

∂Hl,im2

∂zi,m
−Hl,im2

∂Hl,re2

∂zi,m

)
.
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