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In inverse geophysical resistivity problems, it is common to optimize for certain resistivity values and bed boundary positions, as needed, for example, in geosteering applications. When using gradient-based inversion methods such as Gauss-Newton, we need to estimate the derivatives of the recorded measurement with respect to the inversion parameters. In this article, we describe an adjoint-based formulation for computing the derivatives of the electric potential and electromagnetic fields with respect to the bed boundary positions. The key idea to obtain this adjoint-based formulation is to separate the tangential and normal components of the field, and treat them differently. We then apply this method to a 1.5D borehole resistivity problem. We illustrate its accuracy and some of its convergence properties via numerical experimentation by comparing those results vs. both the analytical results when available and a finite differences approximation of the derivative.

Introduction

We consider resistivity measurements to characterize the electrical properties of the subsurface. There exist: (a) on surface resistivity measurements acquisition systems such as controlled source electromagnetic (CSEM) [START_REF] Bakr | Domain decomposition Fourier FE method for the simulation of 3D marine CSEM measurements[END_REF][START_REF] Bakr | A multi-domain decomposition-based Fourier finite element method for the simulation of 3D marine CSEM measurements[END_REF][START_REF] Key | 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[END_REF][START_REF] Puzyrev | A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling[END_REF] and Magnetotellurics (MT) [START_REF] Alvarez-Aramberri | Dimensionally adaptive hp-finite element simulation and inversion of 2D magnetotelluric measurements[END_REF][START_REF] Martí | The role of electrical anisotropy in magnetotelluric responses: from modelling and dimensionality analysis to inversion and interpretation[END_REF], and (b) borehole logging measurements such as those obtained with logging-while-drilling (LWD) devices [START_REF] Ward | Electromagnetic Methods in Applied Geophysics: volume 1, Theory[END_REF], including the so called deep and extra-deep [START_REF] Rabinovich | The vagaries and myths of look around deep resistivity measurements while drilling[END_REF][START_REF] Jia | Inversion for tilted triaxial conductivity in dipping layered formations[END_REF] logging devices used for geosteering purposes [START_REF] Bittar | A new azimuthal deep-reading resistivity tool for geosteering and advanced formation evaluation[END_REF]. Recently developed LWD resistivity measurements are able to measure all nine components of the magnetic field, namely H xx , H xy , H xz , H yx , H yy , H yz , H zx , H zy , H zz , where the first and second subindexes indicate the orientation of the transmitter and the receiver, respectively.

In LWD resistivity measurements, the original Earth's subsurface model is often approximated by a sequence of 1D layer models [START_REF] Ijasan | Inversion-based petrophysical interpretation of logging-whiledrilling nuclear and resistivity measurements[END_REF][START_REF] Pardo | Fast 1D inversion of logging-while-drilling resistivity measurements for the improved estimation of formation resistivity in high-angle and horizontal wells[END_REF][START_REF] Loseth | Electromagnetic fields in planarly layered anisotropic media[END_REF]. Such an approximation often provides reasonable results due to the limited depth of investigation of LWD resistivity measurements compared to the assumed thickness of the geological layers. In presence of a 3D point source, a 1D formation model allows to reduce the dimensionality of the problem from 3D to the so-called 1.5D via a Hankel transform (or two Fourier transforms) [START_REF] Shahriari | A numerical 1.5D method for the rapid simulation of geophysical resistivity measurements[END_REF][START_REF] Davydycheva | A fast modelling method to solve Maxwell's equations in 1D layered biaxial anisotropic medium[END_REF][START_REF] Lehe | quasi-cylindrical and dispersion-free Particle-in-cell algorithm[END_REF]. This 1.5D approximation can also be used to obtain an initial subsurface resistivity distribution from marine CSEM measurements [START_REF] Tehrani | Applicability of 1D and 2.5D marine controlled source electromagnetic modelling[END_REF].

Resistivity measurements are inverted in order to map the Earth's subsurface [START_REF] Pardo | Fast 1D inversion of logging-while-drilling resistivity measurements for the improved estimation of formation resistivity in high-angle and horizontal wells[END_REF][START_REF] Key | 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[END_REF][START_REF] Ijasan | Inversion-based petrophysical interpretation of logging-whiledrilling nuclear and resistivity measurements[END_REF]. Using gradient-based inversion techniques (e.g., Gauss-Newton), we need to estimate the derivatives of the simulated measurements with respect to the inversion variables in order to form the Jacobian matrix. These inversion variables are often the (constant) resistivity values of certain layers and their bed boundary positions. It is well-known how to compute derivatives with respect to the (constant) resistivity values for each layer, both numerically and semi-analytically (see, e.g., [START_REF] Pardo | Fast 1D inversion of logging-while-drilling resistivity measurements for the improved estimation of formation resistivity in high-angle and horizontal wells[END_REF][START_REF] Key | 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[END_REF][START_REF] Loseth | Electromagnetic fields in planarly layered anisotropic media[END_REF][START_REF] Ijasan | Inversion-based petrophysical interpretation of logging-whiledrilling nuclear and resistivity measurements[END_REF][START_REF] Rojas | A quadrature-free method for simulation and inversion of 1.5D direct current (DC) borehole measurements[END_REF]). However, to the best of our knowledge, a fast adjoint-based formulation to compute derivatives with respect to the bed boundary positions in resistivity geophysical problems has not been published before. Such formulation would allow to more rapidly compute accurate approximations of the derivatives than those obtained with a traditional finite differences approach.

The main contribution of this work is to provide an adjoint-state formulation to compute derivatives of resistivity measurements with respect to the bed boundary positions and analyze its performance.. The key idea to obtain such formula is to treat separately the tangential and normal components of the field.

Section 2 introduces notation. In Section 3, we examine the 3D potential equation and derive an adjoint-state formulation to compute the derivative of a measurement with respect to a bed boundary position. The corresponding formulations for 3D Maxwell's equations are provided in Section 4. Section 5 describes the associated 1.5D Maxwell's formulations. We verify and analyze the main advantages and limitations of our adjoint-based method via numerical experimentations in Section 6. Conclusions are in Section 7.

Notation

For the sake of simplicity, we focus on the case of a transversally isotropic (TI) media composed of only two layers, separated by a horizontal interface (see Figure 1). Nevertheless, the proposed method easily extends to an arbitrary number of interfaces. In Figure 1, z i indicates the vertical location of the planar interface that separates the two materials. The conductivity tensor σ zi of the formation is:

(1)

σ zi = σ -z < z i σ + z > z i , where (2) 
σ ± =   σ ± t 0 0 0 σ ± t 0 0 0 σ ± n   ,
and σ ± t and σ ± n are positive constants. In (2), subscript t indicates the tangential xy-plane and n the normal component.

We employ a similar notation for vector fields. Thus, if w is a vector, w t denotes the 2D vector that consists of its two components along the interface plane, and w n is the normal component. 

σ - σ + z i

The potential equation

We consider the following 3D potential equation:

-∇ • (σ zi ∇φ zi ) = f, in Ω, φ zi = 0, on Γ = ∂Ω, (3) 
where φ zi is the electric potential, and f is the electric source. Ω is the problem domain and Γ its boundary.

Let v be an arbitrary test function and v its complex conjugate. Pre-multiplying (3) by v and using integration by parts, we obtain the following variational formulation:

(4) b zi (v, φ zi ) = Ω (∇v) T σ zi ∇φ zi dx = Ω vf dx,
where v, φ zi ∈ H 1 0 (Ω), and ( 5)

H 1 0 (Ω) = {v ∈ L 2 (Ω) : ∇v ∈ L 2 (Ω), v = 0 on Γ }.
We assume the measurement of interest m = m(z i ) depends linearly on φ zi . Hence, we have:

(6) m(z i ) := Ω gφ zi dx,
for some g, where the dependence upon z i is explicit in the notation.

In order to obtain the adjoint-based formula that expresses the derivative of the measurements, it is convenient to introduce the adjoint solution φ * zi , which satisfies:

(7) b zi (φ * zi , v) = Ω gvdx, ∀v ∈ H 1 0 (Ω).
An important property of the adjoint solution is that we have:

(8) b zi (φ * zi , φ zi ) = m(z i ).
We emphasize that [START_REF] Ijasan | Inversion-based petrophysical interpretation of logging-whiledrilling nuclear and resistivity measurements[END_REF] and ( 8) are valid for any interface position z i .

In the following, we obtain an expression for the derivative of m with respect to z i using the adjoint state method. To this end, we introduce a small perturbation for a given position z i . Since the right-hand-side of ( 7) is independent of the trial function, for the test function v = φ zi+ , we obtain: [START_REF] Key | 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[END_REF] b zi+ (φ * zi+ , φ zi+ ) = b zi (φ * zi , φ zi+ ). Similarly, by using (4), we have: [START_REF]Is the fast hankel transform faster than quadrature?[END_REF] b zi (φ * zi , φ zi ) = b zi+ (φ * zi , φ zi+ ). Hence, we have the following:

m(z i + ) -m(z i ) = b zi (φ * zi , φ zi+ ) -b zi+ (φ * zi , φ zi+ ) = Ω ∇φ * zi T (σ zi -σ zi+ )∇φ zi dΩ = xt zi+ zi ∇φ * zi T (σ --σ + )∇φ zi dx n dx t . (11) 
At this point, the normal and tangential components of the gradients have to be treated separately since they satisfy different compatibility conditions across the interface, namely: [START_REF] Lehe | quasi-cylindrical and dispersion-free Particle-in-cell algorithm[END_REF] [(∇φ

zi+ ) t ] zi+ = 0, [σ n,zi+ (∇φ zi+ ) n ] zi+ = 0,
where, for ψ and z,

[ψ(x)] z = lim xn→z + ψ(x t , x n ) -lim xn→z -ψ(x t , x n ) (13) 
denotes the jump of ψ across the interface located at z. Then, we rewrite [START_REF] Kong | Electromagnetic wave theory[END_REF] as

m(z i + ) -m(z i ) = xt zi+ zi (∇φ * zi ) T t (σ t,zi -σ t,zi+ )(∇φ zi+ ) t dx n dx t + xt zi+ zi (∇φ * zi ) T n (σ n,zi -σ n,zi+ )(∇φ zi+ ) n dx n dx t = xt zi+ zi (∇φ * zi ) T t (σ t,zi -σ t,zi+ )(∇φ zi+ ) t dx n dx t - xt zi+ zi (ρ n,zi -ρ n,zi+ ) σ n,zi ∇φ * zi T n (σ n,zi+ ∇φ zi+ ) n dx n dx t , (14) 
where ρ n,zi = (σ n,zi ) -1 . Recalling [START_REF] Lehe | quasi-cylindrical and dispersion-free Particle-in-cell algorithm[END_REF], we have: [START_REF] Pardo | Fast 1D inversion of logging-while-drilling resistivity measurements for the improved estimation of formation resistivity in high-angle and horizontal wells[END_REF] ∇φ

zi+ t = (∇φ zi ) t + o( ), σ n,zi+ ∇φ zi+ n = σ n,zi ∇φ zi n + o( ).
Then, using Taylor's series expansion, we show that for any smooth function ψ, we have:

Ω (σ t,zi -σ t,zi+ )ψ(x t , z)dx = xt zi+ zi (σ t,zi -σ t,zi+ )ψ(x t , z)dx n dx t = xt zi+ zi [σ t ] (ψ(x t , z i ) + o( )) dx n dx t = xt [σ t ] (ψ(x t , z i ) + o( )) dx t = [σ t ] Γi ψ(x t , z i )dΓ i + o( 2 ), (16) 
where Γ i = {x ∈ Ω : x n = z i } is the interface between the two materials. Following an analogous argument for the normal component, we obtain:

m(z i + ) -m(z i ) =[σ t ] Γi ∇φ * zi T t (∇φ zi ) t dΓ i -[ρ n ] Γi σ n,zi ∇φ * zi T n (σ n,zi ∇φ zi ) n dΓ i + o( ), (17) 
where

(18) [σ t ] = σ + t -σ - t , [ρ n ] = (σ + n ) -1 -(σ - n ) -1 .
Hence, letting → 0, we have:

dm dz i (z i ) :=[σ t ] Γi ∇φ * zi T t (∇φ zi ) t dΓ i -[ρ n ] Γi σ n,zi ∇φ * zi T n (σ n,zi ∇φ zi ) n dΓ i . (19) 

Maxwell's equations

In this section, we consider 3D Maxwell's equations to model the EM fields [START_REF] Kong | Electromagnetic wave theory[END_REF][START_REF] Demkowicz | Finite element methods for Maxwell equations[END_REF]. Then, for a given interface position z i , we have:

∇ × H zi = σzi E zi , (20) 
∇ × E zi = iωµH zi + iωµM, (21) 
where E zi is the complex-valued electric field, H zi is the magnetic field, ω = 2πf is the angular frequency, where f > 0 is the frequency of the transmitter, and σzi = σ zi -iωε, where ε is the permittivity tensor of the medium and i is the imaginary unit, and µ is the magnetic permeability tensor of the media. For the sake of simplicity, we consider the case where ε = ε 0 I 3 and µ = µ 0 I 3 with I 3 being the 3D identity matrix, and ε 0 and µ 0 are the vacuum permittivity and permeability, respectively. To simplify derivations, we consider the whole 3D space as our domain, so that the problem is set on

Ω = R 3 .
Though it is possible to solve problem ( 20)-( 21) directly, it is generally recast as a second order system. For instance, by applying the curl operator to [START_REF] Tehrani | Applicability of 1D and 2.5D marine controlled source electromagnetic modelling[END_REF] and substituting [START_REF] Ward | Electromagnetic Methods in Applied Geophysics: volume 1, Theory[END_REF] into the result, we arrive at the magnetic field formulation:

(22) ∇ × σ-1 zi ∇ × H zi -iωµH zi = iωµM.
The above equation is complemented with the condition that the electromagnetic fields are expected to decrease sufficiently fast when increasing the distance to the transmitter.

Weak formulation. Let F be an arbitrary test function and F

T its conjugate transpose.

Pre-multiplying Equation ( 22) by F T and integrating over domain Ω, we obtain:

(23) Ω F T (∇ × σ-1 zi ∇ × H zi )dΩ -iωµ 0 Ω F T H zi dΩ = iωµ 0 Ω F T MdΩ.
We select F ∈ H(curl; Ω), where:

H(curl; Ω) = {F ∈ L 2 (Ω) : ∇ × F ∈ L 2 (Ω)}.
Using integration by parts:

(24) b zi (F , H zi ) = iωµ 0 Ω F T MdΩ, where (25) b zi (F , H zi ) = Ω (∇ × F ) T ( σ-1 zi ∇ × H zi )dΩ -iωµ 0 Ω F T H zi dΩ,
and H zi ∈ H(curl; Ω). We assume that the measurements are given by:

(26) m(z i ) = Ω K T H zi ,
for some K. Continuity of the electric displacement implies the following compatibility conditions:

[(E zi+ ) t ] zi+ = 0, [σ n,zi+ (E zi+ ) n ] zi+ = 0, ( 27 
)
where σn,zi = σ n,zi -iωε 0 . By using [START_REF] Tehrani | Applicability of 1D and 2.5D marine controlled source electromagnetic modelling[END_REF], we obtain the following compatibility conditions for the magnetic field:

[ρ t,zi+ (∇ × H zi+ ) t ] zi+ = 0, [(∇ × H zi+ ) n ] zi+ = 0, ( 28 
)
where ρt,zi = (σ t,zi ) -1 and σt,zi = σ t,zi -iωε 0 . The adjoint solution H * zi is the solution to:

(29) b zi (H * zi , F ) = Ω K T F , ∀F ∈ H(curl; Ω).
Similarly to the potential equation, our adjoint solution satisfies the following variational formulation:

(30) b zi (H * zi , H zi ) = m(z i ) Following an analogous derivation as for the potential equation, we obtain:

dm dz i (z i ) = [σ t ] Γz i ρt,zi ∇ × H * zi t T (ρ t,zi (∇ × H zi ) t ) dΓ zi -[ρ n ] Γz i (∇ × H * zi ) T n (∇ × H zi ) n dΓ zi , (31) 
where

(32) [σ t ] = σ + t -σ - t , [ρ n ] = (σ + n -iωε 0 ) -1 -(σ - n -iωε 0 ) -1 .

1.5D formulation

We consider the magnetic field in the Cartesian system of coordinates as H zi = (H x,zi , H y,zi , H z,zi ). For problems where material properties vary only in the z-direction, it is convenient to use a 2D Fourier transform along the xy-plane. We consider H zi to be the 2D Fourier transform of H zi along x and y directions. We have:

(33) H zi (x t , x n ) := 1 4π 2 +∞ -∞ +∞ -∞ H zi (k, x n )e ik•xt dk,
where k = (k x , k y ). We change the system of coordinates from the Cartesian to a cylindrical one according to the following transformations:

x = ρ • cos φ, y = ρ • sin φ, k x = ξ • cos θ, k y = ξ • sin θ. (34)
Substituting (34) into (33), we obtain:

(35) H zi (ρ) = 1 4π 2 +∞ 0 2π 0 H zi (ξ, θ, x n )e iξρ(cos θ cos φ+sin θ sin φ) dθξdξ,
where ρ = (ρ, φ, x n ). Using the identity cos(φ -θ) = cos θ cos φ + sin θ sin φ, we arrive at:

(36)

H zi (ρ) = 1 4π 2 +∞ 0 2π 0 H zi (ξ, θ, x n )e iξρ cos(φ-θ) dθξdξ.
We have the following relation between exponentials and Bessel functions:

(37)

e iξρ cos(φ-θ) = ∞ r=-∞ i r J r (ξρ)e -ir(φ-θ) .
Substituting (37) into (36), we obtain:

(38) H zi (ρ) = 1 2π ∞ r=-∞ +∞ 0 H r zi (ξ, x n )J r (ξρ)e -irφ ξdξ, where (39) H r zi (ξ, x n ) = 1 2π 2π 0 H zi (ξ, θ, x n )i r e irθ dθ.
Analogously, we consider the adjoint solution as follows:

(40)

H * zi (ρ) = 1 2π ∞ r=-∞ +∞ 0 H * ,r zi (ξ, x n )J r (ξρ)e -irφ ξdξ,
For an arbitrary function g(ξ, z) = (g x (ξ, x n ), g y (ξ, x n ), g z (ξ, x n )) in the spectral domain, we define:

g + (ξ, x n ) = g x (ξ, x n ) -ig y (ξ, x n ) 2 , g -(ξ, x n ) = g x (ξ, x n ) + ig y (ξ, x n ) 2 , (41) 
and

Π ξ + (g(ξ, x n )) := ∂g + (ξ, x n ) ∂z + ξ 2 g z (ξ, x n ), Π ξ -(g(ξ, x n )) := ∂g -(ξ, x n ) ∂z - ξ 2 g z (ξ, x n ), Π ξ z (g(ξ, x n )) = ξ (g -(ξ, x n ) + g + (ξ, x n )) . (42) 
Using the Hankel representation given by Equation (40), and proper orthogonality properties of Bessel functions, Equation (25) reduces to:

(43) b(F q,m , H) = b(F m , H m ) = b 1 (F m , H m ) -b 2 (F m , H m ), where b 1 (F m , H m ) =2 Π ξq -(F m ) , σ-1 zi Π ξq -(H m ) L 2 + 2 Π ξq + (F m ) , σ-1 h Π ξq + (H m ) L 2 + Π ξq z (F m ) , σ-1 v Π ξq z (H m ) L 2 , b 2 (F m , H m ) =iωµ 0 2 F m -, H m -L 2 + 2 F m + , H m + L 2 + F m z , H m z L 2 . ( 44 
)
and f, g L 2 = z f gdz. For the above formulation to be integrable, we need

H m , F m ∈ V (R), where V (R) = H 1 (R) × H 1 (R) × L 2 (R), and (45) 
H 1 (R) = {v ∈ L 2 (R) : ∂v ∂z ∈ L 2 (R)}.
For a detailed derivation of the 1.5D variational formulation, see [START_REF] Shahriari | A numerical 1.5D method for the rapid simulation of geophysical resistivity measurements[END_REF]. Using (44), the derivative of the magnetic field with respect to boundary position becomes: (47)

dm dz i (z i ) =2[σ t,zi ] zi ρt,zi Π ξq -(H * ,m zi )ρ t,zi Π ξq -(H m zi ) + ρt,zi Π ξq + (H * ,m zi )ρ t,zi Π ξq + (H m zi ) (z i ) -[ρ n,zi ] zi Π ξq z H * ,m zi Π ξq z H m zi (z i ). (46) 
-∇ • (σ zi ∇φ zi ) = f,
where f is a given right-hand-side and σ zi = σ zi I 2 , where (48)

σ zi (x) = σ -if z < z i σ + if z > z i
is the conductivity of a 1D layered media that consist of two different layers, and σ ± are two positive values. In this example, we consider σ -= 1Sm -1 and σ + = 10Sm -1 , and f = -2. The boundary conditions are:

(49)

φ zi (x, 0) = ∂φ zi ∂z (x, 1) = 0, ∂φ zi ∂x (0, z) = ∂φ zi ∂x (1, z) = 0.
The analytical solution for this problem is:

(50) φ zi (x) = ρ -z(z -2) if z < z i ρ + z(z -2) -[ρ]z i (z i -2) if z > z i .
In addition, we fix g = -2. Therefore, the direct and adjoint solutions are the same, and we have:

(51) m(z i ) = -2 Ω φ zi (x, z)dΩ = -2[ρ] 2 3 z 3 i -2z 2 i + 2z i + 4 3 ρ + ,
as well as

(52) dm dz i (z i ) = -4[ρ] (z i -1) 2 .
Figure 2 compares the derivative of m computed using adjoint state expression [START_REF] Shahriari | A numerical 1.5D method for the rapid simulation of geophysical resistivity measurements[END_REF] vs the analytical expression (52). As shown there, the numerical result is highly accurate. Figure 3 analyses the convergence of the adjoint-based gradient with respect to the finite element mesh size for the case z i = 0.5, and we observe a linear convergence rate. 6.2. 1.5D borehole application. For Maxwell's equation, we consider K and M to be vectorial delta distributions corresponding to point sources. We use the multi-scale Hankel finite element method implemented in FORTRAN 90 and described in [START_REF] Shahriari | A numerical 1.5D method for the rapid simulation of geophysical resistivity measurements[END_REF] to compute the derivatives given by Equation ( 46). We use a fast inverse Hankel transform based on digital filters to transfer our solution to the space domain (see [START_REF]Is the fast hankel transform faster than quadrature?[END_REF] for details). Moreover, to have a tractable computational domain, we truncate it along z direction with Ω z = (z 0 , z 1 ). Since the magnetic field decays exponentially fast as we move away from the transmitter, we impose a zero Drichlet boundary condition at z = z 0 and at z = z 1 .

In addition, for the sake of simplicity, we consider coaxial tools in a vertical well. As a result, the transmitter and receiver are oriented along the z axis, and we have K = (0, 0, δ Rx ), M = (0, 0, δ T x ), where Rx and T x respectively denote the position of the receiver and transmitter.

We only make these assumptions to simplify the presentation. It is possible to consider triaxial tools with general trajectories. 6.2.1. Model problem B: two-layer media. Figure 4 describes the logging instrument used in this model problem. The conductivity of the two-layer media is given by σ zi = σ zi I 3 , where:

(53) σ zi (x) = 1 Sm -1 if 0 < z < z i 10 -2 Sm -1 if z i ≤ z < 6,
and z i = 3.15 m.

In this example, the measurement is the value of the z component of the magnetic field at the receiver. To simplify notation, we denote H = H zi,z (Rx) to the recorded value, and we have m(z i ) = H.

Figure 5 shows the real and imaginary parts, and the absolute value of H for different tool positions. Figure 6 compares the derivative with respect to the bed boundary position using the 1.5D adjoint formulation (46) vs that obtained with a finite differences approximation. The finite differences approximation experiences some oscillations due to numerical errors. The solution using the adjoint state method shows superior accuracy and avoids any spurious oscillation. 7 describes the logging instrument used for this model problem. In this example, the conductivity model features four layers. z i = (z i,1 , z i,2 , z i,3 ) represents the location of the three interfaces. The conductivity of the media is σ zi = σ zi I 3 , where:

(54) σ zi (x) =        1 Sm -1 if 0 < z < z i,1 10 -2 Sm -1 if z i,1 ≤ z < z i,2 , 1 Sm -1 if z i,2 ≤ z < z i,3 10 -2 Sm -1 if z i,3 ≤ z < 10,
with z i = (3, 5, 7). For this problem, we consider the attenuation and the phase difference of the magnetic field between the two receivers. These are the quantities often recorded in borehole geophysical measurements. For details, see Appendix A.

Figure 8 describes the attenuation and the phase difference for the zz-component of the magnetic field. Figures 9 and10 show the derivatives of the attenuation and the phase difference with respect to all bed boundary positions of the media using the adjoint state formulation vs those obtained with a finite difference method. As shown in the figures, the derivatives using the adjoint state method coincide with the finite differences ones for all cases. Indeed, the adjoint-based derivatives produce enhanced accuracy (see Figure 11 displaying a zoom of the derivative). Additionally, the adjoint-based method only requires the solution of one finite element problem with two right hand sides, while the finite differences approach involves the solution of one additional problem per interface (i.e., a total of N int + 1 problems, where N int is the number of interfaces whose derivative is estimated). 

Conclusions

We have developed an adjoint-based formulation to compute the derivatives of geophysical resistivity measurements with respect to the bed boundary positions. The formulation is first deduced for the potential equation. Then, we extend the formulation to Maxwell's equations. We also consider a Hankel transform for the case of a 1D Earth model. We verified our formulations by comparing the numerical results with those obtained using an analytical solution for a potential equation and with a finite differences technique for a 1.5D Maxwell's system. Using the adjoint state method, we can compute the derivatives at (almost) no additional cost in time with respect to that needed to solve the forward problem, and we obtain an accurate evaluation of the derivatives.
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6 . 1 .

 61 ADJOINT-BASED FORMULATION FOR COMPUTING DERIVATIVES WITH RESPECT TO BED BOUNDARY POSITIONS IN RESISTIVIT6. Numerical experimentsModel problem A: 2D potential equation. We consider a 2D potential equation set in the unit square Ω = (0, 1) 2 :

10 - 4 Figure 2 .
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 3 Figure 3. Model problem A. Convergence of the numerical gradient at point z i = 0.5.
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 46 Figure 4. Model problem B. Logging instrument. Tx and Rx denote the transmitter and the receiver, respectively.
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 56 Figure 5. Model problem B. zz-component of the magnetic field for a vertical well.

Figure

  

Figure 7 .

 7 Figure 7. Model problem C. Logging instrument. Rx 1 and Rx 2 are the first and the second receivers, respectively. Tx 1 and Tx 2 are the first and the second transmitters, respectively.
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 8 Figure 8. Model problem C. Attenuation and phase difference for the zzcomponent of the magnetic field.
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Figure 9 .

 9 Figure 9. Model problem C. Derivatives of the attenuation with respect to the bed boundary positions.
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 1011 Figure 10. Model problem C. Derivatives of the phase difference with respect to the bed boundary positions.

Appendix A. Derivatives of the attenuation and the phase difference This Appendix depicts how to compute the derivatives of the attenuation and the phase difference with respect to the bed boundary positions. To simplify, we introduce the notation (55)

to denote the quantity measured at the receiver l when the transmitter k is active. For l = 1, 2, attenuation A l and phase difference P l are defined from H l 1 and H l 2 as:

, where ph denotes the phase of a complex number. The final attenuation A and phase difference P are defined by averaging:

It remains to compute the derivative of A l and P l with respect to the position z i,m of the m th bed boundary. We have (58)

T. CHAUMONT-FRELET 1 , M. SHAHRARI 1 AND D. PARDO 2,1,3 where

. Using the chain rule, we obtain:

For the phase difference, it holds that (60)

Using again the chain rule, we obtain: