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Gracefully Degrading Gathering in Dynamic Rings

Marjorie Bournat, Swan Dubois and Franck Petit

Sorbonne Université, CNRS, Inria, LIP6, F-75005 Paris, France

Abstract

Gracefully degrading algorithms [Biely et al., TCS 2018] are designed to circumvent impossibility results
in dynamic systems by adapting themselves to the dynamics. Indeed, such an algorithm solves a given
problem under some dynamics and, moreover, guarantees that a weaker –but related– problem is solved
under a higher dynamics that renders the original problem impossible to solve. The underlying intuition is
to solve the problem whenever possible but to provide some kind of quality of service if the dynamics should
become higher.

In this paper, we apply for the first time this approach to robot networks. We focus on the fundamental
problem of gathering a squad of autonomous robots on an unknown location of a dynamic ring. In this goal,
we introduce a set of –weaker– variants of this problem. Motivated by a set of impossibility results related
to the dynamics of the ring, we propose a gracefully degrading gathering algorithm.

1 Introduction

The classical approach in distributed computing consists in, first, fixing a set of assumptions that capture
the properties of the studied system –atomicity, synchrony, faults, communication modalities, etc.– and, then,
focusing on the impact of these assumptions –in terms of calculability and/or of complexity– on a given problem.
When coming to dynamic systems, it is natural to adopt the same approach. In this spirit, many recent
researches focus on defining pertinent assumptions for capturing the dynamics of those systems [7, 18, 23].
When these assumptions become very weak, that is, when the system becomes highly dynamic, a somewhat
frustrating –but not very surprising– conclusion emerge: many fundamental distributed problems are impossible
–at least, in their classical form [2, 5, 6].

To circumvent such impossibility results, Biely et al. recently introduced the gracefully degrading approach
[2]. This approach relies on the definition of weaker –but related– variants of the considered problem. Then, a
gracefully degrading algorithm guarantees to solve simultaneously the original problem under some assumption
of dynamics and each of its variant under some other –hopefully weaker– assumptions. As an example, Biely et
al. provide a consensus algorithm that gracefully degrades to k-set agreement when the dynamics of the system
increases. The underlying idea is to solve the problem in its strongest variant when connectivity conditions
are sufficient but also to provide –at the opposite of a classical algorithm– some minimal quality of service
–described by the weaker variants of the problem– when those conditions degrade.

Note that, although being applied to dynamic systems by Biely et al. for the first time, this natural idea
is not a new one. Indeed, indulgent algorithms [1, 9, 12] provide similar graceful degradation of the problem to
satisfy with respect to synchrony –not with respect to dynamics. Speculation [8,13,17] is a related, but somewhat
orthogonal, concept. A speculative algorithm solves the problem under some assumptions and moreover provides
stronger properties –typically better complexities– whenever conditions are better.

The goal of this paper is to apply gracefully degradation to robot networks where a cohort of autonomous
robots have to coordinate their actions in order to solve a global task. We focus on the gathering in a dynamic
ring. In this problem, starting from any initial position, robots must meet on an arbitrary location in a
bounded time. Note that we can classically split this specification into a liveness property –all robots terminate
in bounded time– and a safety property –all robots that terminate do so on the same node.

Related works. Several models of dynamic graphs have been defined recently [7, 19, 23]. In this paper, we
adopt the evolving graph model [23] in which a dynamic graph is simply a sequence of static graphs on a fixed
set of nodes –each graph of this sequence contains the edges of the dynamic graph present at a given time.
We also consider the hierarchy of dynamics assumptions introduced by Casteigts et al. [7]. The idea behind
this hierarchy is to gather all dynamic graphs that share some temporal connectivity properties within classes.
This allows to compare the strength of these temporal connectivity properties based on the inclusion of classes
between them. We interest in the following classes: COT –connected-over-time graphs– where edges may appear
and disappear without any recurrence nor periodicity assumption but guaranteeing that each node is infinitely
often reachable from any other node; RE–recurrent-edge graphs– where any edge that appears at least once
do so recurrently; BRE–bounded-recurrent-edge graphs– where any edge that appears at least once reappears
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G GE GW GEW

COT Impossible (Cor. 2 & 3) Impossible (Cor. 1) Impossible (Cor. 3) Possible (Th. 2)
AC Impossible (Cor. 2) Impossible (Th. 1) Possible (Th. 3) —
RE Impossible (Cor. 3) Possible (Th. 4) Impossible (Cor. 3) —
BRE Possible (Th. 5) — — —
ST Possible (Cor. 6) — — —

Table 1: Summary of our results. The symbol — means that a stronger variant of the problem is already proved
solvable under the dynamics assumption. Our algorithm is gracefully degrading since it solves each variant of
the gathering problem as soon as dynamics assumptions allow it.

recurrently in a bounded time; AC–always-connected graphs– where the graph is connected at each instant; and
ST –static graphs– where any edge that appears at least once is always present. Note that the definition of
these classes implies that ST ⊂ BRE ⊂ RE ⊂ COT and ST ⊂ AC ⊂ COT .

In robot networks, the gathering problem was extensively studied in the context of static graphs, e.g.,
[10, 15, 16, 22]. The main motivation of this vein of research is to characterize the initial positions of the
robots allowing gathering in each studied topology in function of the assumptions on the robots –as identifiers,
communication, vision range, memory, etc. On the other hand, few algorithms have been designed for robots
evolving in dynamic graphs. The majority of them deals with the problem of exploration [3,4,11,14,20] –robots
must visit each node of the graph at least once or infinitely often depending on the variant of the problem. In
the most related work to ours [21], Di Luna et al. study the gathering problem in dynamic rings. They first
note the impossibility of the problem in the AC class and consequently propose a weaker variant of the problem
–all robots must gather in finite time on two adjacent nodes. They characterize the impact of chirality –ability
of the robots to agree on a common orientation– and cross-detection –ability of the robots to detect whenever
a robot cross the same edge in the opposite direction– on the solvability of the problem. All their algorithms
are designed for the AC class and are not gracefully degrading.

Contributions. By contrast with the work of Di Luna et al. [21], in this paper we choose to keep unchanged the
safety of the classical gathering problem –all robots that terminate do so on the same node– and, to circumvent
impossibility results, we weaken only the liveness of the problem: at most one robot may not terminate or –not
exclusively– all robots that terminate do so eventually. This choice is motivated by the approach adopted with
indulgent algorithms [1, 9, 12]: the safety captures the “essence” of the problem and should be preserved even
in degraded variants of the problem. Namely, we obtain the four following variants of the gathering problem:
G –gathering– all robots terminate on the same node in bounded time; GE –eventual gathering– all robots
terminate on the same node in finite time; GW –weak gathering– all robots but (at most) one terminate on the
same node in bounded time; and GEW –eventual weak gathering– all robots but (at most) one terminate on the
same node in finite time.

We show then a set of impossibility results –summarized in Table 1– for these specifications for different
classes of dynamic rings. Note that, in the case of G –the classical variant of the gathering problem–, our
impossibility results in COT and AC subsume the one of Di Luna et al. [21] since we show that the result still
holds even if robots are able to communicate, have identifiers, and not necessarily initially all scattered.

Motivated by these impossibility results, our main contribution is a gracefully degrading gathering algorithm.
For each class of dynamic rings we consider, our algorithm solves the strongest possible of our variants of the
gathering problem –refer to Table 1. Note that this challenging property is obtained without any knowledge
nor detection of the dynamics by the robots that always execute the same algorithm.

This algorithm brings two novelties with respect to the state-of-the-art: (i) it is the first gracefully degrading
algorithm dedicated to robot networks; and (ii) it is the first algorithm solving –a weak variant of– the gathering
problem in the class COT –the largest class of dynamic graphs that guarantees an exploitable recurrent property.

Roadmap. The organization of the paper follows. Section 2 presents formally the model we consider. Section
3 sums up impossibility results while Section 4 presents our gracefully degrading algorithm. Section 5 proves the
correctness of our gracefully degrading algorithm. Finally, Section 6 concludes the paper with some comments.

2 Model

In this section, we present a model borrowed from the one of [3] that proposes an extension to dynamic
graphs of the classical model of robot networks in static graphs.

Dynamic graphs. In this paper, we consider the model of evolving graphs introduced in [23]. The time is
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discretized and mapped to N. An evolving graph G is an ordered sequence {G0, G1, . . .} of subgraphs of a given
static graph G = (V,E) such that, for any i ≥ 0, we call Gi = (V,Ei) the snapshot of G at time i. Note that V
is static and |V | is denoted by n. We say that the edges of Ei are present in G at time i. G is the footprint of
G. The underlying graph of G, denoted by UG , is the static graph gathering all edges that are present at least
once in G –i.e. UG = (V,EG) with EG =

⋃∞
i=0

Ei. An eventual missing edge is an edge of E such that there
exists a time after which this edge is never present in G. A recurrent edge is an edge of E that is not eventually
missing. The eventual underlying graph of G, denoted Uω

G , is the static graph gathering all recurrent edges of G
–i.e. Uω

G = (V,Eω
G ) where E

ω
G is the set of recurrent edges of G. In the following, we only consider graphs whose

footprints are anonymous and unoriented rings of size n ≥ 4. We define now formally the classes of dynamic
graphs [7] we focus on. The class COT –connected-over-time graphs– contains all evolving graphs such that
their eventual underlying graph is connected. The classRE –recurrent-edges graphs– gathers all evolving graphs
whose footprint contains only recurrent edges. The class BRE –bounded-recurrent-edges graphs– includes all
evolving graphs in which there exists a δ ∈ N such that each edge of the footprint appears at least once every
δ units of time. The class AC –always-connected graphs– collects all evolving graphs where the graph Gi is
connected for any i ∈ N. The class ST –static graphs encompasses all evolving graphs where the graph Gi is
the footprint for any i ∈ N.

Robots. We consider systems of R ≥ 4 autonomous mobile entities called robots moving in a discrete and
dynamic environment modeled by an evolving graph G = {(V,E0), (V,E1) . . .}, V being a set of nodes represent-
ing the set of locations where robots may be, Ei being the set of bidirectional edges representing connections
through which robots may move from a location to another one at time i. Each robot knows n and R. Each
robot r possesses a distinct (positive) integer identifier idr. Initially, a robot only knows the value of its own
identifier. Robots have a persistent memory so they can store local variables.

Each robot r is endowed with strong local multiplicity detection, meaning that it is able to count the exact
number of robots that are co-located with it at any time t. When this number equals 1, the robot r is isolated
at time t. By opposition, we define a tower T as a couple (S, θ), where S is a set of robots with |S| > 1 and
θ = [ts, te] is an interval of N, such that all the robots of S are located at a same node at each instant of time t
in θ and S or θ is maximal for this property. We say that the robots of S form the tower at time ts and that
they are involved in the tower between time ts and te. Robots are able to communicate –by direct reading– the
values of their variables to each others only when they are involved in the same tower.

Finally, all the robots have the same chirality, i.e. each robot is able to locally label the two ports of its
current node with left and right consistently over the ring and time and all the robots agree on this labeling.
We assume that each robot has a variable dir that stores the direction it currently considers –either right, left
or ⊥.

Algorithms and execution. The state of a robot at time t corresponds to the values of its local variables at
time t. The configuration γt of the system at time t gathers the snapshot at time t of the evolving graph, the
positions –i.e. the nodes where the robots are currently located– and the state of each robot at time t. The view
of a robot r at time t is composed from the state of r at time t, the state of all robots involved in the same tower
than r at time t if any, and of the following local functions: ExistsEdge(dir, round), with dir ∈ {right, left}
and round ∈ {current, previous} which indicates if there exists an adjacent edge to the location of r at time
t and t − 1 respectively in the direction dir in Gt and in Gt−1 respectively; NodeMate() which gives the set
of all the robots co-located with r –r is not included in this set; NodeMateIds() which gives the set of all the
identifiers of the robots co-located with r –the identifier of r is not included in this set; HasMoved() which
indicates if r has moved between time t− 1 and t –see below.

The algorithm of a robot is written under the form of an ordered set of guarded rules (label) :: guard −→
action where label is a name to refer to the rule in the text, guard is a predicate on the view of the robot,
and action is a sequence of instructions modifying its state. Robots are uniform in the sense they share the
same algorithm. Whenever a robot has at least one rule whose guard is true at time t, we say that this robot
is enabled at time t. The local algorithm also specifies the initial value of each variable of the robot but cannot
restrict its arbitrary initial position.

Given an evolving graph G = {G0, G1, . . .} and an initial configuration γ0, the execution σ in G starting from
γ0 of an algorithm is the maximal sequence (γ0, γ1)(γ1, γ2)(γ2, γ3) . . . where, for any i ≥ 0, the configuration
γi+1 is the result of the execution of a synchronous round by all robots from γi that is composed of three atomic
and synchronous phases: Look, Compute, Move. During the Look phase, each robot captures its view at time i.
During the Compute phase, each robot enabled by the algorithm executes the action associated to the first rule
of the algorithm whose guard is true in this view. In the case the direction dir of a robot is in {right, left}, the
Move phase consists of moving this robot in the direction it considers if there exists an adjacent edge in that
direction to its current node, otherwise –i.e. the adjacent edge is missing– the robot is stuck and hence remains
on its current node. In the case where the direction dir of a robot is ⊥, the robot remains on its current node.
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3 Impossibility Results

In this section, we present the set of impossibility results summarized in Table 1. These results show that
some variants of the gathering cannot be solved depending on the dynamics of the ring in which the robots
evolve and hence motivate our gracefully degrading approach.

First, we prove in Theorem 1 that GE –the eventual variant of the gathering problem– is impossible to solve
in AC. Note that Di Luna et al. [21] provide a similar result but show it in an informal way only. Moreover,
our result subsumes theirs since the considered models are different: we show that the result remains valid
even if robots are identified, able to communicate, and not necessarily initially all scattered –other different
assumptions exist between the two models but have no influence on our proof.

The proof of Theorem 1 relies on a generic framework introduced by Braud-Santoni et al. [5]. Note that,
even if this generic framework is designed for another model –namely, the classical message passing model–, it
is straightforward to borrow it for our current model. Indeed, as its proof only relies on the determinism of
algorithms and indistinguishability of dynamic graphs, its arguments are directly translatable in our model. We
present briefly this framework here. The interested reader is referred to the original work [5] for more details.

This framework is based on a result showing that, if we take a sequence of evolving graphs with ever-growing
common prefixes –that hence converges to the evolving graph that shares all these common prefixes–, then the
sequence of corresponding executions of any deterministic algorithm also converges. Moreover, we are able
to describe the execution to which it converges as the execution of this algorithm in the evolving graph to
which the sequence converges. This result is useful since it allows us to build counter-example in the context
of impossibility results. Indeed, it is sufficient to construct an evolving graphs sequence –with ever-growing
common prefixes– and to prove that their corresponding execution violates the specification of the problem for
ever-growing time to exhibit an execution that never satisfies the specification of the problem.

Theorem 1. There exists no deterministic algorithm that satisfies GE in rings of AC with size 4 or more for
4 robots or more.

Proof. By contradiction, assume that there exists a deterministic algorithm A that satisfies GE in any ring of
AC with size 4 or more for 4 robots or more. Let us choose arbitrarily two of these robots and denote them r1
and r2.

Note that A may allow the last robot to terminate only if it is co-located with all other robots (otherwise,
we obtain a contradiction with the safety of GE). So, proving the existence of an execution of A in a ring of
AC where r1 and r2 are never co-located is sufficient to obtain a contradiction with the liveness property of
GE and to show the result. This is the goal of the remainder of the proof.

To help the construction of this execution, we need introduce some notations as follows. Given an evolving
graph F , an edge ẽ of F , and a time interval I ⊆ N, the evolving graph F\{ẽ, I} is the evolving graph F ′ defined
by: e ∈ F ′

i if and only if e = ẽ ∧ i /∈ I ∧ e ∈ Fi or e 6= ẽ ∧ e ∈ Fi. Given an evolving graph F and two integers
such that t1 ≤ t2, we denote F t1,...,t2 the subsequence {Ft1 , . . . , Ft2} of F . Given two evolving graphs, F and
H, and an integer t, the evolving graph F{0,...,t} ⊗H{t+1,...,+∞} is the evolving graph F ′ defined by: e ∈ F ′

i if
and only if i ≤ t ∧ e ∈ Fi or i > t ∧ e ∈ Hi.

Let G = {G0, G1, . . .} be a graph ofAC whose footprint G is a ring of size 4 or more such that ∀i ∈ N, Gi = G.
Consider two nodes u and v of G, such that the node v is the adjacent node of u in the footprint of G in the
right direction. We denote by euv the edge linking the nodes u and v. Let G′ be G\{euv,N}. Let ε be the
execution of A in G′ starting from the configuration where r1 is located on node u and r2 is located on node v.
Note that the distance in the footprint of G between r1 and r2 (denoted d(r1, r2)) is equal to one.

Our goal is to construct a sequence of rings of AC denoted (Gm)m∈N such that G0 = G′ and, for any i ≥ 0, r1
and r2 are never co-located before time ti in εi (the execution of A in Gi starting from the same configuration
as ε), (tm)m∈N being a strictly increasing sequence with t0 = 0. First, we show in the next paragraph that, if
some such Gi exists and moreover ensures the existence of a time t′i + 1 > ti where the two robots are still on
different nodes in εi, then we can construct Gi+1. We prove, after that, that our construction guarantees the
existence of such a t′i, implying the well-definition of (Gm)m∈N.

As r1 and r2 are not co-located at time ti in εi, at least one of them must move in finite time in any execution
starting from γti (otherwise, we obtain a contradiction with the liveness of GE). Let t

′
i ≥ ti be the smallest such

time in the execution where the topology of the graph does not evolve from time ti to time t′i. In the following,
we show how we construct the evolving graph Gi+1, in function of t′i and Gi. As we assume that in Gi, at time
t′i + 1, r1 and r2 are on two different nodes, i.e. d(r1, r2) ≥ 1, the following cases are possible.

Case 1: d(r1, r2) = 1 at time t′i + 1.
Denote e the edge between the respective locations of r1 and r2 at time t′i + 1. We define Gi+1 on the

same footprint than Gi by Gi+1 = G
0,...,t′i
i ⊗ (Gt′i+1,...,+∞\{e, {t′i + 1, . . . ,+∞}}).

Case 2: d(r1, r2) = 2 at time t′i + 1.
Denote e and e′ the two consecutive edges between the respective locations of r1 and r2 at time t′i + 1.

4



We define first G′
i on the same footprint than Gi by G′

i = G
0,...,t′i
i ⊗ Gt′i+1,...,+∞. Note that G′

i belongs to
AC by assumption on Gi and since G is the static ring. Then, to avoid a contradiction with the liveness
of GE, we know that there exists a time αi ≥ t′i + 1 in the execution of A on G′

i where at least one of our
two robots move (w.l.o.g. assume that αi is the smallest one). If, at time αi + 1, the two robots are on

distinct nodes in G′
i, then we define Gi+1 on the same footprint than Gi by Gi+1 = G

0,...,t′i
i ⊗ Gt′i+1,...,+∞.

If, at time αi + 1, the two robots are on a same node in G′
i, then we define Gi+1 on the same footprint

than Gi by Gi+1 = G
0,...,t′i
i ⊗ (Gt′i+1,...,+∞\{e, {t′i + 1, . . . ,+∞}}).

Case 3: d(r1, r2) > 2 at time t′i + 1.

We define Gi+1 on the same footprint than Gi by Gi+1 = G
0,...,t′i
i ⊗ Gt′i+1,...,+∞.

Note that Gi and Gi+1 are indistinguishable for robots until time t′i. This implies that, at time t′i + 1, r1
and r2 are on the same nodes in εi and in εi+1. By construction of t′i, either r1 or r2 or both of the two robots
move at time t′i in εi+1. Moreover, by construction of Gi, even if one or both of the robots move during the
Move phase of time t′i, at time t′i + 1 the robots are still on two distinct nodes –since, in all cases above, either
the distance between the robots before the move is strictly greater than 2, an edge between the two robots is
missing before the move and prevents the meeting, or the two robots move in a way that prevents the meeting
by indistinguishability between Gi and Gi+1. Note that, by construction, Gi+1 has at most one edge missing at
each instant time and hence belongs to AC.

Defining ti+1 = t′i+1, we succeed to construct Gi+1 with the desired properties. Note that t′i and G0 trivially
satisfy all our assumptions. In other words, (Gm)m∈N is well-defined.

We can then define the evolving graph Gω such that Gω and G0 have the same footprint, and such that for all
i ∈ N, Gω shares a common prefix with Gi until time t′i. As the sequence (tm)m∈N is increasing by construction,
this implies that the sequence (Gm)m∈N converges to Gω. Applying the theorem of Braud-Santoni et al. [5], we
obtain that, until time t′i, the execution of A in Gω is identical to the one in Gi. This implies that, executing
A in Gω (whose footprint is a ring of size 4 or more), r1 and r2 are always on distinct nodes, contradicting the
liveness of GE and proving the result.

It is possible to derive some other impossibility results from Theorem 1. Indeed, the inclusion AC ⊂ COT
allows us to state that GE is impossible under COT as well.

Corollary 1. There exists no deterministic algorithm that satisfies GE in rings of COT with size 4 or more
for 4 robots or more.

From the very definitions of G and GE , it is straightforward to see that the impossibility of GE under a
given class implies the one of G under the same class.

Corollary 2. There exists no deterministic algorithm that satisfies G in rings of COT or AC with size 4 or
more for 4 robots or more.

Finally, impossibility results for bounded variants of the gathering problem –i.e. the impossibility of G under
RE and of GW under COT and RE– are obtained as follows. The definition of COT and RE does not exclude
the ability to all edges of the graph to be missing initially and for any arbitrary long time –hence preventing
the gathering of robots for any arbitrary long time if they are initially scattered. This observation is sufficient
to prove a contradiction with the existence of an algorithm solving G or GW in these classes.

Corollary 3. There exists no deterministic algorithm that satisfies G or GW in rings of COT or RE with size
4 or more for 4 robots or more.

4 Gracefully Degrading Gathering

Along with Algorithms 1 and 2, Algorithm 3 (called GDG) formally presents the program executed by each
robot to gather. Being gracefully degrading, GDG is generic in the precise sense that it aims to solve different
variants of the gathering under various dynamics—refer to Table 1. In Subsection 4.1, we informally describe
the general scheme of our method, while at the same time clarifying cases in which GDG solves such or such
variant of gathering within such or such class of evolving graphs. Next, Subsection 4.2 presents formally the
algorithm.

4.1 Overwiew

In this subsection, we focus on the way that our method eventually gather either all or all but one robots.
In other words, we omit to consider bounded termination issues, meaning that we consider only GE –all robots
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eventually gathered– and GEW –all but one robots eventually gathered. Specifications G and GW being related
to the ability to bound the execution time are considered with GE and GEW , respectively.

Our algorithm has to overcome various difficulties. First, robots are evolving in an environment in which no
node can be distinguished. So, the trivial algorithm in which the robots meet on a particular node is impossible.
Moreover, since the footprint of the graph is a ring, (at most) one of the n edges may be an eventual missing
edge. This is typically the case of Classes COT and AC. In that case, no robot is able to distinguish an eventual
missing edge from a missing edge that will appear later in the execution. In particular, a robot stuck by a
missing edge does not know whether it can wait for the missing edge to appear again or not. Finally, despite
the fact that no robot is aware of which class of the dynamic graphs robots are evolving in, the algorithm is
required to meet at least the specification of the gathering according to the class of dynamic graphs in which it
is executed or a better specification than this one.

The overall scheme of the algorithm consists in first detecting rmin, the robot having the minimum identifier
so that the R robots eventually gather on the same node as rmin—i.e., satisfying Specification GE. Of course,
depending on the class of dynamic graphs and the particular evolving graph in which our algorithm is executed,
GE may not achieved. In the weakest class (Class COT ) and the “worst” possible evolving graph, one can
expect Specification GEW only, i.e., at least R− 1 robots gathered.

The algorithm proceeds in four successive phases: M, K, W, and T. Actually, again depending on the class
of graphs and the evolving graph in which our algorithm is executed, we will see that the four phases are not
necessarily all executed since the execution can be stopped prematurely, especially in case where GE (or G) is
achieved. By contrast, they can also never be completed in some weak settings (namely AC or COT ), solving
GEW (or GW ) only.

Phase M. This phase leads each robot r to provide an answer to the question “Am I the Min?”, i.e., to know
whether r possesses the minimum identifier among the R robots. To answer to this question, initially every
robot r considers the right direction. Then r always move toward the right direction until it succeeds to move
4 ∗ n ∗ idr steps on the right, where idr is the identifier of r and n, the size of the ring. The first robot that
succeeds to do so is necessarily rmin. Depending on the class of graph, one eventual missing edge may exist,
preventing rmin to move on the right direction during 4 ∗ n ∗ idrmin

steps.
However, in that case at least R− 1 robots succeed to be located on a same node, but not necessarily the

node where rmin is located. Note that the weak form of gathering (GEW ) could be solved in that case. However,
the R− 1 robots gathered cannot stop their execution. Indeed, our algorithm aims at gathering the robots on
the node occupied by rmin. However, rmin may not be part of the R − 1 robots that gathered. Further, it is
possible for R− 1 robots to gather (without rmin) even when rmin succeeds to move during 4 ∗ n ∗ idrmin

right
steps (i.e. even when rmin stops to move because it completed Phase M). In that case, if the R− 1 robots that
gathered stop their execution, GE cannot be solved in RE , BRE and ST rings, as GDG should do. Note that,
it is also possible for rmin to be part of the R− 1 robots that gathered.

Recall that robots can communicate when they are on a same node only. So, the R− 1 robots may be aware
of the identifier of the robot with the minimum identifier among them. Since it can or cannot be the actual
rmin, let us call this robot potentialMin. Then, driven by potentialMin, a search phase starts during which
the R− 1 robots try to visit all the nodes of the ring infinitely often in both directions by subtile round trips.
Doing so, by exchanging informations, rmin eventually knows that it possesses the actual minimum identifier
among all the robots of the system.

Phase K. The goal of the second phase consists in spreading the identifier of rmin among the other robots. The
basic idea is that during this phase, rmin stops moving and waits until R− 3 other robots join it on its node so
that its identifier is known by at least R− 3 other robots. The obvious question arises:“Why waiting for R− 3
extra robots only?”

A basic idea to gather could be that once rmin is aware that it possesses the minimum identifier, it can just
stop to move and just wait for the other robots to eventually reach its location, just by moving toward the right
direction. Actually, depending on the class of graphs and the particular evolving graph in which our algorithm
is executed, one missing edge e may eventually appear, preventing robots to reach rmin by moving toward the
same direction only. That is why the gathering of the R− 2 robots is eventually achieved by the same search
phase as in Phase M. However, by doing this, it is possible to have 2 robots stuck on each extremity of e. Further,
these two robots cannot change the directions they consider since a robot is not able to distinguish an eventual
missing edge from a missing edge that will appear again later. This is why during Phase K, rmin stops to move
until R− 3 other robots join it to form a tower of R− 2 robots. In this way these R− 2 robots start the third
phase simultaneously.

Phase W. The third phase is a walk made by the tower of R − 2 robots. The R − 2 robots are split into
two distinct groups, Head and Tail. Head is the unique robot with the maximum identifier (among the R− 2
robots). Tail, composed of R− 3 robots, is made of the other robots of the tower, leaded by rmin. Both move
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Algorithm 1 Predicates used in GDG
MinDiscovery() ≡

(stater = potentialMin ∧ ∃r′ ∈ NodeMate(), (stater′ = righter ∧ idr < idr′ ))∨
∃r′ ∈ NodeMate(), idMinr′ = idr∨
∃r′ ∈ NodeMate(), (stater′ ∈ {dumbSearcher, potentialMin} ∧ idr < idPotentialMinr′)∨
rightStepsr = 4 ∗ idr ∗ n

GE() ≡
|NodeMate()| = R− 1

GEW() ≡
|NodeMate()| = R− 2 ∧ ∃r′ ∈ {r} ∪NodeMate(), stater′ ∈ {minWaitingWalker,minTailWalker}

HeadWalkerWithoutWalkerMate() ≡
stater = headWalker ∧ ExistsEdge(left, previous) ∧ ¬HasMoved() ∧ NodeMateIds() 6= walkerMater

LeftWalker() ≡
stater = leftWalker

HeadOrTailWalkerEndDiscovery() ≡
stater ∈ {headWalker, tailWalker,minTailWalker} ∧ walkStepsr = n

HeadOrTailWalker() ≡
stater ∈ {headWalker, tailWalker,minTailWalker}

AllButTwoWaitingWalker() ≡
|NodeMate()| = R− 3 ∧ ∀r′ ∈ {r} ∪NodeMate(), stater′ ∈ {waitingWalker,minWaitingWalker}

WaitingWalker() ≡
stater ∈ {waitingWalker,minWaitingWalker}

PotentialMinOrSearcherWithMinWaiting(r’) ≡
stater ∈ {potentialMin, dumbSearcher, awareSearcher} ∧ stater′ = minWaitingWalker

RighterWithMinWaiting(r’) ≡
stater = righter ∧ stater′ = minWaitingWalker

NotWalkerWithHeadWalker(r’) ≡
stater ∈ {righter, potentialMin, dumbSearcher, awareSearcher} ∧ stater′ = headWalker

NotWalkerWithTailWalker(r’) ≡
stater ∈ {righter, potentialMin, dumbSearcher, awareSearcher} ∧ stater′ = minTailWalker

PotentialMinWithAwareSearcher(r’) ≡
stater = potentialMin ∧ stater′ = awareSearcher

AllButOneRighter() ≡
|NodeMate()| = R− 2 ∧ ∀r′ ∈ {r} ∪NodeMate(), stater′ = righter

RighterWithSearcher(r’) ≡
stater = righter ∧ stater′ ∈ {dumbSearcher, awareSearcher}

PotentialMinOrRighter() ≡
stater ∈ {potentialMin, righter}

DumbSearcherMinRevelation() ≡
stater = dumbSearcher ∧ ∃r′ ∈ NodeMate(), (stater′ = righter ∧ idr′ > idPotentialMinr)

DumbSearcherWithAwareSearcher(r’) ≡
stater = dumbSearcher ∧ stater′ = awareSearcher

Searcher() ≡
stater ∈ {dumbSearcher, awareSearcher}

alternatively in the right direction during n steps such that between two movements of a given group the two
groups are again located on a same node. This movement permits to prevent the two robots that do not belong
to any of these two groups to be both stuck on different extremities of an eventual missing edge (if any) once
this walk is finished. Since the footprint of the graph is a ring, there exists at most one eventual missing edge
and we are sure that if the robots that have executed the walk stop moving forever, then at least one robot can
join them during the last and next phase.

As noted, it can exist an eventual missing edge, therefore, Head and Tail may not complete Phase W. Indeed,
one of the two situations below may occur.

1. Head and Tail together form a tower of R− 2 robots but an eventual missing edge on their right prevent
them to complete Phase W;

2. Head and Tail are located on neighboring node and the edge between them is an eventual missing edge
that prevent Head and Tail to continue to move alternatively.

Call u the node where Tail is stuck on an eventual missing edge. In the two situations described even if
Phase W is not complete by both Head and Tail, either GE or GEW is solved. Indeed, in the first situation,
necessarily at least one robot r succeeds to join u. In fact, either r considers the good direction to reach u or it
meets a robot on the other extremity of the eventual missing edge that makes it considers the good direction to
reach u. In the second situation, necessarily at least two robots r and r′ succeed to join u. This is done either
because r and r′ consider the good direction to reach u or because they reach the node where Head is located
without Tail making them consider the good direction to reach u.

Once a tower of R − 1 robots is formed, since rmin is among this tower, GEW is solved. Then, the latter
robot tries to reach the tower to eventually solve GE in favorable cases.
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Phase T. The last phase starts once the robots of Head have completed Phase W.
If it exists a time at which the robots of Tail complete Phase W, then Head and Tail form a tower of R− 2

robots and stop moving. As explained in the previous phase, Phase W ensures that at least one extra robot
eventually joins the node where Head and Tail are located to form a tower of R − 1 robots. Once a tower of
R − 1 robots is formed, since rmin is among this tower, GEW is solved. Then, the latter robot tries to reach
the tower to eventually solve GE in favorable cases.

In the case the robots of Tail never complete the phase W, then this implies that Head and Tail are located
on neighboring node and that the edge between them is an eventual missing edge. As described in Phase W in
this situation either GEW or GE is solved.

Algorithm 2 Functions used in GDG
Function StopMoving()

dirr := ⊥

Function MoveLeft()

dirr := left

Function BecomeLeftWalker()

(stater , dirr) := (leftWalker,⊥)

Function Walk()

dirr :=







⊥ if (idr = idHeadWalkerr ∧walkerMater 6= NodeMateIds())∨
(idr 6= idHeadWalkerr ∧ idHeadWalkerr ∈ NodeMateIds())

right otherwise

walkStepsr := walkStepsr + 1 if dirr = right ∧ ExistsEdge(right, current)

Function InitiateWalk()

idHeadWalkerr := max({idr} ∪NodeMateIds())
walkerMater := NodeMateIds()

stater :=







headWalker if idr = idHeadWalkerr
minTailWalker if stater = minWaitingWalker

tailWalker otherwise

Function BecomeWaitingWalker(r’)

(stater , idPotentialMinr , idMinr , dirr) := (waitingWalker, idr′ , idr′ ,⊥)

Function BecomeMinWaitingWalker()

(stater , idPotentialMinr , idMinr , dirr) := (minWaitingWalker, idr , idr ,⊥)

Function BecomeAwareSearcher(r’)

(stater , dirr) := (awareSearcher, right)

(idPotentialMinr , idMinr) :=

{

(idPotentialMinr′ , idPotentialMinr′) if stater′ = dumbSearcher

(idMinr′ , idMinr′) otherwise

Function BecomeTailWalker(r’)

(stater , idPotentialMinr , idMinr) := (tailWalker, idPotentialMinr′ , idMinr′)
(idHeadWalkerr , walkerMater, walkStepsr) := (idHeadWalkerr′ , walkerMater′ , walkStepsr′)

Function MoveRight()

dirr := right

rightStepsr := rightStepsr + 1 if ExistsEdge(dir, current)

Function InitiateSearch()

idPotentialMinr := min({idr} ∪NodeMateIds())

stater :=

{

potentialMin if idr = idPotentialMinr

dumbSearcher otherwise
rightStepsr := rightStepsr + 1 if stater = potentialMin ∧ ExistsEdge(dir, current)

Function Search()

dirr :=







left if |NodeMate()| ≥ 1 ∧ idr = max({idr} ∪NodeMateIds())
right if |NodeMate()| ≥ 1 ∧ idr 6= max({idr} ∪NodeMateIds())
dirr otherwise

4.2 Algorithm

Before presenting formally our algorithm, we first describe the set of variables of each robot. We recall that
each robot r knows R, n and idr as constants.

In addition to the variable dirr (initialized to right), each robot r possesses seven variables described
below. Variable stater allows the robot r to know which phase of the algorithm it is performing and (partially)
indicates which movement the robot has to execute. The possible values for this variable are righter, dumb-
Searcher, awareSearcher, potentialMin, waitingWalker, minWaitingWalker, headWalker, tailWalker,
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Algorithm 3 GDG
Rules for Termination

Term1 :: GE() −→ terminate
Term2 :: GEW () −→ terminate

Rules for Phase T

T1 :: LeftWalker() −→ MoveLeft()
T2 :: HeadWalkerWithoutWalkerMate() −→ BecomeLeftWalker()
T3 :: HeadOrTailWalkerEndDiscovery() −→ StopMoving()

Rules for Phase W

W1 :: HeadOrTailWalker() −→ Walk()

Rules for Phase K

K1 :: AllButTwoWaitingWalker() −→ InitiateWalk()
K2 :: WaitingWalker() −→ StopMoving()
K3 :: ∃r′ ∈ NodeMate(), P otentialMinOrSearcherWithMinWaiting(r′)

−→ BecomeWaitingWalker(r’)
K4 :: ∃r′ ∈ NodeMate(), RighterWithMinWaiting(r′) ∧ ExistsEdge(right, current)

−→ BecomeAwareSearcher(r’)

Rules for Phase M

M1 :: PotentialMinOrRighter() ∧ MinDiscovery() −→ BecomeMinWaitingWalker(r)
M2 :: ∃r′ ∈ NodeMate(), NotWalkerWithHeadWalker(r′) ∧ ExistsEdge(right, current)

−→ BecomeAwareSearcher(r’)
M3 :: ∃r′ ∈ NodeMate(), NotWalkerWithHeadWalker(r′)

−→ BecomeAwareSearcher(r’); StopMoving()
M4 :: ∃r′ ∈ NodeMate(), NotWalkerWithTailWalker(r′) −→ BecomeTailWalker(r’); Walk()
M5 :: ∃r′ ∈ NodeMate(), P otentialMinWithAwareSearcher(r′)

−→ BecomeAwareSearcher(r’); Search()
M6 :: AllButOneRighter() −→ InitiateSearch()
M7 :: ∃r′ ∈ NodeMate(), RighterWithSearcher(r′) −→ BecomeAwareSearcher(r’); Search()
M8 :: PotentialMinOrRighter() −→ MoveRight()
M9 :: DumbSearcherMinRevelation() −→ BecomeAwareSearcher(r); Search()
M10 :: ∃r′ ∈ NodeMate(), DumbSearcherWithAwareSearcher(r′)

−→ BecomeAwareSearcher(r’); Search()
M11 :: Searcher() −→ Search()

minTailWalker and leftWalker. Initially, stater is equal to righter. Initialized with 0, rightStepsr counts
the number of steps done by r in the right direction when stater ∈ {righter, potentialMin}. The next variable
is idPotentialMinr. Initially equals to −1, idPotentialMinr contains the identifier of the robot that possibly
possesses the minimum identifier (a positive integer) of the system. This variable is especially set when R− 1
righter are located on a same node. In this case, the variable idPotentialMinr of each robot r that is involved
in the tower of R−1 robots is set to the value of the minimum identifier possessed by these robots. The variable
idMinr indicates the identifier of the robot that possesses the actual minimum identifier among all the robots
of the system. This variable is initially set to −1. Let walkerMater be the set of all the identifiers of the
R − 2 robots that initiate the Phase W. Initially this variable is set to ∅. The counter walkStepsr, initially 0,
maintains the number of steps done in the right direction while r performs the Phase W. Finally, the variable
idHeadWalkerr contains the identifier of the robot that plays the part of Head during the Phase W.

Moreover, we assume the existence of a specific instruction: terminate. By executing this instruction, a
robot stops to execute the cycle Look-Compute-Move forever.

To ease the writing of our algorithm, we define a set of predicates (presented in Algorithm 1) and functions
(presented in Algorithm 2), that are used in our gracefully degrading algorithm GDG. Recall that, during the
Compute phase, only the first rule whose guard is true in the view of an enabled robot is executed.

5 Proofs of correctness of GDG

In this section, we first prove, in Subsection 5.1, that GDG solvesGEW in COT rings. Then, in Subsection 5.2,
we consider AC, RE , BRE and ST rings and for each of these classes of dynamic rings, we give the problem
GDG solves in it.

We want to prove that, while executing GDG, at least R− 1 robots terminate their execution on the same
node. Therefore, in the proofs of correctness, we show that our algorithm forces the robots to execute either
Rule Term1 or Rule Term2 whatever the harsh situation. Hence, the proofs are given in the case where these
rules are not executed accidentally.

In the following, for ease of reading, we abuse the various values of the variable state to qualify the robots.
For instance, if the current value of variable state of a robot is righter, then we say that the robot is a
righter robot. Let us call min a robot such that its variable state is equal either to minWaitingWalker or to
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minTailWalker.

5.1 GDG solves GEW in COT rings

In this subsection, we prove that GDG solves GEW in COT rings. Since GDG is divided into four phases, we
prove each of these phases hereafter.

5.1.1 Proofs of Correctness of Phase M

We recall that the goal of Phase M of our algorithm is to make the robot with the minimum identifier aware
that it possesses the minimum identifier among all the robots of the system. In our algorithm a robot is aware
that it possesses the minimum identifier when it is min. Therefore, in this section we have to prove that only
rmin can become min, and that rmin effectively becomes min in finite time. We prove this respectively in
Lemmas 3 and 5.

First we give two observations that help us all along the proves of each phase.

Observation 1. By the rules of GDG, a robot whose state is not either righter or potentialMin cannot become
a righter or a potentialMin.

Observation 2. By the rules of GDG, a robot whose state is not righter cannot become a righter robot.

While executing GDG, once a robot knows that it possesses the minimum identifier, it remembers this
information. In other words, once a robot becomes min it stays min during the rest of the execution. We prove
this statement in the following lemma.

Lemma 1. min is a closed state under GDG.

Proof. A robot is a min when its state is either equal to minWaitingWalker or to minTailWalker. A min-
TailWalker robot can only execute the rules T3 and W1 that do not update the variable state. AminWaiting-
Walker robot can only execute the rules K1 and K2 that respectively makes it become a minTailWalker and
does not change its state.

In the following lemma, we prove that righter and potentialMin are robots that always consider the right
direction. This lemma helps us to prove the correctness of Phase M, as well as the correctness of Phase K.

Lemma 2. If, at a time t, a robot is a righter or a potentialMin, then it considers the right direction from
the beginning of the execution until the Look phase of time t.

Proof. Robots that are righter robots in a configuration γi at time i and that are still righter in the configuration
γi+1, consider the right direction during the move Phase of time i (Rule M8). Moreover, by Observation 2 and
since initially all the robots are righter robots and consider the right direction, if a robot is a righter during
the Look phase of a time t, this implies that it considers the right direction from the beginning of the execution
until the Look phase of time t.

Similarly, robots that are potentialMin robots in a configuration γi at time i and that are still potential-
Min in the configuration γi+1, consider the right direction during the move Phase of time i (Rule M8). The
only way for a robot to become a potentialMin is to be a righter and to execute Rule M6. While executing
Rule M6, a righter that becomes potentialMin does not change the direction it considers. Therefore, by
Observations 1 and 2, and by the arguments of the first paragraph, this implies that if a robot is a potential-
Min during the Look phase of a time t, then it considers the right direction from the beginning of the execution
until the Look phase of time t.

Now we prove one of the two main lemmas of this phase: we prove that only rmin can be aware that it
possesses the minimum identifier among all the robots of the system.

Lemma 3. Only rmin can become min.

Proof. Assume that there exists a robot r 6= rmin that becomes min. Assume also that r is the first robot
different from rmin that becomes min. By definition of rmin, idr > idrmin

.
A robot that is a min is a robot such that its variable state is either equal to minWaitingWalker or to

minTailWalker. A robot becomes minTailWalker only if it executes Rule K1. A robot can execute Rule
K1 only if it is a minWaitingWalker. A robot becomes minWaitingWalker only if it executes Rule M1. Only
righter robots or potentialMin robots can execute Rule M1 (refer to predicate PotentialMinOrRighter()).
Then by Observation 1, we conclude that each robot can execute Rule M1 at most once. (∗)

In the following, let us consider the different conditions of the predicate MinDiscovery() of Rule M1 that
permits r to become min.
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Case 1: r becomes min because the condition “stater = potentialMin ∧ ∃r′ ∈ NodeMate(), (stater′ = righter

∧ idr < idr′)” is true.

The only way for a robot to have its variable state set to potentialMin is to execute Rule M6. This
rule is executed when R − 1 righter robots are on a same node. Among these R − 1 righter robots,
the one with the minimum identifier sets its variable state to potentialMin while the other robots set
their variables state to dumbSearcher. By Observation 1, a robot that becomes a dumbSearcher robot
after the execution of Rule M6 can never become righter robot or potentialMin robot. Moreover, by
Observation 2, a robot that becomes a potentialMin can never become a righter. Since R−1 righter are
needed to execute Rule M6, this rule can be executed only once during the execution. Therefore if r is a
potentialMin, it is necessarily the robot that possesses the minimum identifier among the R− 1 robots
that execute Rule M6. Moreover, if there exists a righter robot r′ when r is potentialMin, this implies
that r′ has not executed Rule M6. Hence if idr < idr′ , this necessarily implies that r = rmin, therefore
there is a contradiction with the fact that r 6= rmin.

Case 2: r becomes min because the condition “∃r′ ∈ NodeMate(), idMinr′ = idr” is true.

By (∗), r is not yet min at the time of its meeting with r′. A robot r′ can update its variable idMin with
the identifier (other than its) of a robot that is not min only when it executes Rules M5, M7, M9 or
M10. Among these rules only the rules M7 (in the case a righter is located with a dumbSearcher) and
M9 permit a robot to update its variable idMin with the identifier of a robot without copying the value
of the variable idMin of another robot. Therefore at least one of these rules is necessarily executed at a
time, since initially the variables idMin of the robots are equal to ⊥. To execute Rule M7 (in the case
a righter is located with a dumbSearcher) or Rule M9, a dumbSearcher robot must be present in the
execution. Only the execution of Rule M6 permits to have dumbSearcher robots in the execution. This
rule is executed when R − 1 righter robots are on a same node. The R − 1 robots that execute this
rule, set their variables idPotentialMin to the identifier of the robot that becomes potentialMin while
executing this rule. Moreover if a robot is a dumbSearcher in a configuration γt at time t and is still a
dumbSearcher in the configuration γt+1 then it does not update its variable idPotentialMin during time
t (since it executes Rule M11).

In the case Rule M7 is executed because a righter rr is located with a dumbSearcher rd necessarily
idrr > idPotentialMinrd, otherwise it is not possible for rr to execute Rule M7, since it would have
executed Rule M1 at the same round (since the predicate MinDiscovery() is true because (staterd ∈
{dumbSearcher, potentialMin}∧ idrr < idPotentialMinrd)). Therefore if Rule M7 is executed at round
t because a righter rr is located with a dumbSearcher rd, this implies, by the predicate DumbSear-
cherMinRevelation() of Rule M9, that Rule M9 is also executed at round t. Indeed, rr executes Rule
M7, while rd executes Rule M9. The reverse is also true: if a dumbSearcher rd executes Rule M9 at
round t, then necessarily a righter rr , such that idrr > idPotentialMinrd, executes Rule M7 at round
t. While executing respectively these rules the two robots update their variables idMin with the value
of the variable idPotentialMin of the dumbSearcher. By using the same arguments as the one used in
case 1, we know that idPotentialMin is the identifier of rmin. Therefore the variables idMin are either
set with the identifier of rmin while Rules M7 and M9 are executed, or copied from another robots while
Rules M5 or M10 are executed. However whatever the rule executed the value of idMin is set with the
identifier of rmin.

Case 3: r becomes min because the condition “∃r′ ∈ NodeMate(), (stater′ ∈ {dumbSearcher, potentialMin}
∧ idr < idPotentialMinr′)” is true.

Only the execution of Rule M6 permits to have dumbSearcher or potentialMin in the execution. This
rule is executed when R−1 righter robots are on a same node. When executing this rule, the R−1 robots
set their variables idPotentialMin to the identifier of the robot that possesses the minimum identifier
among them. Moreover among the R − 1 robots that execute Rule M6, one robot becomes potential-
Min while the other become dumbSearcher. Besides if a robot is a dumbSearcher (resp. a potentialMin)
in a configuration γt at time t and is still a dumbSearcher (resp. a potentialMin) in the configuration
γt+1 then it does not update its variable idPotentialMin during time t since it executes Rule M11 (resp.
M8). As Rule M6 can only be executed once (see the arguments of case 1), if r meets a dumbSearcher or
a potentialMin r′, such that idr < idPotentialMinr′, this necessarily implies that r′ is issued of the
execution of Rule M6 while r has not executed this rule, and therefore r = rmin, which is a contradiction.

Case 4: r becomes min because rightStepsr = 4 ∗ idr ∗ n.

At the time where r becomes min, rmin is either a righter robot, a potentialMin robot or min, otherwise
this implies that there already exists a min (other than rmin) in the execution, which is a contradiction
with the fact that r is the first robot different from rmin that becomes min.
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By the predicate PotentialMinOrRighter() of Rule M1, only righter robots or potentialMin robots can
become min. By Lemma 2, if, at a time t, a robot is a righter or a potentialMin, then it considers
the right direction from the beginning of the execution until the Look phase of time t. Robots that
are righter robots or potentialMin robots in a configuration γt at time t and that are either righter or
potentialMin in the configuration γt+1 increase from 1 their variables rightSteps each time an adjacent
edge in the right direction to their positions is present (Rules M6 and M8). Therefore, by the predicate
MinDiscovery() of Rule M1 a robot r” moves at most during 4 ∗ idr” ∗ n steps in the right direction
before being min.

By Lemma 1, from the time a robot becomes min, it is either a minWaitingWalker or a minTailWalker.
Therefore it can only execute Rules Term1, Term2, K1, K2, W1 and T3. This implies that once a robot
is min, it considers only either the right or the ⊥ direction, and can move during at most n steps in the
right direction before stopping to move definitively (by executing the following rules in the order: K2, K1,
W1 and T3). Therefore by the previous paragraph, a min r” considers the right or the ⊥ direction from
the beginning of the execution until the end of the execution, and can move during at most 4 ∗ idr” ∗n+n
steps in the right direction during the whole execution.

Because of the dynamism of the ring, by Observation 1 and since when a righter or a potentialMin robot
stops to be a righter or a potentialMin robot, it stops to update the value of its variable rightSteps, we
have: ∀r1, r2 ∈ R2, stater1 , stater2 ∈ {righter, potentialMin}2, |rightStepsr1 − rightStepsr2| ≤ n.

Because it takes one round for a robot to update its variable state to min, a righter or a potential-
Min can be located with a robot r just the round before r becomes min. Therefore this righter or
potentialMin can move again in the right direction during at most n steps without meeting the min.

We know that idrmin
< idr, therefore we have 4 ∗ idrmin

∗ n+ n+ n+ n < 4 ∗ idr ∗ n. Hence there exists
a time at which r meets rmin while rmin is min and r is not yet min. At this time, by the rules of GDG,
r stops being a righter or a potentialMin robot, and hence by Observation 1, r cannot be anymore a
righter robot or a potentialMin robot and therefore it cannot becomemin, which leads to a contradiction.

The following lemma helps us to prove the Lemma 5. This lemma is true only if there is no min in the
execution. In other words, it is true only if all the robots are executing Phase M.

Lemma 4. If there is no min in the execution, if, at time t, a robot r is such that stater ∈ {dumb-
Searcher, awareSearcher}, then, during the Move phase of time t− 1, it does not consider the ⊥ direction.

Proof. Consider a robot r such that, at time t, stater ∈ {dumbSearcher, awareSearcher}.
While executing GDG, since initially all the robots are righter, if there is no min, only righter, potential-

Min, dumbSearcher and awareSearcher robots can be present in the execution.
Consider then the two following cases.

Case 1: At time t− 1, r is neither a dumbSearcher nor an awareSearcher.

Whatever the state of r at time t− 1 (righter or potentialMin), to have its variable state at time t equals
either to dumbSearcher or to awareSearcher, r executes at time t− 1 either Rule M5, M6 or M7.

Consider first the case where r executes Rule M6 at time t − 1. Only righter robots can execute Rule
M6. While executing Rule M6, r becomes a dumbSearcher (since while executing this rule a righter can
become either a dumbSearcher or a potentialMin). Moreover, while executing Rule M6, a righter that
becomes dumbSearcher does not change the direction it considers. By Lemma 2, during the Look phase
of time t− 1, r considers the right direction and since r does not change its direction during the Compute
phase of time t− 1, this implies that the lemma is proved in this case.

Consider now the case where r executes either Rule M5 or M7. While executing these rules the function
Search is called.

While executing the function Search, if there are multiple robots on the current node of r at time t− 1,
it considers either the right or the left direction. Therefore, in this case the lemma is proved.

In the case r is alone on its node at time t − 1, while executing the function Search it does not change
its direction. Moreover, while executing Rules M5 or M7, before calling the function Search the robot
calls the function BecomeAwareSearcher that sets its direction to the right direction. Therefore, in
these cases, even if r is alone on its node, it considers a direction different from ⊥ during the Move phase
of time t− 1, hence the lemma is proved.
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Case 2: At time t− 1, r is a dumbSearcher or an awareSearcher.

Whatever the state of r at time t − 1 (dumbSearcher or awareSearcher), to have its variable state at
time t equals either to dumbSearcher or to awareSearcher, r executes at time t − 1 either Rule M9,
M10 or M11. While executing these rules the function Search is called.

As highlighted in the case 1, if there are multiple robots on the current node of r at time t− 1, the lemma
is proved.

Moreover, while executing Rules M9 and M10, before calling the function Search the robot calls the
function BecomeAwareSearcher that sets its direction to the right direction. Therefore, in these cases,
even if r is alone on its node, it considers a direction different from ⊥ during the Move phase of time t−1,
hence the lemma is proved.

It remains the case where r executes Rule M11 at time t − 1 while it is alone on its node. In this case,
while executing Rule M11, r does not change its direction (refer to the function Search). Since at time
t− 1, r is already a dumbSearcher or an awareSearcher, and since initially all the robots are righter, by
recurrence on all the cases treated previously (Case 1 and 2), the direction r considers during the Move
phase of time t− 1 cannot be equal to ⊥.

Finally, we prove the other main lemma of this phase: we prove that rmin is aware, in finite time, that it
possesses the minimum identifier among all the robots of the system.

Lemma 5. In finite time rmin becomes min.

Proof. Assume that rmin does not become min. By Lemma 3, only rmin can be min. While executing GDG,
since initially all the robots are righter, if there is no min, only righter, potentialMin, dumbSearcher and
awareSearcher robots can be present in the execution.

Initially all the robots are righter. In the case where there is no min in the execution, by the rules of
GDG, from a configuration γt at a time t where there are only righter robots, it is not possible to have aware-
Searcher in the configuration γt+1. A robot can become a dumbSearcher or a potentialMin only when Rule
M6 is executed. This rule is executed when R − 1 righter robots are on a same node (refer to predicate
AllButOneRighter()).

Let us now consider the three following cases that can occur in the execution.

Case 1: Rule M6 is never executed.

In this case all the robots are righter robots during the whole execution, and execute therefore Rule M8 at
each instant time. While executing Rule M8, a robot always considers the right direction and increments
its variable rightSteps by one each time there exists an adjacent right edge to its location. Since by
assumption rmin does not become min, then by Rule M1 and predicate MinDiscovery(), rmin cannot
succeed to have its variable rightSteps equals to 4 ∗ idrmin

∗ n, otherwise the lemma is true. Therefore it
exists a time at which rmin is on a node such that its adjacent right edge is missing forever. Since it can
exist at most one eventual missing edge in a COT ring, and since all the robots always move in the right
direction when there is an adjacent right edge to their location (since they execute Rule M8), it exists a
time at which R− 1 righter robots are on a same node, cases 2 and 3 are then considered.

Case 2: Rule M6 is executed but rmin is not among the R− 1 righter robots that execute it.

While executing Rule M6, among the R − 1 righter located on a same node that execute this rule,
the robot with the minimum identifier rp becomes potentialMin while the other robots become dumb-
Searcher, and all update their variables idPotentialMin to idrp . By definition we have idrp > idrmin

.
By Observation 1, a robot that becomes a dumbSearcher can never become righter robot or potential-
Min robot. Moreover, by Observation 2, a robot that becomes a potentialMin can never become a
righter. Since R− 1 righter are needed to execute Rule M6, this rule can be executed only once. Note
that if a robot is a dumbSearcher (resp. a potentialMin) in a configuration γt at time t and is still
a dumbSearcher (resp. a potentialMin) in the configuration γt+1 then it does not update its variable
idPotentialMin during time t since it executes Rule M11 (resp. M8)

At the time of the execution of Rule M6, rmin is a righter, since it is not among the robots that execute
this rule. After the execution of this rule rmin, as a righter, cannot meet a potentialMin robot. Indeed
the only way for a robot to become potentialMin is to execute Rule M6. Therefore only rp can be po-
tentialMin, and we know that idPotentialMinrp = idrp > idrmin

. Hence if rmin meets a potentialMin,
then by Rule M1 and predicate MinDiscovery() the lemma is true, which is a contradiction.
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Similarly, rmin as a righter cannot meet a dumbSearcher rd. Indeed, only Rule M6 permits a robot to
become a dumbSearcher. Therefore, since idPotenialMinrd = idrp > idrmin

, if rmin meets a dumbSear-
cher, then by Rule M1 and predicate MinDiscovery() the lemma is true, which is a contradiction.

Moreover it cannot exist awareSearcher in this execution. Indeed, as said previously, from a configuration
γt at a time t where there are only righter robots, it is not possible to have awareSearcher in the
configuration γt+1. Therefore awareSearcher can be present in the execution only after the execution
of Rule M6. In the case where there is not yet awareSearcher, a robot can become an awareSear-
cher only if a righter meets a dumbSearcher (Rules M9 and M7). However after the execution of Rule
M6, only rmin is a righter, and as explained in the previous paragraph, if rmin as a righter meets a
dumbSearcher there is a contradiction.

Since there is no awareSearcher and since rmin as a righter cannot meet neither potentialMin nor
dumbSearcher, this implies that rmin stays a righter during the whole execution and therefore executes
Rule M8 at each instant time. By the same arguments as the one used in case 1, necessarily it exists a
time at which rmin is on node such that its adjacent right edge is missing forever, otherwise the lemma is
true. However since there is no min is the execution, and there is no awareSearcher, rp stays a potential-
Min and executes Rule M8 at each instant time, therefore it always considers the right direction. Since
it can only exist one eventual missing edge and since this edge is the adjacent right edge to the position of
rmin, all the other edges are infinitely often present. Therefore, in finite time, the potentialMin is located
on the same node as rmin, which is a contradiction.

Case 3: Rule M6 is executed and rmin is among the R− 1 righter robots that execute it.

We use the same arguments as the one used in case 2. Therefore we know that while executing Rule
M6, rmin becomes potentialMin, since rmin possesses the minimum identifier among all the robots of the
system.

Moreover, since rmin does not become min, as a potentialMin, it cannot meet a righter robot otherwise
by Rule M1 and predicate MinDiscovery() the lemma is true.

Similarly, rmin as a potentialMin cannot meet awareSearcher. Indeed in the case there is not yet aware-
Searcher, a robot can become an awareSearcher only if a righter meets a dumbSearcher (Rules M9 and
M7). While executing these rules a robot that becomes an awareSearcher sets its variable idMin to
the identifier of the variable potentialMin of the dumbSearcher, which is in this case idrmin

. An aware-
Searcher never updates the value of its variable idMin. Once there is at least one awareSearcher in the
execution, it is possible to have other robots that become awareSearcher thanks to the execution of Rule
M10. However while executing this rule, a robot that becomes awareSearcher copies the value of the
variable idMin of the awareSearcher it is located with. Therefore if rmin, as a potentialMin, meets an
awareSearcher, by Rule M1 and predicate MinDiscovery(), the lemma is true, which is a contradiction.

Therefore, as a potentialMin, rmin executes Rule M8 at each instant time. By the same arguments as
the one used in case 1, necessarily it exists a time at which rmin is on node such that its adjacent right
edge is missing forever, otherwise the lemma is true.

By Observation 1, dumbSearcher and awareSearcher robots cannot become righter or potentialMin.
As explained, if there is no meeting between a dumbSearcher robot and a righter robot, it cannot exist
awareSearcher robots in the execution. As seen previously, no righter robot can meet rmin. At the time
where Rule M6 is executed there is a righter robot r in the execution. In the case r never meets a dumb-
Searcher robot, it executes Rule M8 at each instant time. Hence, using the arguments as the one used in
case 2, in finite time, r can be located on the same node as rmin, which is a contradiction. This implies that
there exists a time at which r, as a righter robot, meets at least a dumbSearcher robot r′. In this case
r executes Rule M7 (refer to the predicate RighterWithSearcher()) and all the dumbSearcher robots
located with r including r′ execute Rule M9 (by the predicate DumbSearcherMinRevelation() and since
idr > idrmin

). Hence r and all the dumbSearcher robots located with r become awareSearcher robots
and execute the function Search. When a robot executes the function Search while there are multiple
robots on its node, if it possesses the maximum identifier among the robots of its node, it considers the
left direction, otherwise it considers the right direction. Therefore, once M7 and M9 are executed, there
are at least two awareSearcher considering two opposite directions. Moreover once M7 and M9 are
executed, except rmin there are only dumbSearcher and awareSearcher robots in the execution. When
a dumbSearcher robot meets an awareSearcher robot, it executes Rule M10 and therefore becomes
awareSearcher robot and executes the function Search. An awareSearcher executes Rule M11 at each
instant time, therefore it calls the function Search at each instant time. While executing the function
Search, if an awareSearcher robot is alone on its node, it considers the last direction it considers (this
direction cannot be equal to ⊥ by Lemma 4). All this implies that in finite time an awareSearcher robot
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is located on the same node as rmin. Therefore by Rule M1 and predicate MinDiscovery(), rmin becomes
min.

By Lemmas 3 and 5, we can deduce the following corollary which proves the correctness of Phase M.

Corollary 4. Only rmin becomes min in finite time.

5.1.2 Proofs of Correctness of Phase K

Once rmin completes Phase M, it stops to move and waits for the completion of Phase K. We recall that, during
Phase K of GDG, R− 3 robots must join rmin on the node where it is waiting. More precisely, while executing
GDG, Phase K is achieved when R− 3 waitingWalker robots are located on the node where rmin, as min, is
waiting. In the previous subsection, we prove that, in finite time, only rmin becomes min (Corollary 4) and that
once rmin is min it staysmin for the rest of the execution (Lemma 1). Note that, by the rules of GDG, the min is
necessarily a minWaitingWalker robot before being a minTailWalker (since only a minWaitingWalker can
become a minTailWalker while executing Rule K1). Moreover, by Rule K2, rmin, as a minWaitingWalker,
does not move until R− 3 waitingWalker robots are on its node. Therefore, as minWaitingWalker, rmin is,
as expected, always on the same node. Let u be the node on which rmin, as a minWaitingWalker, is located.
Let tmin be the time at which rmin becomes a minWaitingWalker robot. In this subsection, we consider the
execution from time tmin.

To simplify the proofs, we introduce the notion of towerMin as follows.

Definition 1 (towerMin). A towerMin corresponds to a configuration of the execution in which R−3 waiting-
Walker robots are located on the same node as the minWaitingWalker.

To prove the correctness of Phase K, we hence have to prove that, in finite time, a towerMin is formed.
As noted previously, by the rules of GDG, as long as there is no towerMin, rmin stays a minWaiting-

Walker robot.
The following observation is useful to prove the correctness of this phase.

Observation 3. There exists no rule in GDG permitting a robot that stops being either minWaitingWalker or
waitingWalker robot to be again a minWaitingWalker or waitingWalker robot.

To prove the correctness of this phase, we prove, first, that if a potentialMin is present in the execution
then, in finite time, a towerMin is present in the execution, next, we prove that if there is no potentialMin in
the execution then, in finite time, a towerMin is also present in the execution. We prove this respectively in
Lemmas 15 and 16. To simplify the proofs of these two lemmas, we need to prove the nine following lemmas.

In the following lemma we prove that it can exist at most one towerMin in the whole execution.

Lemma 6. It can exist at most one towerMin in the whole execution.

Proof. By definition a towerMin is composed of one minWaitingWalker and R− 3 waitingWalker robots.
Once a towerMin is formed, the R − 2 (R − 2 ≥ 2) robots involved in the towerMin execute Rule K1.
While executing this rule the robot with the maximum identifier among the R − 2 robots involved in the
towerMin becomes headWalker while the minWaitingWalker becomes minTailWalker and the other robots
involved in the towerMin become tailWalker.

Then by Observation 3 and since by Corollary 4 only rmin can be minWaitingWalker, the lemma is
proved.

In the following lemma, we prove that all the waitingWalker as well as the minWaitingWalker are located
on node u and do not move. This is important to prove that, in finite time, a towerMin is formed.

Lemma 7. All waitingWalker robots are located on the same node as rmin when statermin
= minWaiting-

Walker and neither the waitingWalker robots nor rmin, as a minWaitingWalker, move.

Proof. By the rules of GDG, as long as there is no towerMin, rmin is minWaitingWalker. While rmin is the
minWaitingWalker, it executes Rule K2 at each instant time. While executing this rule, rmin considers the
⊥ direction and therefore does not move.

Only Rule K3 permits a robot r to become a waitingWalker robot. For this rule to be executed r must be
located with a minWaitingWalker (refer to predicate PotentialMinOrSearcherWithMin()). By Corollary 4,
only rmin can be minWaitingWalker. While executing Rule K3, r considers the ⊥ direction and therefore at
the time of the execution of this rule, r does not move and is on the node where rmin, as a minWaitingWalker,
is located.
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While r is a waitingWalker robot, as long as there is no towerMin in the execution, it executes Rule K2 at
each instant time. Therefore r does not move. As noted previously, the location where r stops moving is the
location where rmin, as the minWaitingWalker, is located.

Once a towerMin is present in the execution the waitingWalker robots and the minWaitingWalker com-
posing this towerMin execute Rule K1. While executing this rule the robots do not change the direction
they consider and stop being waitingWalker/minWaitingWalker robots. Therefore, by Observation 3 and
since by Corollary 4 only rmin can be minWaitingWalker, all waitingWalker robots are located on the same
node as rmin when statermin

= minWaitingWalker and neither the waitingWalker robots nor rmin, as a
minWaitingWalker, move.

Now we prove a property on potentialMin.

Lemma 8. It can exist at most one potentialMin robot in the whole execution.

Proof. Only the execution of Rule M6 permits a robot to become a potentialMin robot. Rule M6 is executed
when R−1 righter robots are located on a same node. When these R−1 righter robots execute Rule M6, one
becomes a potentialMin, and the others become dumbSearcher. Therefore, by Observations 1 and 2 this rule
can be executed only once. Moreover, by the rules of GDG, once a potentialMin stops to be a potentialMin,
it cannot be again a potentialMin. Hence the lemma is proved.

The following lemma demonstrates a property on min.

Lemma 9. Before being min, rmin is either a righter robot or a potentialMin robot.

Proof. A robot that is a min is a robot such that its variable state is either equal to minWaitingWalker or
to minTailWalker. The only way to be a minTailWalker robot is to be a minWaitingWalker robot and to
execute Rule K1. The only way to be a minWaitingWalker is to execute Rule M1. Only righter robots or
potentialMin robots can execute Rule M1 (refer to predicate PotentialMinOrRighter()).

The three following lemmas give properties on the execution, when rmin is min. Indeed, they indicate the
presence or absence of righter/potentialMin in the execution while rmin is min.

Lemma 10. In the suffix of the execution starting from the time where rmin is min, it is not possible to have
a potentialMin robot and a righter robot present at the same time.

Proof. By Lemma 9, rmin is either a righter or a potentialMin before being min. In the case where rmin is a
potentialMin before being min, then by Lemma 8, it cannot exist a potentialMin in the execution after rmin

becomes min. Therefore the lemma is proved in this case.
Consider now the case where rmin is a righter before being min. For a robot to become a potential-

Min Rule M6 must be executed. This rule is executed when R− 1 righter are located on a same node. While
executing Rule M6, among the R − 1 righter located on a same node, the one with the minimum identifier
becomes potentialMin while the others become dumbSearcher. By Observation 2, rmin cannot be among the
R − 1 righter that execute Rule M6, otherwise it cannot be a righter before being min. Similarly thanks to
Observation 2, the R− 1 robots that execute Rule M6, cannot be righter anymore after the execution of this
rule. therefore, it is not possible to have a potentialMin and a righter in the execution once rmin is min.

Lemma 11. If there exists a time t at which a righter, a robot r (r 6= rmin) such that stater 6= righter and
rmin, as min, are present in the execution, then there is no more potentialMin in the suffix of the execution
starting from t.

Proof. By Lemma 10, since there is a righter at time t, there is no potentialMin in the execution at time t.
Since at time t, rmin and r are not righter and can never be righter anymore (refer to Observation 2),

it is not possible to have R − 1 righter located on a same node after time t. However, in order to have a
potentialMin in the execution, Rule M6 must be executed. This rule is executed only if R − 1 righter are
located on a same node. Therefore there is no potentialMin in the execution after time t.

Lemma 12. If there is a potentialMin at a time t, and if before being min, rmin is a righter, then there is
no more righter in the suffix of the execution starting from time t′ = max{t, tmin}.

Proof. Assume that before being min, rmin is a righter. Moreover assume that there is a potentialMin in the
execution at time t.

(∗) For a robot to become a potentialMin Rule M6 must be executed. This rule is executed when R − 1
righter are located on a same node. While executing Rule M6, among the R − 1 righter located on a same
node, the one with the minimum identifier becomes potentialMin while the others become dumbSearcher. By
Observation 2 none of these R− 1 robots can become righter anymore after time t.

Consider then the two following cases.
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Case 1: t > tmin.

By Observation 2, rmin cannot be a righter after time tmin. Therefore rmin is not among the R−1 robots
that execute Rule M6, and hence, by (∗), after time t, there is no more righter in the execution.

Case 2: t ≤ tmin.

By (∗), rmin cannot be among the R − 1 righter that execute Rule M6, otherwise it cannot be a
righter before being min. Therefore, by (∗) and since after time tmin, by Observation 2, rmin cannot be
a righter anymore, there is no more righter in the execution after time tmin.

The following lemma is an extension of Lemma 4. While Lemma 4 is true only when all the robots are
executing Phase M, the following lemma is true whether the robots are executing Phase M or Phase K.

Lemma 13. If there is no towerMin in the execution, if, at time t, a robot r is such that stater ∈ {potential-
Min, dumbSearcher, awareSearcher}, then, during the Move phase of time t − 1, it does not consider the ⊥
direction.

Proof. Consider a robot r such that at time t, stater = potentialMin. By Lemma 2, r considers the right
direction during the Move phase of time t− 1. Hence the lemma is proved in this case.

Consider now a robot r such that, at time t, stater ∈ {dumbSearcher, awareSearcher}. Since there is no
towerMin in the execution, by the rules of GDG and knowing that initially all the robots are righter, there are
only righter, potentialMin, dumbSearcher, awareSearcher, waitingWalker and minWaitingWalker robots
in the execution. Note that there is no rule in GDG permitting a waitingWalker or a minWaitingWalker to
become either a dumbSearcher or an awareSearcher.

Consider then the two following cases.

Case 1: At time t− 1, r is neither a dumbSearcher nor an awareSearcher.

Whatever the state of r at time t− 1 (righter or potentialMin), to have its variable state at time t equals
either to dumbSearcher or to awareSearcher, r executes at time t− 1 either Rule K4, M5, M6 or M7.

When a robot executes Rule K4, it calls the function BecomeAwareSearcher. When a robot executes
the function BecomeAwareSearcher, it sets its direction to the right direction, therefore the lemma
is also true in this case.

Then, we can use the arguments of the proof of Lemma 4 to prove that the current lemma is true for the
remaining cases. Indeed, even if in Lemma 4 the context is such that there is no min in the execution,
the arguments used in its proof are still true in the context of the current lemma.

Case 2: At time t− 1, r is a dumbSearcher or an awareSearcher.

Whatever the state of r at time t − 1 (dumbSearcher or awareSearcher), to have its variable state at
time t equals either to dumbSearcher or to awareSearcher, r executes at time t − 1 either Rule M9,
M10 or M11. Similarly as for the case 1, we can use the arguments of the proof of Lemma 4 to prove
that the current lemma is true in these cases.

The following lemma proves that in the case where there are at least 3 robots in the execution such that
they are either potentialMin, dumbSearcher or awareSearcher, then, in finite time, at least one of this kind
of robots is located on node u. A potentialMin, a dumbSearcher or an awareSearcher located with the
minWaitingWalker becomes a waitingWalker (Rule K3). Therefore, this lemma permits to prove that in the
case where there are at least 3 robots in the execution (after time tmin) such that they are either potentialMin,
dumbSearcher or awareSearcher, then, in finite time, a supplementary waitingWalker is located on node u.

To prove the following lemma, we need to introduce a new notion. We call Seg(u, v) the set of nodes (of the
footprint of the dynamic ring) between node u not included and v not included considering the right direction.

Lemma 14. If there is no towerMin in the execution but there exists at a time t at least 3 robots such that
they are either potentialMin, dumbSearcher or awareSearcher, then it exists a time t′ ≥ t at which at least
a potentialMin, a dumbSearcher or an awareSearcher, reaches the node u.

Proof. Assume that there is no towerMin in the execution. By the rules of GDG and knowing that initially
all the robots are righter, this implies that there are only righter, potentialMin, dumbSearcher, awareSear-
cher, waitingWalker and minWaitingWalker robots in the execution. Since there is no towerMin, rmin is
minWaitingWalker and is located on node u. By Lemma 7, we know that all the waitingWalker robots (if
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any) are on node u and rmin as well as the waitingWalker robots do not move. This implies that among the
robots that are not on node u there are only righter, potentialMin, dumbSearcher and awareSearcher.

Assume by contradiction that at a time t, there are at least 3 robots such that they are either potentialMin,
dumbSearcher or awareSearcher and such that for all time t′ ≥ t none of these kinds of robots succeed to
reach the node u at time t′. We consider the execution from time t.

Consider a robot r such that at time t, stater ∈ {potentialMin, dumbSearcher, awareSearcher}.
(i) If r is an awareSearcher, since it cannot reach u, it executes Rule M11, and hence it executes the

function Search. The variable state of r is not updated while r executes this function, therefore r is an
awareSearcher and executes Rule M11 and the function Search at each instant time from time t. Thus by
Lemma 13, r always considers a direction different from ⊥ after time t included.

(ii) If r is a dumbSearcher, since it cannot reach u, it can execute either Rule M10 (if it is on the same node
as an awareSearcher) and hence becomes an awareSearcher robot and executes the function Search, Rule
M9 (if it is on the same node as a righter) and hence becomes an awareSearcher and executes the function
Search, or Rule M11 and hence stays a dumbSearcher and executes the function Search. By Lemma 13 and
by (i), r always considers a direction different from ⊥ after time t included.

(iii) If r is a potentialMin, by Lemma 10, there is no righter in the execution at time t and therefore by
Observation 2 there is no righter in the execution after time t included. Therefore, since r cannot reach u, it
can execute either Rule M5 (if it is on the same node as an awareSearcher) and hence becomes an aware-
Searcher and executes the function Search, or Rule M8 and hence stays a potentialMin and considers the
right direction. Therefore by Lemma 13 and by (i), r always considers a direction different from ⊥ after time t
included.

(iv) If there is a righter robot in the execution after time t, then by Lemma 11, there is no potential-
Min robot in the execution after time t included. If a righter robot is on the same node as a dumbSearcher or
as an awareSearcher, it executes Rule M7 and hence becomes an awareSearcher and executes the function
Search.

(v) While executing the function Search if a robot is isolated it considers the last direction it considered.
While executing the function Search if a robot is not isolated, if it possesses the maximum identifier among
all the robots of its current location it considers the left direction otherwise it considers the right direction.

(vi) Note that if there is a potentialMin while rmin is minWaitingWalker, then it possesses the minimum
identifier among all the robots not located on node u. Indeed, only Rule M6 permits a robot to become a
potentialMin. For this rule to be executed, R − 1 righter robots must be located on a same node. While
executing this rule the robot with the minimum identifier among the R − 1 robots located on a same node
becomes potentialMin. Since, by Lemma 8, there is only one potentialMin in the whole execution and since
by definition rmin possesses the minimum identifier among all the robots of the system, rmin does not execute
Rule M6. Therefore, while rmin is minWaitingWalker, the potentialMin possesses the minimum identifier
among all the robots not located on node u. Thus, when a potentialMin executes Rule M8 and hence considers
the right direction it possesses the same behavior as if it was executing the function Search.

Case 1: There is no eventual missing edge.

Call d the direction of r during the Look phase of time t, and let v be the node where r is located during
the Look phase of time t. Call w the adjacent node of v in the direction d. Call e the edge between v and
w. As proved in cases (i), (ii) and (iii), d is either equal to right or left.

We want to prove that it exists a time t′ (t′ ≥ t) such that a robot r′ (it is possible to have r′ = r) with
stater′ ∈ {potentialMin, dumbSearcher, awareSearcher} considers the direction d and is located on w
during the Look phase of time t′.

Call t” (t” ≥ t) the first time after time t included where there is an adjacent edge to v. If during the
Move phase of time t”, r does not consider the direction d, by (i)− (vi) this necessarily implies that when
r executes the function Search (or a function that behaves like the function Search) there is at least
another robot on its node. Moreover by (i) − (vi) the other robot(s) with r also executes the function
Search (or a function that behaves like the function Search) and is or becomes potentialMin, dumb-
Searcher or awareSearcher. Therefore, since all the robots possess distinct identifiers and by (v), during
the Move phase of time t”, a robot among {potentialMin, dumbSearcher, awareSearcher} on node v
considers the direction d.

Since all the edges are infinitely often present we can repeat these arguments on each instant time until
the time te where e is present. At time te a robot (either potentialMin, dumbSearcher, awareSearcher)
considers the direction d and hence crosses e. Since the direction considered by a robot can be updated
only during Compute phases, we succeed to prove that t′ exists.

Applying these arguments recurrently we succeed to prove that in finite time a robot r” such that stater” ∈
{potentialMin, dumbSearcher, awareSearcher} is on node u.

18



Case 2: There is an eventual missing edge.

Call e the eventual missing edge. Consider the execution after the time greater or equal to t where e is
missing forever. Call v the node such that its adjacent right edge is e. Call w the adjacent right node of
v.

At least two robots that are either potentialMin, dumbSearcher or awareSearcher are either on nodes
in Seg(u, v) ∪ {v} or on nodes in Seg(w, u) ∪ {w}.

Assume that there are at least two robots that are either potentialMin, dumbSearcher or awareSear-
cher which are on nodes in Seg(u, v) ∪ {v}. The reasoning when there are at least two robots that are
either potentialMin, dumbSearcher or awareSearcher which are on nodes in Seg(w, u)∪ {w} is similar.

The edge e is an eventual missing edge. It can exist only one eventual missing edge in COT ring. Therefore
all the edges between the nodes in {u}∪Seg(u, v)∪{v} are infinitely often present. Thus, if there exists a
robot (either potentialMin, dumbSearcher or awareSearcher) that considers the left direction then we
can apply the arguments of case 1 to prove that in finite time a robot r”, such that stater” ∈ {potential-
Min, dumbSearcher, awareSearcher}, is on node u.

Therefore consider that all the robots, that are either potentialMin, dumbSearcher or awareSearcher and
that are located on nodes in Seg(u, v) ∪ {v}, consider the right direction. In this case a robot either po-
tentialMin, dumbSearcher or awareSearcher cannot be located on the same node as a robot either
righter, potentialMin, dumbSearcher or awareSearcher, otherwise during the Move phase of the time
of this meeting, by (i)−(vi), it exists a robot either potentialMin, dumbSearcher or awareSearcher that
considers the left direction.

Since e is an eventual missing edge, and since there are at least two robots either potentialMin, dumb-
Searcher or awareSearcher that consider the right direction, applying the arguments of case 1 on two of
these robots, we succeed to prove that in finite time two of these robots are located on v. Therefore, by the
previous paragraph, in finite time a robot r”, such that stater” ∈ {potentialMin, dumbSearcher, aware-
Searcher}, is on node u.

Now, we prove one of the two main lemmas of this phase: we prove that if a potentialMin is present in
the execution, then, in finite time, a towerMin is present in the execution. While proving this lemma, we also
prove that, at the time when the towerMin is formed, among the two robots not involved in this towerMin, it
can exit at most one righter. This information is useful to prove Phase T.

Lemma 15. If there is a potentialMin in the execution, then there exists a time t at which a towerMin is
present and among the robots not involved in the towerMin there is at most one righter robot at time t.

Proof. Assume that there exists a time t at which a potentialMin robot is present in the execution. Assume
by contradiction that there is no towerMin in the execution. In the following, we consider the execution from
time t′ = max{t, tmin}.

Since there is no towerMin, by the rules of GDG and knowing that initially all the robots are righter,
there are in the execution only righter, potentialMin, dumbSearcher, awareSearcher, waitingWalker and
minWaitingWalker robots. By Lemma 7, all the waitingWalker are located on the same node as rmin, when
statermin

= minWaitingWalker, and both rmin, as a minWaitingWalker, and the waitingWalker robots
do not move. By Corollary 4, only rmin can be a minWaitingWalker. We recall that rmin as minWaiting-
Walker is located on node u. Therefore the minWaitingWalker and all the waitingWalker (if any) are located
on node u.

By Lemma 9 we know that, before being min, rmin is either a righter robot or a potentialMin robot. We
can then consider the two following cases.

Case 1: Before being min, rmin is a righter robot.

By Lemma 12, at time t′ there are only potentialMin, dumbSearcher, awareSearcher, waitingWalker and
minWaitingWalker robots in the execution. Moreover, in this case, all the robots that are not on node
u are necessarily either potentialMin, dumbSearcher or awareSearcher.

When a potentialMin, a dumbSearcher or an awareSearcher robot meets the minWaitingWalker, it
executes Rule K3, hence it becomes a waitingWalker and stops to move.

Then each time there are at least 3 robots in the execution such that they are either potentialMin, dumb-
Searcher and/or awareSearcher, using Lemma 14, we succeed to prove that at least one potentialMin,
dumbSearcher or awareSearcher succeeds to join the node u and therefore becomes a waitingWalker.
Therefore, by Lemma 7, a towerMin is formed in finite time.
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Case 2: Before being min, rmin is a potentialMin.

For a robot to become a potentialMin, Rule M6 must be executed. This rule is executed when R − 1
righter are located on a same node. While executing this rule, among the R − 1 righter located on a
same node, one becomes potentialMin while the other become dumbSearcher. By Observation 2, none
of these R − 1 robots can become righter anymore. Therefore, by Lemma 8, once rmin is min, there
are only dumbSearcher, awareSearcher, waitingWalker, minWaitingWalker robots and at most one
righter robot in the execution. Moreover, in this case, among the robots that are not on node u, there
are only dumbSearcher and awareSearcher and at most one righter. By the rules of GDG, as long as a
dumbSearcher or an awareSearcher is not on node u, its variable state stays in {dumbSearcher, aware-
Searcher}.

Once rmin is min, if there exists a time at which there is no more righter robot in the execution, then,
using the arguments of case 1, we succeed to prove that a towerMin is formed in finite time. Therefore
assume that there is always a righter robot r in the execution.

When a dumbSearcher or an awareSearcher robot is located on the same node as the minWaiting-
Walker, it executes Rule K3, hence it becomes a waitingWalker and stops to move. Then, using
multiple times Lemma 14 and Lemma 7, we know that in finite time there are in the execution only one
righter and only 2 robots r′ and r” such that stater′, stater” ∈ {awareSearcher, dumbSearcher}2 (all
the other robots are minWaitingWalker and waitingWalker robots and are located on node u). Note
that r′ (resp. r”) cannot be located on node u, otherwise, by Rule K3, a towerMin is formed. Therefore,
r′ and r” always have their variable state in {dumbSearcher, awareSearcher}.

When a righter robot is located on the same node as an awareSearcher or as a dumbSearcher, it
executes Rule M7 and becomes an awareSearcher. Similarly, if a righter is on the same node as a min-
WaitingWalker while the adjacent right edge to its position is present, then the righter robot executes
Rule K4 and becomes an awareSearcher. Therefore, as highlighted previously, these situations cannot
happen, otherwise a towerMin is formed in finite time. This implies that, as long as the robot r is not on
node u, it must be isolated. Since r′ and r” cannot be located on node u, if r succeeds to join the node
u in the case there is no present adjacent right edge to u, then r executes Rule M8 and therefore stays a
righter and considers the right direction. Therefore, since an isolated righter robot always executes Rule
M8, hence always considers the right direction, this implies that either r is on a node v (v 6= u) such that
the adjacent right edge of v is an eventual missing edge at least from the time where r is on node v (case
2.1) or r succeeds to reach u but the adjacent right edge of u is an eventual missing edge at least from
the time where r is on node u (case 2.2).

(∗) When an awareSearcher or a dumbSearcher is isolated it executes Rule M11, hence executes the
function Search, therefore it considers the last direction it considered. By Lemma 13, this direction
cannot be equal to ⊥.

(∗∗) Since only r′ and r” have their variable state in {dumbSearcher, awareSearcher}2, and since r′ and
r” cannot be located on node u and cannot be located with r, if a dumbSearcher is located on the same
node as an awareSearcher or if an awareSearcher (resp. a dumbSearcher) is located on the same node
as another awareSearcher (resp. dumbSearcher), necessarily this means that r′ and r” are located on a
same node, and there is no other robot on the same node as them. When a dumbSearcher is on the same
node as an awareSearcher it executes Rule M10, hence it becomes an awareSearcher and executes the
function Search. When an awareSearcher is on the same node as a dumbSearcher it executes Rule
M11 and hence executes the function Search. Since r′ and r” have distinct identifiers, when an aware-
Searcher and a dumbSearcher are on a same node, they both execute the function Search, therefore
one considers the right direction, while the other one considers the left direction. Similarly, if two aware-
Searcher (resp. dumbSearcher) robots are on the same node, they both execute Rule M11 and hence
the function Search, therefore one considers the right direction, while the other one considers the left
direction.

Case 2.1: Let w be the adjacent node of v in the right direction. It can exist only one eventual missing
edge, which is the adjacent right edge of node v. Therefore, if a robot, in Seg(u, v) or in Seg(w, u),
considers a direction d and does not change this direction, it eventually succeeds to move in this
direction. Similarly, if a robot is on node w and always considers the right direction, it eventually
succeeds to move in this direction (∗ ∗ ∗).

Firstly, assume that only r′ (resp. r”) is on a node in Seg(u, v). By (∗) and (∗ ∗ ∗), r′ (resp. r”)
cannot consider the right direction, otherwise it reaches r in finite time. Therefore r′ (resp. r”)
considers the left direction. By (∗) and (∗ ∗ ∗), in finite time, r′ (resp. r”) succeeds to reach u,
implying that a towerMin is formed.
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Secondly, assume that r′ and r” are on nodes in Seg(u, v). By (∗), (∗∗) and (∗ ∗ ∗), they cannot
meet otherwise one of them reaches u in finite time. Moreover, if they do not meet none of them
can consider the left direction otherwise, by (∗) and (∗ ∗ ∗), they reach u in finite time. Therefore,
they cannot meet and must consider the right direction. By (∗) and (∗ ∗ ∗), in finite time one robot
among r′ and r” succeeds to reach r, implying that a towerMin is formed.

Thirdly, assume that r and r” are on nodes in Seg(v, u). By (∗), (∗∗) and (∗ ∗ ∗), they cannot meet
otherwise one of them reaches u in finite time. Moreover, if they do not meet none of them can
consider the right direction otherwise, by (∗) and (∗ ∗ ∗), they reach u in finite time. Therefore, they
cannot meet and must consider the left direction. However, by (∗) and (∗ ∗ ∗), since the adjacent
right edge of v is missing forever, in finite time r′ and r” reach w, which is a contradiction with the
fact that they do not meet.

Case 2.2: Applying the arguments used in the case 2.1, when r′ and r” are on nodes in Seg(v, u), to r′

and r” when there are on nodes in Seg(u, u), we succeed to prove that in finite time at least one of
them reaches node u, making Rule Term2 true, which leads to a contradiction.

Finally, we prove the other main lemma of this phase: we prove that even if there is no potentialMin in
the execution, then, in finite time, a towerMin is present in the execution. While proving this lemma, we also
prove that, at the time when the towerMin is formed, among the two robots not involved in this towerMin, it
can exit at most one righter. This information is useful to prove Phase T.

Lemma 16. If there is no potentialMin in the execution, then there exists a time t at which a towerMin is
present and among the robots not involved in the towerMin there is at most one righter robot at time t.

Proof. Assume, by contradiction, that there is no towerMin in the execution. By the rules of GDG and knowing
that initially all the robots are righter, this implies that there are only righter, potentialMin, dumbSearcher,
awareSearcher, waitingWalker and minWaitingWalker robots in the execution.

Assume that there is no potentialMin in the execution. If there is no potentialMin in the execution, it
cannot exist dumbSearcher in the execution. Indeed, the only way for a robot to become dumbSearcher is to
execute Rule M6. However, when this rule is executed, a robot becomes potentialMin. Therefore, there are in
the execution only righter, awareSearcher, waitingWalker and minWaitingWalker robots.

Before time tmin, by the rules of GDG, there are only righter in the execution. Indeed, by Corollary 4, only
rmin can be minWaitingWalker and it becomes minWaitingWalker at time tmin. Moreover, the only way
for a robot to become waitingWalker is to execute Rule K3. In the case where there is no potentialMin in the
execution, only an awareSearcher located with rmin, as a minWaitingWalker, can execute this rule. Besides,
the only ways for a robot to become an awareSearcher is either to be a righter and to be located with an
awareSearcher (refer to Rule M7), or to be a righter and to be located with rmin, as a minWaitingWalker,
while an adjacent right edge to their location is present (refer to Rule K4). Since initially all the robots are
righter, the first awareSearcher of the execution can be present only thanks to the execution of Rule K4.

All this implies that, even after time tmin, as long as no righter robot is on node u with rmin, as a min-
WaitingWalker, while there is a present adjacent right edge to u, it cannot exist neither awareSearcher nor
waitingWalker in the execution: there is at most one minWaitingWalker and there are at least R−1 righter.
Moreover, this implies that as long as the situation described has not happened, all the righter robots only
execute Rule M8, hence always consider the right direction.

Consider the execution just after time tmin. In this context, necessarily, in finite time, there exists a
righter robot r that succeeds to reach u (while rmin is minWaitingWalker). Indeed, if this is not the case,
this implies that there exists an eventual missing edge e. Since all the righter robots always consider the right
direction and since it can exist at most one eventual missing edge, this implies that R− 1 righter robots reach
in finite time the same extremity of e. Thus, Rule M6 is executed, which leads to a contradiction with the fact
that there is no potentialMin in the execution.

Similarly, necessarily, in finite time, there exists an adjacent right edge to u while r is on u. Indeed, if
this is not the case, this implies that the adjacent right edge of u is an eventual missing edge. Since all the
righter robots always consider the right direction and since it can exist at most one eventual missing edge, in
finite time all the righter succeed to be located on node u. This implies that Rule Term1 is executed, which
leads to a contradiction.

Therefore there exists a time t′ at which r executes RuleK4. At this time r becomes an awareSearcher robot
and considers the right direction. We then consider the execution from time t′.

(∗) From this time t′, as long as there exists righter in the execution, it always exists an awareSear-
cher robot r′ considering the right direction, such that there is no righter robots on Seg(u, v), where v is the
node where r′ is currently located. This can be proved by analyzing the movements of the different kinds of
robots that we describe in (i)− (vii).
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(i) By Lemma 7, all the minWaitingWalker and waitingWalker (if any) are on a same node (which is the
node u) and do not move.

(ii) If an awareSearcher is located on node u, therefore if it is located with rmin, as a minWaitingWalker,
it executes Rule K3 and becomes a waitingWalker robot.

(iii) If an awareSearcher is on a node different from the node u, the only rule it can execute is Rule M11,
in which the function Search is called. While executing this function, an isolated awareSearcher considers
the direction it considers during its last Move phase. By Lemma 13, this direction cannot be ⊥.

(iv) If a righter robot is located only with other righter robots or if it is located on node u, therefore if it
is located with rmin, as a minWaitingWalker, such that there is no adjacent right edge to u, it executes Rule
M8, hence it stays a righter and considers the right direction.

(v) If a righter robot is with rmin, as a minWaitingWalker, such that there is an adjacent right edge to
u, then it executes Rule K4 and hence becomes an awareSearcher.

(vi) If a righter robot is on a node different from node u with an awareSearcher, it executes Rule M7 and
therefore becomes awareSearcher and executes the function Search.

(vii) Note that by the movements described in (i) to (vi), if a robot executes the function Search, then all
the robots that are on the same node as it also execute this function. While executing the function Search,
if multiple robots are on the same node, one considers the left direction, while the others consider the right
direction.

Applying these movements on r′ and recursively on the robots that r′ meet that consider the right direction
after their meeting with r′ and so on, we succeed to prove the property (∗).

(∗∗) Note that if there exists a time at which there is no more righter in the execution, then by applying
(ii), Lemma 7 and Lemma 14 multiple times we succeed to prove that a towerMin is formed. Therefore at
least one robot is always a righter during the whole execution. Call Sr the set of righter robots that stay
righter during the whole execution.

Let us consider the following cases.

Case 1: There does not exist an eventual missing edge.

None of the robots of Sr can be located on the same node as an awareSearcher, otherwise, by (vi), they
become awareSearcher. Therefore, all the robots of Sr that are not on node u can only consider the
right direction (refer to (iv)). Since all the edges are infinitely often present, for each robot r” of Sr, it
exists a time at which r” is on node u. Moreover, once on node u, as long as there is no adjacent right
edge to u, r” considers the right direction (refer to (iv)), and therefore stays on node u. Thus, since all
the edges are infinitely often present, for each robot r” of Sr, it exists a time at which r” is on node u
such that an adjacent right edge to u is present. Therefore, by (v), in finite time, all the robots of Sr are
awareSearcher robots. Hence, by (∗∗), the lemma is proved.

Case 2: There exists an eventual missing edge.

Call x the node such that its adjacent right edge is the eventual missing edge. Consider the execution
after time t′ such that the eventual missing edge is missing forever.

Case 2.1: x = u.

None of the robots of Sr can be located on the same node as an awareSearcher, otherwise, by (vi),
they become awareSearcher. Therefore, all the robots of Sr that are not on node u can only consider
the right direction (refer to (iv)). Since it can exist at most one eventual missing edge, in finite time
the robots of Sr succeed to reach node u, and stay on node u (refer to (iv)). Necessarily, |Sr | < R−2,
otherwise Rule Term2 is executed. At the time at which all the robots of Sr are on node u, by (∗),
we know that at least one awareSearcher, on a node v, considers the right direction. By (vi), none
of the righter of Sr can be located on node v. Therefore, this awareSearcher is not on node u. By
the movements described in (iii) and (vii), we know that in finite time an awareSearcher succeeds
to reach node u. Then all the righter of Sr become awareSearcher, hence by (∗∗), the lemma is
proved.

Case 2.2: x 6= u.

None of the robots of Sr can be located on the same node as an awareSearcher, otherwise, by (vi),
they become awareSearcher. Therefore, none of the robots of Sr can be located on Seg(u, x)∪ {x},
otherwise, in finite time, by (iv) they are located on node x. However, once all the robots of Sr are
on node x, by (∗), and the movements described in (iii) and (vii) an awareSearcher succeeds to be
located on node u in finite time, which leads to a contradiction. Therefore all the robots of Sr are
on nodes in Seg(x, u). Since it can exist only one eventual missing edge, and since this edge is the
adjacent right edge of x, for each robot r” of Sr, by (iv), it exists a time at which r” is on node u
while there is a present adjacent right edge to u. Therefore, by (v), in finite time all the robots of
Sr are awareSearcher robots. Hence, by (∗∗), the lemma is proved.

22



We just proved that it exists a time ttower at which a towerMin is present in the execution. We now prove
that, at time ttower, among the robots not involved in the towerMin, there is at most one righter. By Lemma 6,
there is only one towerMin in the whole execution. Necessarily, as explained above when there is no potential-
Min in the execution, in order to have a towerMin, a righter must become an awareSearcher while executing
Rule K4. The property (∗) is then true. By definition of a towerMin, only two robots are not involved in the
towerMin. Assume, by contradiction, that there are two righter not involved in the towerMin at time ttower.
By (∗), this implies that there is an awareSearcher at time ttower. However, by definition, a towerMin is
composed of one minWaitingWalker and R − 3 waitingWalker, therefore, since there are R robots in the
system and among them, at time ttower, two are righter and one is an awareSearcher, there is a contradiction
with the fact that there is a towerMin at time ttower.

By Lemmas 15 and 16, we can deduce the following corollary which proves the correctness of Phase K.

Corollary 5. There exists a time t in the execution at which a towerMin is present and among the robots not
involved in the towerMin there is at most one righter robot at time t.

5.1.3 Proofs of Correctness of Phases W and T

The combination of Phases W and T of GDG permit to solve GEW in COT rings. Since GEW is divided into
a safety and a liveness property, to prove the correctness of Phases W and T, we have to prove each of these two
properties. We recall that, to satisfy the safety property of the gathering problem, all the robots that terminate
their execution have to do so on the same node, and to satisfy the liveness property of GEW , at least R − 1
robots must terminate their execution in finite time. In this subsection, we, first, prove that GDG solves the
safety of the gathering problem in COT rings, and then, we prove that GDG solves the liveness of GEW in
COT rings. We prove this respectively in Lemmas 19 and 21. To prove these two lemmas, we need to prove
some other lemmas.

By Corollary 5, we know that, in finite time, a towerMin is formed. By Lemma 6, there is at most one
towerMin in the execution. Therefore, there is one and only one towerMin in the execution. Call T such a
towerMin. Let ttower be the time at which T is formed. By definition, a towerMin is composed of R − 2
robots. Call r1 and r2 the two robots that are not involved in T .

In the previous subsection, we prove that, at time ttower, at most one of the robots among r1 and r2 is a
righter. In the following lemma, we go farther and give the set of possible values for the variable state at time
ttower of each of these robots.

Lemma 17. At time ttower, stater1 ∈ {righter, potentialMin, dumbSearcher, awareSearcher} and stater2 ∈
{dumbSearcher, awareSearcher}.

Proof. Until the Look phase of time ttower, by the rules of GDG and knowing that all the robots are initially
righter, there are only righter, potentialMin, dumbSearcher, awareSearcher, waitingWalker and min-
WaitingWalker robots in the execution.

By Corollary 4, only rmin can be min, therefore only rmin can be minWaitingWalker. By definition of
a towerMin, a minWaitingWalker is involved in T . Since r1 and r2 are not involved in T , this implies that
neither r1 nor r2 can be minWaitingWalker at time ttower.

By definition of a towerMin, at time ttower, the R− 2 robots involved in T are on a same node. This node
is the node u. Therefore, at time ttower neither r1 nor r2 can be located on node u, otherwise Rule Term2 is
executed. By Lemma 7, this implies that neither r1 nor r2 can be a waitingWalker at time ttower.

By Corollary 5, at time ttower, only one robot among r1 and r2 can be a righter robot. Assume without
lost of generality that r1 is a righter at time ttower. In this case by Corollary 5, r2 cannot be a righter at time
ttower. Moreover, in this case, by Lemma 10, r2 cannot be a potentialMin at time ttower.

Now assume without lost of generality that r1 is a potentialMin robot at time ttower. By Lemmas 8 and
10, r2 can neither be a potentialMin nor a righter at time ttower.

This prove the lemma.

In the following lemma, we prove a property on Rules Term1 and Term2 that helps us to prove that
GDG solves GEW in COT rings.

Lemma 18. If a robot r, on a node x, at a time t, executes Rule Term1 (resp. Term2), then there are R
(resp. R− 1) robots on node x at time t and they all execute Rule Term1 (resp. Term2) at time t (if they are
not already terminated).

Proof. If a robot r, on a node x, executes Rule Term1 (resp. Term2) at a time t, by the predicate GE() (resp.
GEW ()), there are R (resp. R − 1) robots on x at time t. Moreover, if the predicate GE() (resp. GEW ()) is
true for r at time t, since the robots are fully-synchronous, it is necessarily true for all the robots (not already
terminated) located on node x at time t. This implies that all the robots (not already terminated) located on
x at time t, execute Rule Term1 (resp. Term2) at time t.
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Now we prove one of the two main lemmas of this subsection: we prove that GDG solves the safety property
of the gathering problem in COT rings.

Lemma 19. GDG solves the safety of the gathering problem in COT rings.

Proof. We want to prove that, while executing GDG, all robots that terminate their execution terminate it on
the same node. While executing GDG, the only way for a robot to terminate its execution is to execute either
Rule Term1 or Rule Term2.

By Lemma 18, if a robot r, on a node x, at a time t, executes Rule Term1, then there are R robots on node
x at time t and they all execute Rule Term1 at time t (if they are not already terminated). Therefore, in the
case where r executes Rule Term1 at time t, all the robots of the system are terminated on x at time t, hence
the lemma is proved in this case.

By Lemma 18, if a robot r, on a node x, at a time t, executes Rule Term2, then there are R− 1 robots on
node x at time t and they all execute Rule Term2 at time t (if they are not already terminated). Therefore,
in the case where r executes Rule Term2 at time t, R − 1 robots of the system are terminated on x at time
t. Call r′ the robot that is not on the node x at time t. Let y (y 6= x) be the node where r is located at time
t. To prove the lemma, it stays to prove that r′ is not terminated at time t, and that after time t, r′ either
terminates its execution on node x or never terminates its execution.

Assume, by contradiction, that at time t, r′ is terminated. This implies that there exists a time t′ ≤ t at
which r′ executes either Rule Term1 or Rule Term2. By Lemma 18, this implies that at least R − 2 other
robots are terminated on node y at time t′. Therefore, there is a contradiction with the fact that r executes
Rule Term2 at time t on node x. Indeed, to execute Rule Term2 at time t on node x, R− 1 robots must be
located on node x at time t, since R ≥ 4, it is not possible to have R− 1 robots on node x at time t.

Moreover, after time t, by Lemma 18, r′ can terminate its execution only on node x (since it is the only
node where R− 1 robots are located). Therefore, the lemma is proved.

The following lemma is an extension of Lemma 13. While Lemma 13 is true when the robots are either
executing Phase M or Phase K, the following lemma is true whatever the phase of the algorithm the robots are
executing.

Lemma 20. If, at time t, an isolated robot r is such that stater ∈ {dumbSearcher, awareSearcher}, then,
during the Move phase of time t− 1, it does not consider the ⊥ direction.

Proof. By the rules of GDG,minWaitingWalker,waitingWalker,minTailWalker, tailWalker, headWalker and
leftWalker cannot become dumbSearcher or awareSearcher.

Consider an isolated robot r such that, at a time t, stater ∈ {dumbSearcher, awareSearcher}.
Consider then the two following cases.

Case 1: At time t− 1, r is neither a dumbSearcher nor an awareSearcher.

Whatever the state of r at time t− 1 (righter or potentialMin), to have its variable state at time t equals
either to dumbSearcher or to awareSearcher, r executes at time t − 1 either Rule K4, M2, M3, M5,
M6 or M7.

When a robot executes Rule M2, it calls the function BecomeAwareSearcher. When a robot executes
the function BecomeAwareSearcher, it sets its direction to the right direction, therefore the lemma
is true in this case.

A robot executes Rule M3 only if it is located with a headWalker on a node x. Necessarily there is
no present adjacent right edge to x at time t − 1, otherwise the robot would have executed Rule M2.
By the rules of GDG, a headWalker only considers the ⊥ direction or the right direction. Indeed, a
headWalker can only execute Rules T2, T3 and W1. While executing Rule T2, a headWalker becomes
a leftWalker and considers the ⊥ direction. While executing Rule T3, a headWalker considers the ⊥
direction. Finally, while executing Rule W1, a headWalker considers either the right direction or the ⊥
direction. Therefore, even if, after the execution of Rule M3, r considers the ⊥ direction, it is not isolated
at time t, hence the lemma is not false in this case.

Then, we can use the arguments of the proof of Lemma 13 (in the case where the robot r is a dumbSear-
cher or an awareSearcher at time t) to prove that the current lemma is true for the remaining cases.
Indeed, even if in Lemma 13 the context is such that there is no towerMin in the execution, the arguments
used in its proof are still true in the context of the current lemma.

Case 2: At time t− 1, r is a dumbSearcher or an awareSearcher.

Whatever the state of r at time t − 1 (dumbSearcher or awareSearcher), to have its variable state at
time t equals either to dumbSearcher or to awareSearcher, r executes at time t−1 either Rule M2, M3,
M9, M10 or M11.
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We can use the arguments of Case 1 to prove that while executing Rule M2 or M3, the lemma is proved.

Then, similarly as for the Case 1, we can use the arguments of the proof of Lemma 13 (in the case where
the robot r is a dumbSearcher or an awareSearcher at time t) to prove that the current lemma is true
in the remaining cases of Case 2.

Finally, we prove the other main lemma of this subsection: we prove that GDG solves the liveness of GEW in
COT rings. In the following proof, we consider that there exists an eventual missing edge while GDG is executed,
otherwise, during the execution, the ring is a RE ring (we treat the case of RE rings in subsection 5.2).

Lemma 21. GDG solves the liveness of GEW in COT rings.

Proof. By contradiction, assume that GDG does not solve the liveness of GEW in COT rings. Since the execution
of Rules Term1 and Term2 permits a robot to terminate its execution, by Lemma 18, this implies that there
exists a COT ring such that, during the execution of GDG, neither Rule Term1 nor Rule Term2 is executed.
Consider the execution of GDG on that ring.

By Corollary 5, there exists a time t at which a towerMin is formed. Note that R−2 ≥ 2 robots are involved
in a towerMin. Once a towerMin is formed the R− 3 waitingWalker and the minWaitingWalker involved
in this towerMin execute Rule K1. While executing this rule, the robot r with the maximum identifier among
the R− 2 robots involved in this towerMin becomes headWalker, the minWaitingWalker becomes minTail-
Walker and the other robots involved in this towerMin become tailWalker. Note that, by Corollary 4, only
rmin can be min, and therefore, since rmin is the robot with the minimum identifier among all the robots of
the system and since at least 2 robots are involved in the towerMin, rmin cannot become headWalker. By
Lemma 6 and by the rules of GDG, only r can be headWalker and only rmin can be minTailWalker during
the execution.

There is no rule in GDG permitting a tailWalker or a minTailWalker robot to become another kind of
robot. A tailWalker and a minTailWalker can only execute Rules T3 and W1. By the rules of GDG, the
minTailWalker and the tailWalker execute the same movements at the same time starting from the same
node, therefore, they are on a same node at each instant time. Hence, call tail the set of all of these robots.

A headWalker can become a leftWalker. However, since we assume that the liveness of GEW cannot be
solved, then it is not possible for r to become a leftWalker. Indeed, a headWalker can only execute Rules
T2, T3 and W1. Note that, by the rules of GDG, after the execution of Rule K1, the headWalker and the
tail both execute Rule W1. Therefore, since the headWalker and the tail start the execution of Rule W1 on
the same node at the same time, by the rules of GDG, while the headWalker is executing Rule T3 or Rule
W1, if the tail is not on the same node as the headWalker, it is either executing Rule W1 or it is terminated.
Moreover, by the same arguments, in the remaining of the execution, the headWalker and the tail are either
on a same node or the tail is on the left adjacent node (on the footprint of the dynamic ring) of the node where
the headWalker is located. Hence, if at a time t′, the headWalker executes Rule T2, and therefore becomes a
leftWalker, then this implies that during time t′ − 1 it is executing either Rule T3 or Rule W1 while there is
an adjacent left edge to its position and at time t′ the tail is not on its node. Therefore, necessarily the tail is
terminated, otherwise as explained the tail would have join the headWalker on its node (Rule W1). Since only
Rules Term1 and Term2 permit a robot to terminate its execution, by Lemma 18, this implies that the tail
has executed Rule Term2, which leads to a contradiction with the fact that GDG does not solve the liveness of
GEW .

Therefore, during the whole execution (after the execution of Rule K1), the headWalker, tailWalker and
minTailWalker stay respectively headWalker, tailWalker and minTailWalker and can only execute Rule
W1 until their variables walkSteps reach n, and then they can only execute Rule T3.

Call r1 and r2 the two robots that are not involved in the towerMin at time t. Since, by contradiction,
neither Rule Term1 nor Rule Term2 are true, neither r1 nor r2 can meet the headWalker or the tail while
they (the headWalker and the tail) are on a same node. Therefore, we assume that this event never happens.

By Lemma 17, at time t, stater1 ∈ {righter, potentialMin, dumbSearcher, awareSearcher} and stater2 ∈
{dumbSearcher, awareSearcher}.

Let us first consider all the possible interactions between only r1 and r2 while stater1 ∈ {righter, potential-
Min, dumbSearcher, awareSearcher} and stater2 ∈ {dumbSearcher, awareSearcher}.

An isolated potentialMin or a potentialMin that is located only with a dumbSearcher stays a potential-
Min and considers the right direction (Rule M8).

If a potentialMin is located only with an awareSearcher, it becomes an awareSearcher and it executes
the function Search (Rule M5).

An isolated righter stays a righter and considers the right direction (Rule M8).
If a righter is located only with a dumbSearcher (resp. an awareSearcher), it becomes an awareSear-

cher and executes the function Search (Rule M7).
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If a dumbSearcher is located only with a righter, it becomes an awareSearcher and executes the function
Search (RuleM9).

If a dumbSearcher is located only with a potentialMin it stays a dumbSearcher and executes the function
Search (Rule M11). In this case, while executing the function Search, a dumbSearcher considers the left
direction, since it possesses a greater identifier than the one of the potentialMin. Indeed, only Rule M6 permits
a robot to become potentialMin or dumbSearcher. This rule is executed when R− 1 righter are located on a
same node. While executing Rule M6, among the R− 1 righter, the one with the minimum identifier becomes
potentialMin while the others become dumbSearcher. By Observation 2, Rule M6 can be executed only once.
Therefore, a dumbSearcher necessarily possesses an identifier greater than the one of the potentialMin.

An isolated dumbSearcher or a dumbSearcher located only with another dumbSearcher stays a dumbSear-
cher and executes the function Search (Rule M11).

If a dumbSearcher is located only with an awareSearcher, it becomes an awareSearcher and it executes
the function Search (Rule M10).

An isolated awareSearcher or an awareSearcher located only with a righter, a potentialMin, a dumb-
Searcher or an awareSearcher stays an awareSearcher and executes the function Search (Rule M11).

When r1 and r2 are on a same node without any other robot, executing the function Search, since all
the robots possess distinct identifiers, one considers the right direction, while the other one considers the left
direction.

While executing the function Search at time i, a robot that is an isolated dumbSearcher or an isolated
awareSearcher considers during the Move phase of time i the same direction it considers during the Move
phase of time i− 1. By Lemma 20, this direction cannot be equal to ⊥.

By the previous movements described, note that, as long as r1 and r2 are not located with the headWalker or
the tail, they are always such that stater1 ∈ {righter, potentialMin, dumbSearcher, awareSearcher} and
stater2 ∈ {dumbSearcher, awareSearcher}.

Now, consider the possible interactions between the headWalker and r1 and/or r2 when stater1 ∈ {righter,
potentialMin, dumbSearcher, awareSearcher} and stater2 ∈ {dumbSearcher, awareSearcher}.

If r1 and/or r2, as a righter, potentialMin, dumbSearcher or awareSearcher is on the same node as the
headWalker such that there is no adjacent right edge to their location, then it executes Rule M3, hence it
becomes an awareSearcher and stops to move.

(∗) If r1 and/or r2, as a righter, potentialMin, dumbSearcher or awareSearcher is on the same node as
the headWalker such that there is an adjacent right edge to their location, then it executes Rule M2, hence it
becomes an awareSearcher considering the right direction and therefore crosses the adjacent right edge to its
node.

This implies that, as long as r1 and r2 are not located with the tail they are always such that stater1 ∈
{righter, potentialMin, dumbSearcher, awareSearcher} and stater2 ∈ {dumbSearcher, awareSearcher}.

Finally, consider the possible interaction between the tail and r1 and/or r2. If r1 and/or r2, as a righter,
potentialMin, dumbSearcher or awareSearcher is on the same node as the minTailWalker, then it executes
Rule M4 and becomes a tailWalker. From this time, by the function BecomeTailWalker and the rules of
GDG, the robot belongs to the tail.

We assume that there exists an eventual missing edge. Call t” the time after the execution of Rule K1 and
after the time when the eventual missing edge is missing forever. Consider the execution from t”. Since Rule
K1 is executed before time t”, then there are headWalker, tailWalker and minTailWalker in the execution
after time t” included.

Recall that, while executing Rules W1 and T3, the headWalker and the tail are either on a same node or
on two adjacent nodes (the tail is on the adjacent left node on the footprint of the dynamic ring of the node
where the headWalker is located).

Case 1: There is an eventual missing edge e between the node where the headWalker is located

and the node where the tail is located.

As explained previously, since the headWalker and the tail are not on the same node, this necessarily
implies that the headWalker either executes Rule W1 or Rule T3 at time t”, and the tail executes Rule
W1 at time t”. Therefore, after time t”, the headWalker does not move either because it waits for the tail
to join it on its node (Rule W1), or because it executes the function StopMoving (Rule T3). Similarly,
after time t”, the tail does not move, since it tries to join the headWalker considering the right direction
(Rule W1), but the edge is missing forever.

Since there is at most one eventual missing edge in a COT ring, all the edges, except e, are infinitely often
present in the execution after time t”. Considering the movements of the robots described previously,
whatever the direction considered by r1 and r2 at time t” both of them succeed eventually to reach the
node where the tail is located, making the liveness of GEW solved.
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Case 2: The eventual missing edge is not between the node where the headWalker is located and

the node where the tail is located.

This implies that there exists a time from which the headWalker and the tail are located on a same node
and do not move, either because they are executing Rule T3, or because they are executing Rule W1 but
the adjacent right edge the headWalker tries to cross is the eventual missing edge. In the second case,
by the movements of the robots described previously, we succeed to prove that, eventually at most one
of the robots among r1 and r2 can be stuck on the extremity of the eventual missing edge where the
headWalker and the tail are not located, and that at least one of them succeeds to reach the node where
the headWalker and the tail are located, making the liveness of GEW solved.

Consider now the first case. Call tn the first time at which the headWalker and the tail are on a same node
and both execute Rule T3. If r1 and r2 consider the same direction at time tn, then by the movements
of the robots described previously, whatever the place of the eventual missing edge, we succeed to prove
that, eventually at most one of them can be stuck on one of the extremity of the eventual missing edge,
and that at least one of them succeeds to reach the node where the headWalker and the tail are located,
making the liveness of GEW solved. Similarly, if the headWalker and the tail are located, at time tn,
on one of the extremity of the eventual missing edge, then, by the movements of the robots described
previously, we succeed to prove that, eventually at most one of the robots among r1 and r2 can be stuck
on the extremity of the eventual missing edge where the headWalker and the tail are not located, and
that at least one of them succeeds to reach the node where the headWalker and the tail are located,
making the liveness of GEW solved.

Now consider the first case, when r1 and r2 consider opposed directions at time tn and such that, at time
tn, the headWalker and the tail are not located on one of the extremity of the eventual missing edge.
It is not possible for both r1 and r2 to be eventually stuck on two different extremities of the eventual
missing edge. Indeed, if r1 and r2 consider two opposed directions at time tn, this is because, between
times ti and tn (with ti the time at which the headWalker and the tail both execute Rule W1 for the
first time), they are located on a same node (without any other robot on their node). We prove this
by contradiction. Assume, by contradiction, that r1 and r2 are never located on a same node (without
any other robot on their node) between times ti and tn. Consider the execution from time ti until time
tn. Whatever the direction considered by r1 (resp. r2), it cannot be located with the tail, otherwise,
since there is no eventual missing edge between the headWalker and the tail and by the movements of
the robots described previously, Rule Term2 is eventually executed. Therefore, r1 (resp. r2) can only be
located with the headWalker. When r1 (resp. r2) is located with the headWalker, it necessarily exists an
adjacent right edge to their position before the adjacent left edge to their position appears, otherwise, the
tail join them and Rule Term2 is executed. By (∗), after r1 (resp. r2) is on the same node as the head-
Walker while there is an adjacent right edge to their location, it becomes an awareSearcher considering
the right direction. At time tn, the headWalker and the tail execute Rule T3, therefore they succeed to
execute Rule W1 until their variables walkSteps is equal to n. This implies that, if r1 (resp. r2) considers
the left direction at time ti, necessarily, since it cannot be located with r2 (resp. r1), by the movements
of the robots described previously, it exists a time tmeet ≥ ti at which the headWalker and the tail
execute Rule W1 and either the headWalker or the tail is located with it. As explained previously, r1
(resp. r2) cannot be located with the tail, this implies that, at time tmeet, r1 (resp. r2) is located with
the headWalker. Therefore, whatever the direction considered by r1 (resp. r2) at time ti, if r1 and r2
are never located on a same node (without any other robot on their node) between times ti and tn, it
necessarily considers the right direction at time tn. Indeed, r1 (resp. r2) considers the right direction at
time tn either because it meets the headWalker that makes it consider the right direction or because at
time ti it considers the right direction and it is never located with the headWalker and, by the movements
of the robots described previously, it has not change its direction between times ti and time tn. Hence,
there is a contradiction with the fact that r1 and r2 consider opposite directions at time tn. Therefore, r1
and r2 consider two opposite directions at time tn because they are located on a same node (without any
other robot on their node) between times ti and tn.

Consider the last time tl between times ti and tn at which r1 and r2 are located on a same node (without
any other robot on their node). At time tl, since the two robots are located on a same node, by the
movements of the robots described, during the Move phase of time tl one considers the right direction
while the other one considers the left direction. By assumption, between times tl + 1 and tn, r1 and r2
are not located on a same node. Moreover, as explained previously, between times tl + 1 and tn, neither
r1 nor r2 can be located with the tail, otherwise Rule Term2 is eventually executed. Besides, between
times tl + 1 and tn the robot that considers the left direction during the Move phase of time tl cannot
be located with the headWalker, otherwise, as noted previously, it considers the right direction at time
tn. Similarly, it is not possible for the robot that considers the right direction during the Move phase of
time tl to be located with the headWalker between times tl + 1 and tn, otherwise, by the movements of
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the robots described previously, this necessarily implies that either it is also located on the same node as
the tail and therefore the liveness of GEW is solved or r1 and r2 are on a same node and therefore the
robot that considers the left direction during the Move phase of time tl is located with the headWalker.
Therefore, from time tl+1 to time tn, r1 and r2 are isolated, hence, by the movements of the robots, they
consider the same respective directions from the Move phase of time tl to time tn.

Assume, without lost of generality, that this is r1 that considers the right direction from the Move phase
of time tl to time tn. Call v1 (resp. v2) the node on which r1 (resp. r2) is located at time tn. The
explanations of the previous paragraph imply that v1 6= v2, and that, at time tn, the node where the
headWalker and the tail are located is in Seg(v1, v2). Therefore, since r1 (resp. r2) considers the right
(resp. the left) direction at time tn, by the movements of the robots and since it exists only one eventual
missing edge, this is not possible for these two robots to be eventually stuck on each of the extremities of
the eventual missing edge. Hence, at least one succeeds to reach the node where the headWalker and the
tail are located, making the liveness of GEW solved.

By Lemmas 19 and 21, we can deduce the following theorem which proves the correctness of Phases W and
T.

Theorem 2. GDG solves GEW in COT rings.

5.2 What about GDG executed in AC, RE, BRE and ST rings?

In the previous subsection we prove that GDG solves GEW in COT rings. In this subsection, we consider AC,
RE , BRE and ST rings. For each of these classes of dynamic rings, we give the version of gathering GDG solves
in it.

First, we consider the case of AC rings. In the following theorem, we prove that GDG solves GW in AC rings.

Theorem 3. GDG solves GW in AC rings.

Proof. By Corollary 2, GDG solves GEW in COT rings, since AC ⊂ COT , this implies that GDG also solves
GEW in AC rings. Therefore, to prove that GDG solves GW in AC rings, it stays to prove that each phase of
GDG is bounded.

Phase M: By Corollary 4, only rmin becomes min in finite time. By the rules of GDG, when rmin becomes
min, it is first minWaitingWalker before being minTailWalker (since only a minWaitingWalker can
become a minTailWalker while executing Rule K1). Therefore, since only Rule M1 permits a robot
to become minWaitingWalker, by the predicate MinDiscovery() of this rule, rmin becomes min either
because it moves during 4 ∗n ∗ idrmin

steps in the right direction or because it meets a robot that permits
it to deduce that it is min. In this last case, note that, either rmin is potentialMin, or rmin meets a
potentialMin or a dumbSearcher or a robot whose variable idMin is different from ⊥. Therefore, in
this last case, either rmin possesses a variable idPotentialMin different from ⊥, or rmin meets a robot
r such that idPotentialMinr is different from ⊥ (since a potentialMin and a dumbSearcher have their
variable idPotentialMin different from ⊥ (Rule M6) and since, while executing GDG, each time the
variable idMin of a robot is set with a variable different from ⊥, this is also the case for its variable
idPotentialMin).

Taking back the arguments used in the proof of Lemma 5, let us consider the following cases.

Case 1.1: Rule M6 is never executed.

By the rules of GDG, this implies that, before the time when rmin is min, there are only righter in
the execution. First, this implies that rmin becomes min because it moves during 4 ∗n ∗ idrmin

steps
in the right direction (since righter robots have their variables idPotentialMin equal to ⊥). Second,
in this context, as long as rmin is not min, all the righter always consider the right direction (Rule
M8). This implies that, as long as rmin is not min, each time a robot wants to move in the right
direction it can be stuck during at most n rounds, otherwise, since in an AC ring at most one edge
can be missing at each instant time, Rule M6 is executed. Therefore in case 1.1 rmin becomes min
in at most 4 ∗ idrmin

∗ n ∗ n rounds.

Now let consider the case where Rule M6 is executed at a time t. In the following, we consider the
execution from time t. After time t, while it is not yet min, if rmin is stuck more than 4 ∗ n consecutive
rounds on a same node then it becomes min. We prove this considering the two following cases. In each
of these cases we assume that rmin is not yet min and that it is stuck more than n rounds on a same
node.
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Case 1.2: Rule M6 is executed but rmin is not among the R− 1 righter robots that execute

it.

Taking back the arguments of the proof of Lemma 5, we know that Rule M6 can be executed only
once, and that the robots that execute this rule can never be righter anymore. Moreover, since rmin

does not execute Rule M6, since, by Corollary 4, rmin necessarily becomes min, since, by Lemma 9,
only righter and potentialMin can be min, and since only Rule M6 permits robots to become po-
tentialMin, before becoming min, rmin is a righter. By the proof of Lemma 5, as long as rmin is
not min it cannot exist awareSearcher. Hence, by the rules of GDG, as long as rmin is not min,
there are only one righter, one potentialMin and R− 2 dumbSearcher in the execution. Therefore,
by the rules of GDG, the potentialMin is potentialMin at least until rmin becomes min. Hence, the
potentialMin executes Rule M8 and thus considers the right direction at least until rmin becomes
min. We have assumed that, while it is not yet min, rmin is stuck more than 4∗n consecutive rounds
on a same node. Since rmin is a righter before being min, it is stuck because the adjacent right edge
to its position is missing (Rule M8). Therefore, since in an AC ring of size n at least n− 1 edges are
present at each instant time, either the potentialMin (or a dumbSearcher) meets rmin in at most
n rounds. When rmin meets a potentialMin (or a dumbSearcher), it becomes min by definition of
the predicate MinDiscovery() in Rule M1. Therefore, if it is stuck more than 4 ∗ n rounds, rmin

becomes min in at most n rounds.

Case 1.3: Rule M6 is executed and rmin is among the R− 1 righter robots that execute it.

In this case, by Rule M6, rmin becomes potentialMin. By Observations 2 and 1, by Corollary 4 and
by Lemma 9 rmin is potentialMin until it becomes min. Therefore, rmin, while it is not yet min,
can be stuck only because the adjacent right edge to its position is missing (Rule M8).

First, consider that at the time when rmin, as a potentialMin, is stuck more than 4 ∗ n rounds,
there does not exist righter in the execution. By Observation 2, there is no more righter in the
execution. However, at the time when Rule M6 is executed, the robot r that is not among the
robots that execute this rule is a righter. Therefore, necessarily r, as a righter, meets at least one
dumbSearcher at a time t′. Indeed, it cannot meet the potentialMin, otherwise rmin is min (Rule
M1), and thus it is not anymore potentialMin at the time at which it is stuck. Moreover, r cannot
be isolated forever after time t, otherwise it stays a righter (Rule M8). Hence, at time t′, r becomes
an awareSearcher (Rule M7). Consider an awareSearcher ra of the execution. By Lemma 4, ra
cannot consider the ⊥ direction. Moreover, by the rules of GDG, as long as there is no min, an
awareSearcher executes the function Search (rule M11). Besides, by the proof of Lemma 5 if
a robot is not isolated and executes the function Search, then all the robots of its node are or
become awareSearcher and execute the function Search. While executing the function Search,
an isolated robot does not change its direction. When a robot executes the function Search while
there are multiple robots on its node, if it possesses the maximum identifier among the robots of its
node, it considers the left direction, otherwise it considers the right direction. In an AC ring of size
n, at least n− 1 edges are present at each instant time. Therefore, if ra considers the right direction,
either it, as an awareSearcher or a robot that is or becomes an awareSearcher is located, in at
most n rounds, on the node where rmin, as a potentialMin, is stuck. In the case where ra considers
the left direction then, by the same arguments, in at most 4∗n rounds an awareSearcher is located
on the node where rmin, as a potentialMin, is stuck. Indeed, at most n rounds are needed for
an awareSearcherto reach the extremity of the missing edge where rmin is not located. Then, at
most 2 ∗ n other rounds are needed for a dumbSearcher (execution of the function Search, rule
M11) or an awareSearcher to reach also this node. These 2 ∗ n rounds are especially needed for
a dumbSearcher that may take n rounds (considering the left direction) to reach the node where
rmin is stuck and then again n rounds (considering the right direction) to reach the other extremity
of the missing edge. From this time there is in the execution an awareSearcher that considers the
right direction. Finally, at most n supplementary rounds are needed for an awareSearcher to reach
the node where rmin, as a potentialMin, is stuck. Note that R > 4, and there are R− 1 dumbSear-
cher/awareSearcher in the execution as long as rmin is not min. Therefore, the previous scenario
can effectively happen. When rmin meets an awareSearcher, it becomes min by definition of the
predicate MinDiscovery() of rule M1. Therefore, rmin becomes min in at most 4 ∗ n rounds if it is
stuck more than 4 ∗ n rounds.

Second, consider that at the time when rmin, as a potentialMin, is stuck more than 4 ∗ n rounds,
there exists a righter. In this case, since an isolated righter considers the right direction (Rule M8),
and by the arguments of the previous paragraph, either a righter or a robot that is an awareSear-
cher or that becomes an awareSearcher(Rules M7, M9 or M10) meets rmin in at most n rounds.
When rmin meets a righter or an awareSearcher, it becomes min by definition of the predicate
MinDiscovery() of Rule M1. Therefore, rmin becomes min in at most n rounds if it is stuck more
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than 4 ∗ n rounds.

Now, we give the worst number of rounds needed for rmin to become min, in the case where there exists a
time t at which Rule M6 is executed. By Case 1.1, before time t, rmin, while it is not yet min, can be stuck
at most n rounds each time it moves from one step in the right direction. Similarly, by the two previous
cases (Case 1.2 and 1.3), after time t, rmin, while it is not yet min, can be stuck at most 4 ∗n rounds each
time it moves from one step in the right direction. Let nb be the number of steps in the right direction
moved by rmin before time t. As proved previously, rmin is either a righter or a potentialMin before
being min. By Lemma 2, this implies that before being min, rmin always considers the right direction.
Therefore, by the predicate MinDiscovery() of Rule M1, in at most nb ∗n+ ((4 ∗ idrmin

∗n)−nb) ∗ 4 ∗n
rounds, rmin becomes min because it moves during 4∗ idrmin

∗n steps in the right direction. This function
is maximal when nb = 0, therefore in at most 16 ∗ idrmin

∗ n2 rounds rmin becomes min because it moves
during 4 ∗ idrmin

∗ n steps in the right direction. Now consider the case where rmin becomes min because
it meets a robot that permits it to deduce that it is min. Once rmin is stuck more than 4 ∗ n rounds
after time t, we have seen that it becomes min. Since we consider the worst case such that rmin does not
become min because it moves during 4 ∗ idrmin

∗n steps in the right direction, this implies that in at most
(4 ∗ idrmin

∗ n− 1) ∗ 4 ∗ n+4 ∗ n rounds rmin becomes min. Therefore, whatever the situation, Phase M is
bounded.

Now we consider Phase K of GDG. In this phase rmin is min and waits for a towerMin to be formed. We
take back the arguments used in the proofs of Lemmas 15 and 16 to prove that this phase is bounded.

Phase K: Case 2.1: There is a potentialMin in the execution.

For this case we take back the arguments of the proof of Lemma 15.

If before being min, rmin is a righter, then all the robots that are not located on node u are poten-
tialMin, dumbSearcher, and awareSearcher. As long as it is not on node u, a potentialMin either
executes Rule M8, or it becomes an awareSearcher (Rule M5). While executing Rule M8, a poten-
tialMin stays a potentialMin and has the same behavior as if it was executing the function Search.
Moreover, as long as they are not on node u, dumbSearcher and awareSearcher robots stay either
dumbSearcher or awareSearcher and execute the function Search. Therefore, by definition of the
function Search (refer to Phase M case 1.3 of this proof) and by Lemma 13, at most 3 ∗n rounds are
needed (in AC rings) for a robot r such that stater ∈ {potentialMin, dumbSearcher, awareSear-
cher} to be located on node u. Indeed, these 3∗n rounds are needed especially when a potentialMin,
dumbSearcher or awareSearcher moves in one direction during n steps and then is stuck on the
adjacent node of u, then n steps are needed for a robot of this kind to be also located on this node
and thus to consider the opposite direction, then in at most n additional steps a robot of this kind is
located on u. By Rule K3, this implies that at most 3 ∗ n rounds are necessary for a supplementary
waitingWalker to be located on node u. Therefore, at most (R− 3) ∗ 3 ∗ n rounds are needed for a
towerMin to be formed.

Now consider the case where before being min, rmin is a potentialMin.

In this case among the robots that are not on node u, there are dumbSearcher, awareSearcher and
at most one righter.

For all the cases of Case 2.1 of the proof of Lemma 15, at most (R − 4) ∗ 3 ∗ n + 3 ∗ n rounds
are needed for a towerMin to be formed. Indeed, at most (R − 4) ∗ 3 ∗ n rounds are needed for
R− 4 waitingWalker to be located on u (for the same reasons as the one explained in the previous
paragraph). Then among the robots that are not on node u, it exists at most one righter, and
2 robots that are either dumbSearcher orawareSearcher. At most n rounds are needed for the
righterto be stuck on the node called v in the proof of Lemma 15, and then at most n rounds are
needed for a dumbSearcher or an awareSearcher to be also located on node v (and thus, by Rule
M7, for all the robots that are not on node u to be either dumbSearcher or awareSearcher), and
then at most n additional rounds are needed for one of the robot to reach node u.

If we consider Case 2.2 of the proof of Lemma 15, similarly as in the previous case, at most (R− 4) ∗
3 ∗ n+ 3 ∗ n rounds are needed for Rule Term2 to be executed.

Case 2.2: There is no potentialMin in the execution.

For this case we take back the arguments of the proof of Lemma 16.

Just after rmin becomes min, it takes at most n∗n rounds for a robot r to join the node where rmin is
located. Indeed, as long as no robot is on node u with rmin, as a minWaitingWalker, all the robots
except rmin are righter. By the same arguments than the one used in Phase M Case 1.1 of this proof,
a righter cannot be stuck more than n rounds on the same node, otherwise Rule M6 is executed,
which is a contradiction with the fact that there is no potentialMin. Moreover, a righter can move
from at most n steps in the right direction to reach u.
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Once r is on node u an adjacent right edge to u is present in at most n rounds, otherwise Rule
Term1 is executed. Therefore, once r is on node u, in at most n rounds it becomes an awareSear-
cher. From this time, either it is possible for all the righter to become awareSearcher or it exists at
least one righter that is stuck on node u. In the first case at most 2 ∗n rounds are needed for all the
righter to become awareSearcher (either because an awareSearcher meets them, or because they
are located on u such that there is an adjacent right edge to u). By the arguments above, we know
that if all the robots that are not located on node u are awareSearcher, and if there are more than
3 such robots, then in a most 3∗n rounds one robot of this kind reaches node u. Therefore, for R−3
waitingWalker to be located on node u, with rmin, at most (R−3)∗3∗n supplementary rounds are
needed. In the second case, at most 2 ∗ n rounds are needed for some of the righter to reach node
u (and to be stuck on this node). Since the robots that are not on node u are awareSearcher and
since at least one righter is stuck on node u, by the same arguments as above, at most (R− 3)∗ 3 ∗n
additional rounds are needed for Rule Term2 to be executed.

Therefore Phase K is bounded.

Now we consider Phase W of GDG. In this purpose we take back the arguments used in the proof of
Lemma 21.

Phase W: Here we consider the worst execution in terms of times. Therefore, we consider that Rules Term1 and
Term2 are executing at the very last moment. The robots r1 and r2 that are not involved in T at time
ttower are such that stater1 ∈ {righter, potentialMin, dumbSearcher, awareSearcher} and stater2 ∈
{dumbSearcher, awareSearcher}. Therefore, as explained previously, each time the headWalker, or the
minTailWalker / tailWalker robots move from one steps in the right direction, they can be stuck at most
during 3 ∗ n rounds, otherwise either Rule Term1 or Rule Term2 is executed. Indeed, this is especially
the case when the headWalker and the minTailWalker / tailWalker are stuck on the same node. In
fact, it takes at most n rounds for r1 to be stuck on the other extremity the missing edge. At most n
supplementary rounds are needed for r2 to reach the node where r1 is stuck (and therefore for one robot
to change its direction), and then n other rounds are needed for one of these robots to reach the node
where the headWalker and the minTailWalker / tailWalker are stuck (and thus for Rule Term2 to be
executed). Therefore, Phase W is achieved in at most 2 ∗ n ∗ (3 ∗ n) rounds since the headWalker and the
minTailWalker / tailWalker robots have to move alternatively during n steps to complete Phase W. In
other words, Phase W is bounded.

Now we consider Phase T of GDG. In this purpose we take back the arguments used in the proof of
Lemma 21.

phase T: Using similar arguments as the one used in Phase W, once the headWalker and the minTailWalker /
tailWalker stop to move forever, if they are located on a same node, at most 3 ∗ n rounds are necessary
for Rule Term2 to be executed. In the case where the headWalker and the minTailWalker / tail-
Walker stop to move forever, if they are located on different nodes, at most 2 ∗ n + 2 ∗ n rounds are
necessary for Rule Term2 to be executed. Indeed, at most 2 ∗ n rounds are necessary for each of the two
robots that are not involved in T at time ttower to be located on the node where the minTailWalker /tail-
Walker is located. This is true whatever the interactions between r1 and r2 and whatever the interactions
between r1 (resp. r2) and the headWalker since in an AC ring there is at most one edge missing at each
instant time (and in this precise case the missing edge is between the node where the headWalker is
located and the node where the minTailWalker / tailWalker are located).

In conclusion each of the four phases of algorithm GDG are bounded when executed in an AC ring, therefore
GDG solves GW in AC rings.

Now, we consider the case of RE rings. In the following theorem, we prove that GDG solves GE in RE rings.

Theorem 4. GDG solves GE in RE rings.

Proof. By Corollary 2, GDG solves GEW in COT rings, therefore it solves the safety and the liveness of GEW in
COT rings. Since RE ⊂ COT , GDG also solves the safety and the liveness of GEW in RE rings. This implies
that all robots that terminate their execution terminate it on the same node and it exists a time at which at
least R− 1 robots terminate their execution. Call t the first time at which at least R− 1 robots terminate their
execution.

By contradiction, assume that GDG does not solve GE in RE rings, this implies that it exists a robot r that
never terminates its execution.

Call towerT ermination the R− 1 robots that, at time t, are located on a same node and are terminated.
While executing GDG, the only way for a robot to terminate its execution is to execute either Rule Term1 or
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Rule Term2. By Lemma 18, for a towerT ermination to be formed at time t, Rule Term2 has to be executed
at this time.

(∗) By the predicate of Rule Term2, rmin belongs to the towerT ermination. By Lemma 18, all the robots
that are located on the same node as rmin at time t belong to the towerT ermination.

Call w the node where the towerT ermination is located at time t.
Note that r cannot be located on node w after time t included, otherwise it executes Rule Term1 and the

lemma is proved.
Since rmin belongs to the towerT ermination, and since by Corollary 4, only rmin can be minWaiting-

Walker or a minTailWalker, r is neither minWaitingWalker nor minTailWalker.
At time t, r cannot be a tailWalker. Indeed, to become a tailWalker, a robot must either execute Rule

K1 or Rule M4. To execute Rule K1 a robot must be a waitingWalker. By Lemma 7, all waitingWalker are
located on the same node as the minWaitingWalker. Moreover, when a waitingWalker executes Rule K1, by
the predicate AllButTwoWaitingWalker(), the minWaitingWalker also executes this rule becoming a min-
TailWalker. Then by the rules of GDG, the robot that becomes tailWalker while executing Rule K1 and the
minTailWalker execute the same movements (refer to Rules W1 and T3), and therefore are always on a same
node. Besides, to execute Rule M4 a robot must be located on the same node as the minWaitingWalker (refer
to the predicate NotWalkerWithTailWalker(r′)). Then, thanks to the function BecomeTailWalker and
by the rules of GDG, the robot that becomes tailWalker while executing Rule M4 cannot be on a node different
from the one where the minTailWalker is located (refer to Rules W1 and T3). Therefore, by (∗), r cannot be a
tailWalker at time t, otherwise, at time t, it is on the same node as the minTailWalker (thus, by Corollary 4,
it is on the same node as rmin) and hence it terminates its execution.

At time t, r cannot be a waitingWalker robot. Indeed by the rules of GDG and the previous remarks,
it cannot exists waitingWalker if there is no minWaitingWalker in the execution, and by Lemma 7 all the
waitingWalker and minWaitingWalker are located on a same node. Therefore, by (∗), r cannot be a waiting-
Walker at time t, otherwise, at time t, it is on the same node as the minWaitingWalker (thus, by Corollary 4,
it is on the same node as rmin) and hence it terminates its execution.

Therefore, at time t, r can be either a righter, a potentialMin, a dumbSearcher, an awareSearcher, a
headWalker or a leftWalker robot.

As long as r is not on node w, it is isolated.
An isolated righter or an isolated potentialMin only executes Rule M8. While executing this rule, a robot

considers the right direction and stays a righter or a potentialMin. Since all the edges are infinitely often
present, such a robot is infinitely often able to move in the right direction until reaching the node w.

An isolated dumbSearcher or an isolated awareSearcher only executes Rule M11. While executing this
rule, an isolated robot stays a dumbSearcher or an awareSearcher, and considers the direction it considers
during the previous Move phase. By Lemma 20, this direction cannot be equal to ⊥. Therefore, an isolated
dumbSearcher or an isolated awareSearcher always considers the same direction d (either right or left). Since
all the edges are infinitely often present, such a robot is infinitely often able to move in the direction d until
reaching the node w.

Now assume that, at time t, r is a leftWalker. A leftWalker only executes Rule T1. While executing
this rule, a robot considers the left direction and stays a leftWalker. Since all the edges are infinitely often
present, such a robot is infinitely often able to move in the left direction until reaching the node w.

Now assume that, at time t, r is a headWalker. A headWalker can execute either Rule T2 or Rule T3 or
Rule W1. While executing Rule T2, a headWalker becomes a leftWalker, then, by the previous paragraph,
r reaches the node w in finite time. Consider now the cases where, at time t, r executes either Rule T3 or
Rule W1. In these cases, after time t, it necessarily exists a time at which r executes Rule T2. Assume, by
contradiction, that this is not true. The only way for a robot to become a headWalker is to execute Rule K1.
Rule K1 is executed when R− 2 robots are located on a same node. While executing this rule, a robot sets its
variable walkerMate with the identifiers of the robots that are located on its node. Only Rule K1 permits a
robot to update its variable walkerMate. Note that, since R− 2 ≥ 2, the variable walkerMate of r, after time
t, contains at least one identifier i different from the identifier of r. The robot of identifier i necessarily belongs
to the towerT ermination, since only r does not terminate. (1) Hence, at time t, the robot of identifier i is
terminated on node w, thus it does not move, and therefore, after time t, r is never on the same node as i. (2)
All the edges are infinitely often present. While executing Rule T3 at time t, r considers the ⊥ direction and
does not update its other variables. (3) Hence, by the rules of GDG, since r cannot execute Rule T2, after time
t, r can only execute Rule T3, and therefore only considers the ⊥ direction. Hence, necessarily by (1), (2) and
(3), this implies that, after time t, it exists a time at which the predicate HeadWalkerWithoutWalkerMate()
is true, thus at this time Rule T2 is executed. Similarly, if at time t, r executes Rule W1, since r can never
be located on the same node as i, while executing Rule W1, it considers the ⊥ direction and does not update
its other variables. (4) Hence, by the rules of GDG, since r cannot execute Rule T2, after time t, r can only
execute Rule W1, and therefore always considers the ⊥ direction. Thus, by (1), (2) and (4), necessarily, after
time t, it exists a time at which the predicate HeadWalkerWithoutWalkerMate() is true, hence at this time
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Rule T2 is executed. Therefore, even in the cases where, at time t, r executes either Rule T3 or Rule W1, it
exists a time greater than t at which r becomes a leftWalker and hence, by the previous paragraph, r succeeds
to reach the node w in finite time.

Therefore whatever the kind of robot r is, it is always able to reach the node w. Once r reaches the node w
it executes Rule Term1 making GE solved.

Now, we consider the case of BRE rings. We prove, in Theorem 5, that GDG solves G in BRE rings. To
prove this, we first need to prove the following lemma that it useful to bound Phase K of GDG in BRE rings.

Lemma 22. If the ring is a BRE ring and if there is no towerMin in the execution but there exists at a time
t at least 3 robots such that they are either potentialMin, dumbSearcher or awareSearcher, then at least a
potentialMin, a dumbSearcher or an awareSearcher reaches the node u between time t and time t + n ∗ δ
included, with δ ≥ 1.

Proof. We prove this lemma using the arguments of the proof of Lemma 14 and the fact that in a BRE ring
each edge appears at least once every δ units of time.

Theorem 5. GDG solves G in BRE rings.

Proof. By Lemma 4, GDG solves GE in RE rings. Therefore, since BRE ⊂ RE , then GDG also solves GE in
BRE rings. We want to prove that GDG solves G in BRErings. Therefore, we have to prove that each phase of
the algorithm is bounded.

Phase M: By Corollary 4, we know that only rmin becomes min in finite time. By Lemma 9, before being min,
rmin is either a righter or a potentialMin robot. By Lemma 2, if, at a time t, a robot is a righter or a
potentialMin robot, then it considers the right direction from the beginning of the execution until the
Look phase of time t. Since initially all the robots are righter, and since, by the rules of GDG, only
righter can become potentialMin (refer to Rule M6), then by Observations 2 and 1, a robot that is a
righter (resp. potentialMin) is a righter (resp. is either a righter or a potentialMin) since the beginning
of the execution. Besides, each time rmin, as a righter or as a potentialMin, crosses an edge in the right
direction, it increases its variable rightSteps of one (refer to Rules M8 and M6). Therefore, since each
edge of the footprint of a BREring is present at least once every δ units of time, by definition of min and
of the predicate MinDiscovery() of Rule M1, rmin becomes min in at most 4 ∗ n ∗ idrmin

∗ δ rounds.
Hence, Phase M is bounded.

Phase K: Now, consider the execution when rmin just becomes min. Therefore, we consider the execution
once rmin is minWaitingWalker. By Corollary 5, we know that in finite time a towerMin is formed. By
Lemma 6, there is only one towerMin in the whole execution. Therefore, before a towerMin is formed,
by the rules of GDG and since initially all the robots are righter, there are only righter, potentialMin,
dumbSearcher, awareSearcher, minWaitingWalker and waitingWalker robots. By Lemma 7, we know
that all the minWaitingWalker and waitingWalker robots are located on a same node and do not move.
By Rule K3, if a potentialMin, a dumbSearcher or an awareSearcher is located on the same node as a
minWaitingWalker, it becomes waitingWalker (∗). If there is no more righter robot in the execution,
we use Lemma 22 and (∗) multiple times to prove that it takes at most n ∗ δ ∗ (R − 3) rounds for a
towerMin to be formed. To prove that Phase K is bounded, we hence have to prove that the number of
rounds that are necessary to stop to have righter in the execution is bounded.

If a righter is located on the same node as the minWaitingWalker while there is an adjacent right edge
to its location, then by Rule K4, the righter becomes an awareSearcher and moves on the right. If a
righter is located only with R− 2 other righter, they all execute Rule M6, hence one becomes potential-
Min while the others become dumbSearcher. If a righter is located either with a dumbSearcher or with
an awareSearcher, then it becomes an awareSearcher (Rule M7). Note that, by Lemma 10, since we
consider the execution once rmin is min, it cannot exist a righter and a potentialMin in the execution.
Therefore, a righter cannot meet a potentialMin. In all the other cases, (a righter that is isolated, a
righter that is only with other righter on its node such that |NodeMate()| < R−2, and a righter that is
located on the same node as the minWaitingWalker while there is no adjacent right edge to its location)
a righter stays a righter and considers the right direction (Rule M8). Therefore, by Observation 2 and
since each edge of the footprint of a BREring is present at least once every δ units of time, it takes at
most n ∗ δ rounds in order to stop having righter robots in the execution. Indeed, even if a righter does
not execute Rule M7 or Rule M6, at most n ∗ δ rounds are needed for it to be located on the node where
the minWaitingWalker is located while there is an adjacent right edge to its position. Hence, Phase K is
bounded.
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Once a towerMin is present in the execution, the robots forming this towerMin execute Rule K1. While
executing this rule, the robot r with the maximum identifier among the robots involved in this towerMin be-
comes headWalker while the minWaitingWalker becomes minTailWalker and the other robots involved in
this towerMin become tailWalker. Note that, by Corollary 4, only rmin can be min, and therefore, since rmin

is the robot with the minimum identifier among all the robots of the system and since at least 2 robots are
involved in a towerMin, rmin cannot become headWalker. By Lemma 6 and by the rules of GDG, only r can
be headWalker during the execution.

There is no rule in GDG permitting a tailWalker or a minTailWalker robot to become another kind of
robot. A headWalker can become a leftWalker. Let then consider the two following cases.

Case 1: r is a headWalker during the whole execution.

Phase W: A headWalker can execute Rules T2, T3 and W1. Since r does not become a leftWalker,
it cannot execute Rule T2. Moreover, since we consider the worst case execution in terms of time,
this implies that r is able to execute Rule W1 entirely. This means that r is able to execute Rule
W1 until its variable walkSteps reaches the value n. In other words, r is able to execute Rule
W1 until it executes Rule T3.

In this case, the tailWalker and minTailWalker are also able to execute Rule W1 entirely. Indeed,
if, at a time t′, while executing Rule W1 or Rule T3, the headWalker is waiting on its node for the
tailWalker and the minTailWalker to join it while there is an adjacent left edge to its position, and
if at time t′+1 the tailWalker and the minTailWalker have not join it on its node, this necessarily
implies that they stop their execution, otherwise by Rule W1 they would have join it. Moreover, if
such an event happens, r executes Rule T1 and therefore becomes a leftWalker, which leads to a
contradiction.

If the headWalker and the minTailWalker/tailWalker execute Rule W1 entirely, this implies that
they move alternatively in the right direction during n steps. Since each edge of the footprint of a
BREring is present at least once every δ units of time, this takes at most 2 ∗ n ∗ δ rounds. Phase
W being composed only of the execution of Rule W1, this phase is bounded.

Phase T: Call tv the time at which the headWalker and minTailWalker/tailWalker robots finish to ex-
ecute Rule W1 entirely. Since the headWalker and minTailWalker/tailWalker start the execution
of Rule W1 on the same node, at time tv, they are on the same node v.

Call r1 and r2 the two robots that are not involved in the towerMin at time ttower.

If at time tv, r1 and r2 are on node v, then Rule Term1 is executed at time tv. In this case, by
Lemma 18, Phase T last 0 round, hence it is bounded.

If at time tv, only one robot among r1 and r2 is located on node v, then Rule Term2 is executed at
time tv. Hence, by Lemma 18, R− 2 robots are terminated on node v at time tv. By Lemma 17, at
time ttower, r1 and r2 are such that stater1 ∈ {righter, potentialMin, awareSearcher, dumbSear-
cher} and stater2 ∈ {awareSearcher, dumbSearcher}. By the movements of the robots given in the
proof of Lemma 21, and since each edge of the footprint of a BREring is present at least once every
δ units of time, it takes at most n ∗ δ rounds for the last robot to reach node v. Therefore, it takes at
most n ∗ δ rounds for Rule Term1 to be executed, and thus, by Lemma 18, for all the robots to be
terminated on node v. Hence, in this case Phase T last at most n ∗ δ rounds, therefore it is bounded.

Now, consider that at time tv neither r1 nor r2 is located on node v. In this case, at time tv,
the headWalker and minTailWalker/tailWalker execute Rule T3. While executing Rule T3, the
headWalker (resp. minTailWalker/tailWalker) stays a headWalker (resp. minTailWalker/tail-
Walker) and considers the ⊥ direction. Then, by the rules of GDG, they can only execute Rule
T3 until they terminate. Therefore, they remain on node v from time tv until the end of their
execution. Moreover, as noted previously, by Lemma 17, at time ttower, r1 and r2 are such that
stater1 ∈ {righter, potentialMin, awareSearcher, dumbSearcher} and stater2 ∈ {awareSearcher,
dumbSearcher}. By the movements of the robots given in the proof of Lemma 21, since each edge
of the footprint of a BRE ring is present at least once every δ units of time, it takes at most 2 ∗ n ∗ δ
rounds for r1 and r2 to both reach the node v (in case r1 and r2 meet on an adjacent node of v after
at most n ∗ δ rounds of movements in the same direction). In the case the two robots reach node v
at the same time, then Rule Term1 is executed, hence, by Lemma 18, all the robots terminate at
that time. In the case the two robots do not reach node v at the same time, then the first one that
reaches v permits the execution of Rule Term2 (hence, by Lemma 18, permits the termination of
R−2 robots on node v) and the second that reaches v permits the execution of Rule Term1. Hence,
Phase T last at most 2 ∗ n ∗ δ rounds, therefore it is bounded.

Case 2: It exists a time at which r is a leftWalker.
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By the explanations given in the Case 1, Phase W, at most 2 ∗ n ∗ δ rounds are needed for r to become
leftWalker and for the R− 2 other robots to terminate their execution on a node v.

By the rules of GDG, a leftWalker only executes Rule T1. While executing this rule, a robot considers
the left direction and stays a leftWalker. Since each edge of the footprint of a BRE ring is present at
least once every δ units of time, such a robot reaches the node v in at most n ∗ δ rounds. Hence, in this
case, Phases W and T take at most 3 ∗ n ∗ δ rounds, hence they are bounded.

Whatever the BRE ring considered, each phase of GDG is bounded, therefore, GDG solves G in BRE rings.

Now, we consider the case of ST rings. By Lemma 5 and since ST ⊂ BRE , we can deduce the following
corollary.

Corollary 6. GDG solves G in ST rings.

6 Conclusion

In this paper, we apply for the first time the gracefully degrading approach to robot networks. This approach
consists in circumventing impossibility results in highly dynamic systems by providing algorithms that adapt
themselves to the dynamics of the graph: they solve the problem under weak dynamics and only guarantee
that some weaker –but related– problems are satisfied whenever the dynamics increases and makes the original
problem impossible to solve.

Focusing on the classical problem of gathering a squad of autonomous robots, we introduce a set of weaker
variants of this problem that preserves its safety –in the spirit of the indulgent approach that shares the same
underlying idea. Motivated by a set of impossibility results, we propose a gracefully degrading gathering
algorithm –refer to Table 1 for a summary of our results. We highlight that it is the first gracefully degrading
algorithm dedicated to robot networks and the first algorithm solving –a weak variant of– the gathering problem
in COT , the class of dynamic graphs that exhibits the weakest recurrent connectivity.

A natural open question arises on the optimality of the gracefully degradation we propose. Indeed, we prove
that our algorithm provides for each class of dynamic the best specification among the ones we proposed. We
do not claim that another algorithm could not be able to satisfy stronger specifications among the infinity of
variants one can propose from the original gathering specification. Aside gathering in robots networks, defining
and proving formally a general form of degradation optimality in the gracefully degrading approach seems to be
a challenging future work.
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