
HAL Id: hal-01790508
https://hal.science/hal-01790508

Submitted on 20 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the encoding and solving partial information games
Yackolley Amoussou-Guenou, Souheib Baarir, Maria Potop-Butucaru,

Nathalie Sznajder, Leo Tible, Sébastien Tixeuil

To cite this version:
Yackolley Amoussou-Guenou, Souheib Baarir, Maria Potop-Butucaru, Nathalie Sznajder, Leo Tible,
et al.. On the encoding and solving partial information games. [Research Report] LIP6, Sorbonne
Université, CNRS, UMR 7606; LINCS; CEA Paris Saclay; Sorbonne Université. 2018. �hal-01790508�

https://hal.science/hal-01790508
https://hal.archives-ouvertes.fr

On the encoding and solving of partial

information games

Yackolley Amoussou-Guenou1,2, Souheib Baarir1, Maria Potop-Butucaru1,
Nathalie Sznajder1, Léo Tible3, and Sébastien Tixeuil1

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005
Paris, France

2 CEA, LIST, Gif-sur-Yvette, F-91191, France
3 École normale supérieure Paris-Saclay, Cachan, France

Abstract. In this paper we address partial information games restricted
to memoryless strategies. Our contribution is threefold. First, we prove
that for partial information games, deciding the existence of memoryless
strategies is NP-complete, even for games with only reachability objec-
tives. The second contribution of this paper is a SAT/SMT-based encod-
ing of a partial information game altogether with the correctness proof
of this encoding. Finally, we apply our methodology to automatically
synthesize strategies for oblivious mobile robots. We first prove that syn-
thesizing memoryless strategies is equivalent to providing a distributed
protocol for the robots. Then, we use an SMT-solver to synthesize strate-
gies for the gathering problem in a particular configuration (SP4), open
case in distributed computing theory for more than a decade. Interest-
ingly, our work is the first that combines two-player games theory and
SMT-solvers in the context of mobile robots with promising results and
therefore it is highly valuable for distributed computing theory where a
broad class of open problems are still to be investigated.

1 Introduction

Two-player games are a widely used and very natural framework for reactive sys-
tems, i.e. that maintain an ongoing interaction with an unknown and/or uncon-
trollable environment. It is intimately linked to model-checking of µ-calculus [18]
and synthesis of reactive programs (see eg. [9]). In classical two-player zero-sum
games, two players play on a graph. One of the players tries to force the se-
quence of visited nodes to belong to a (generally ω-regular) subset of infinite
paths, called the winning condition. Its opponent tries to prevent her to achieve
her goal. When total information is assumed, each player has a perfect knowledge
of the history of the play. In a more realistic model in regards to applications
to automatic synthesis of programs for instance, the protagonist does not have
access to all the information about the game. Indeed, in distributed systems,
each component may have an internal state that is unknown by other compo-
nents. This requires to consider games of partial information, in which only a
partial information on the play is disclosed to the players. The main question

to solve regarding games in our context is the existence of a winning strategy
for the player modeling the system. This is now well understood. We know that
total information parity games enjoy the memoryless determinacy property [18]
ensuring that in each game, one of the players has a winning strategy, and that
a winning strategy exists if and only if there is a memoryless winning strategy,
i.e. a strategy that depends only on the last visited node of the graph, and not
on a history of the play. However, partial information games do not enjoy this
property since the player may need memory to win the game. On the other hand,
regarding tools implementations, the field of two-player games has not reached
the maturity obtained in model-checkers area. For total information games, to
the notable exception of pgsolver [24] that provides a platform of implementa-
tion for algorithms solving parity games, and Uppaal-TiGa[30] that solves in a
very efficient way timed games (but restricted to reachability conditions), few im-
plementations are available. SAT-implementations of restricted types of games
have also been proposed [17], as well as a reduction of parity games to SAT [21].
As for partial information games, even less attempts have been made. To our
knowledge, only alpaga [1] solves partial information games, but the explicit
input format does not allow to solve real-life instances.

Motivated by a problem on swarms of mobile robots, we propose here an at-
tempt to solve partial information games, when restricted to memoryless strate-
gies.

Formal methods for the study of networks of robots The study of
networks of mobile oblivious robots was pioneered by Suzuki and Yamashita [29].
In their seminal work, robots are considered as points evolving obliviously in a
2D space (that is, robots cannot remember their past actions). Moreover, robots
have no common chirality nor direction, and cannot explicitly communicate with
each other. Moreover, robots are anonymous and execute the same algorithm to
achieve their goal. Nevertheless, they embed visual sensors that enable sensing
other robots positions.

Recently, the original model was extended to robots that move in a discrete
space, modeled as a graph whose nodes represent possible robot locations, and
edges denote the possibility for a robot to move from one location to another.
The main problems that have been considered in the literature in this context
are: gathering [22], where all robots must gather on the same location (not
determined beforehand) and stop moving, perpetual exploration [6, 12] where,
robots must visit infinitely often a ring, and exploration with stop [20], in that
case, robots must visit each node of the ring and eventually stops.

Designing correct algorithms for mobile robots evolving on graphs is notori-
ously difficult. The scarcity of information that is available to the robots yields
many possible symmetries, and asynchrony of the robot actions triggers moves
that may be due to obsolete observations. As a matter of fact, published proto-
cols for mobile robots on graphs were recently found incorrect, as reported in
model checking attempts to assess them [5, 14, 15].

In addition to finding bugs in the literature [5], Model-Checking was used to
check formally the correctness of published algorithms [5, 13, 26]. However, the

current models do not help in designing algorithms, only in assessing whether
a tentative solution satisfies some properties. An approach based on Formal
Proof has been introduced with the Pactole framework[2, 10, 11, 3, 4] using the
Coq Proof assistant. Pactole enabled the certification of both positive [11, 3] and
negative results [2, 10] for oblivious mobile robots. The framework is modular
enough that it permits to handle discrete spaces [4]. The methodology enabled
by Pactole forces the algorithm designer to write the algorithm along with its
correctness proof, but still does not help her in the design process (aside from
providing a binary assessment for the correctness of the provided proof).

By contrast, Automatic synthesis is a tempting option for relieving the mo-
bile robot protocol designer. Indeed, Automatic synthesis aims to automatically
produce algorithms that are correct by design, or, when no protocol can be syn-
thesized, it inherently gives an impossibility proof. Automatic program synthesis
for the problem of perpetual exclusive exploration in a discrete ring is due to
Bonnet et al. [7] (the approach is however restricted to the class of protocols that
are unambiguous, where a single robot may move at any time). The approach
was refined by Millet et al. [23] for the problem of gathering in a discrete ring
network using synchronous semantics (robots actions are synchronized).

Contributions In the current paper, we propose a SAT-based encoding of
two-player partial information games, when restricted to memoryless strategies.
We also prove that this problem is NP-complete. Then we apply this result to
automatic synthesis of mobile robot protocols. We significantly extend the work
of Millet et. al. [23] since we define and prove correct a general framework for
automatic synthesis of mobile robot protocols, for any target problem, using the
most general asynchronous semantics (i.e. no synchronization is assumed about
robots actions). Our framework makes use of the results presented in the first
part, since we need to look for memoryless strategies in a partial information
game. Then, we use the SMT-solver Z3 to synthesize strategies for the gathering
problem in the remaining open cases [8].4

2 Preliminaries

2.1 Mathematical notations

For a, b ∈ Z such that a ≤ b, we denote by [a, b] the set {c ∈ Z | a ≤ c ≤ b}.
We denote by mod the modulo function defined by a mod b = d, for a, b ∈ Z,
where d ∈ [0, b− 1] such that there exists j ∈ Z and a = b.j + d.

Words An alphabet Σ is a finite set of symbols. A word on Σ is a (finite or
infinite) sequence of symbols of Σ. For a word u, we let |u| be its length, i.e., its
number of symbols (if u is an infinite word, |u| = ω). We denote respectively by

4 Note for the reviewers: due to space constraints, the complete proofs are given in as
additional material in a separate file.

Σ∗ and Σω the set of finite and infinite words on Σ. Moreover, we denote by
Σ+ the set of finite non-empty words on Σ. For a word u ∈ Σω, we denote by
by Inf(u) the set of symbols of Σ occurring infinitely often in u.

Logic We recall the definition of propositional logic formulae. Given a countable
set of variables X , it is described by the following grammar: φ := x | φ∧ φ | φ∨
φ | ¬φ. As usual, we can use φ1 −→ φ2 as a shorthand for ¬φ1 ∨ φ2, and
φ1 ←→ φ2 as a shorthand for φ1 −→ φ2∧φ2 −→ φ1. A literal is either a variable
or the negation of a variable. A clause is a disjunction of literals. A formula is
said to be in conjunctive normal form (CNF) if it is a conjunction of clauses. A
valuation ν of the variables of X is a function ν : X → {0, 1}. From a valuation
ν one can define an interpretation ν∗ of a formula φ as follows.

– for x ∈ X , ν∗(x) = ν(x);
– ν∗(φ1 ∨ φ2) = max(ν∗(φ1), ν

∗(φ2));
– ν∗(φ1 ∧ φ2) = ν∗(φ1)× ν∗(φ2);
– ν∗(¬φ1) = 1− ν∗(φ1).

Often we note ν for ν∗.

2.2 Preliminaries on games

We recall here few notations on 2-player game with partial information. A game
on an arena is played by moving a token along a labeled transition system (the
arena). Following previous work [16], the game is presented as follows. When the
token is positioned on a state s of the arena, the player called the protagonist
can chose the label a of one of its outgoing transitions. Then the opponent
moves the token on a state s′ such that (s, a, s′) is a transition of the arena. The
game continues in a turn-based fashion for infinitely many rounds. The winner is
determined according to the winning condition, which depends on the sequence
of states visited. In a game with partial information, the protagonist is not able
to precisely observe the play to make a decision on where to move the token next.
This is formalized by the notion of observation, which is a partition of the states
of the arena in observation sets. Hence, the decision of the player is made solely
according to the sequence of observations visited, and not the precise sequence
of vertices.

Arena with partial information A game arena with partial information A =
(S,Σ, δ, s0,Obs) is a graph where S is a finite set of states, Σ is a finite alphabet
labeling the edges, and δ ⊆ S ×Σ × S is a finite set of labeled transitions, and
s0 is the initial state. The arena is total in the sense that, for any s ∈ S, a ∈ Σ,
there exists s′ ∈ S such that (s, a, s′) ∈ δ. The set Obs is a partition of S in
observations visible to the protagonist. For s ∈ S, we let o(s) ∈ Obs be the
corresponding observation. We extend o to the sequence of states in the natural
way. An arena can be finite or infinite. In this work, we only consider finite
arenas.

Plays A play π on the arena A = (S,Σ, δ, s0,Obs) is an infinite sequence π =
s0s1 · · · ∈ Sω such that for all 0 ≤ i, there exists ai ∈ Σ such that (si, ai, si+1) ∈
δ. The history of a play π is a finite prefix of π, noted π[i] = s0s1 . . . si, for i ≥ 0.

Strategies, consistent plays A strategy for a player is a function that de-
termines the action to take according to what has been played. Formally, a
strategy σ for the protagonist is given by σ : S+ → Σ. As we explained, in an
arena with partial information, the protagonist does not have a full knowledge of
the current play. This is formalized by the notion of observation-based strategy.
A strategy σ is observation-based if, for all π, π′ ∈ S+ such that o(π) = o(π′),
σ(π) = σ(π′). A strategy for the opponent is given by τ : S+ × Σ → S. Given
two strategies for the players, σ and τ , we say that a play π = s0s1 · · · ∈ Sω

is (σ, τ)-compatible if for all i ≥ 0, τ(π[i], σ(π[i])) = si+1, where π[i] = s0 · · · si.
We say that it is σ-compatible if there exists a strategy τ for the opponent such
that π is (σ, τ)-compatible.

When σ depends only of the last visited state, σ is said to be a memoryless
strategy. In that case, we may define σ simply as σ : S → Σ. We highlight the
fact that σ is a total function.

Winning condition, winning strategy A winning condition on an arena
A = (S,Σ, δ, s0,Obs) is a set φ ⊆ Sω. An observation-based strategy σ is winning
for the protagonist in the game G = (S,Σ, δ, s0,Obs, φ) if any σ-compatible play
π ⊆ φ (such a play is called a winning play). Observe that we do not require the
strategy of the opponent to be observation-based.

When the observation set is the finest partition possible, i.e., for all s, s′ ∈ S,
if o(s) = o(s′), then s = s′, the game is of total information, and any strategy
for the protagonist is observation-based.

We are interested in the following classical winning conditions:

Reachability Given a subset F ⊆ S of target states, the reachability winning con-
dition is defined by REACH(F) = {π = s0s1 · · · ∈ Sω | si ∈ F for some i ≥ 0}.
The winning plays are then the plays where one target set has been reached.

Büchi Given a subset F ⊆ S of target states, the Büchi winning condition is
given by BUCHI(F) = {π = s0s1 · · · ∈ Sω | Inf(π)∩F 6= ∅}. The winning plays
are then those where at least one target state has been visited infinitely often.

co-Büchi Given a subset F ⊆ S of target states, the co-Büchi winning condition
is given by coBUCHI(F) = {π = s0s1 · · · ∈ Sω | Inf(π) ∩ F = ∅}. The winning
plays are then those where no target state has been visited infinitely often.

Parity The parity winning condition requires the use of a coloring function
d : S → [0, n] where [0, n] is a set of colors. The parity winning condition is
given by Parity(d) = {π | min{d(s) | s ∈ inf(π)} is even}. The winning plays
are then those where the minimal color occurring infinitely often is even.

Observe that Büchi and co-Büchi winning conditions are special cases of
parity winning conditions, and that a reachability game can be transformed into
a Büchi (or a co-Büchi) game, hence into a parity game. Hence to establish
general results on games it is enough to consider only parity games.

The following result is a well-known result, called the memoryless determi-
nacy of parity games of total information.

Theorem 1 ([18]). In any parity game of total information, either the protago-
nist or the opponent has a winning strategy. Moreover, any player has a winning
strategy if and only if it has a memoryless winning strategy.

This important result shows that it is then sufficient to consider only memo-
ryless strategies to solve parity games.

However this does not hold true anymore when we consider the more general
case of partial information games. The following result is also well-known [16].

Theorem 2. There exist parity games of incomplete information where there
exists a winning strategy for the protagonist, but no memoryless winning strategy.

Parity games of partial information are then more difficult to solve, since
their resolution implies a modification of the arena using a subset construction,
hence an exponential blow-up[25].

From now on we explore resolution of games of partial information when one
is only interested in memoryless strategies.

3 Resolution of partial information games, with

memoryless strategies

3.1 Complexity results

In this subsection, we establish NP-completeness of the problem. In fact, we show
that even for the simple case of reachability games, the problem is already NP-
hard. The detailed proof of the following theorem can be find in the Appendix.

Theorem 3. Deciding the existence of a memoryless strategy for partial obser-
vation game with reachability objective is NP-complete.

Proof (Sketch). We show the lower bound by a reduction from 3-SAT. Let
ϕ =

∧

1≤i≤k ci be a 3-SAT formula in conjunctive normal form over a set X
of variables.

We define a reachability game Gϕ = (S,Σ, δ, s0,Obs, φ). The set of states
of the arena will include a state for each clause, and a state for each variable
and negation of variable. Formally, S = {s0} ∪ {sci | 1 ≤ i ≤ k} ∪ {sx, s¬x |
x ∈ X} ∪ {s⊤, s⊥}. The game is supposed to go as follows. The opponent
selects a clause that the protagonist must show valued to 1. To do so, the
protagonist goes to a state sℓ with ℓ a literal (x or ¬x) appearing in the

selected clause, which is supposed to be true. According to its actual valua-
tion, the game goes to the winning state s⊤ or to the losing state s⊥. We
assume that for all 1 ≤ i ≤ k, ci = ℓi,1 ∨ ℓi,2 ∨ ℓi,3, with ℓi,j ∈ {x,¬x |
x ∈ X}. We define Σ = {0, 1, 2, 3} and δ = {(s0, 0, sci) | 1 ≤ i ≤ k} ∪
{(sci , j, sℓi,j) | 1 ≤ j ≤ 3} ∪ {(sx, 1, s⊤), (sx, 0, s⊥), (s¬x, 0, s⊤), (s¬x, 1, s⊤) |
x ∈ X} ∪ {(s⊤, 0, s⊤), (s⊥, 0, s⊥)}. Observe that non-determinism, hence choice
of the opponent, appears only in the transitions from the initial state s0. The
opponent only choses the clause to prove to be true. The rest of the game is
totally determined by the strategy of the protagonist. Finally, we define the ob-
servations. Each state has its own observation class, except for the literals: for
all x ∈ X , o(sx) = o(s¬x) = {sx, s¬x}. For all state s ∈ X \ {sx, s¬x | x ∈ X},
o(s) = {s}. The objective of the game is φ = REACH({s⊤}). Then the formula
ϕ is satisfiable if and only if there is a memoryless observation-based strategy
for the game Gϕ.

The upper bound follows from the fact that once a memoryless strategy has
been guessed, one can check its correctness by inspecting the arena reduced to
the only transitions chosen by the strategy in polynomial time (by checking
absence of a loosing cycle).

The problem is then NP-complete. ⊓⊔

Since any reachability game can be reduced to a parity game, the following
result can be obtained.

Corollary 4. Deciding the existence of a memoryless strategy for partial obser-
vation game with reachability objective is NP-complete.

3.2 Encoding a partial information game as a SAT problem

In this section, we show how to encode G = (S,Σ, δ, s0,Obs, φ) a partial infor-
mation game in a propositional logic formula. Here, the winning condition φ can
be either a reachability, a Büchi or a co-Büchi condition for a target set of states
F ⊆ S. We give the proof for reachability games, but slight modifications of the
constraint (4) allow to handle Büchi and co-Büchi conditions.

We encode the arena of the game by attributing a variable to each transition.
Let X = {〈s1, a, s2〉 | (s1, a, s2) ∈ δ} be the corresponding set of variables.
Valuation of a variable to 1 will mean that the corresponding transition is selected
by the strategy.

Now we need to express the different constraints that characterize a strategy.
First, the strategy chooses a label of a transition, not the destination state.
Moreover, the decision of a player is made only according to observation, and
cannot depend specifically on one state.

∧

〈s1,a,s2〉,〈s
′

1
,a,s′

2
〉∈X

s.t. o(s1)=o(s′
1
)

(〈s1, a, s2〉 ←→ 〈s
′
1, a, s

′
2〉) (1)

Then, at each state, the strategy will choose a unique action:

∧

〈s1,a,s2〉∈X

(

(

〈s1, a, s2〉 −→
∧

〈s1,b,s
′

2
〉∈X ,

b∈Σ\{a}

¬〈s1, b, s
′
2〉
)

∧

(

¬〈s1, a, s2〉 −→
∨

〈s1,b,s
′

2
〉∈X ,

b∈Σ\{a}

〈s1, b, s
′
2〉
)

) (2)

A valuation of these variables satisfying these constraints would hence describe
a memoryless observation-based strategy. Now we add constraints to check that
this strategy is winning.

To do so, we need to check that any play compatible with this strategy
is winning. We then add boolean variables that will encode prefixes of plays
compatible with the strategy, i.e. paths in the graph of the arena, when restricted
to edges selected by the strategy. In the following we refer to this graph as the
restricted arena.

– P = {〈s, s′〉 | (s, s′) ∈ S2}. A variable 〈s, s′〉 ∈ P encodes the existence of a
path starting at s and ending with s′.

– W = {〈s, s′〉 | (s, s′) ∈ S2}. A variable 〈s, s′〉 ∈ W encode the fact that all
paths starting at s and ending with s′ visit a state from F (different from
s).

Thus, the constraints characterizing valid prefixes are:

i)
∧

〈s1,a,s2〉∈X ,〈s1,s2〉∈P(〈s1, a, s2〉 −→ 〈s1, s2〉). If the strategy allows a transi-

tion (s1, a, s2) ∈ δ, then 〈s1, s2〉 is a path in the restricted arena.

ii)
∧

〈s1,s2〉∈P,〈s2,a,s3〉∈X ((〈s1, s2〉 ∧ 〈s2, a, s3〉) −→ 〈s1, s3〉). A prefix 〈s1, s2〉 is

extended to 〈s1, s3〉 if the strategy allows the transition (s2, a, s3) ∈ δ.

iii)
∧

〈s1,a,s2〉∈X ,s2/∈F (〈s1, a, s2〉 −→ ¬〈s1, s2〉). If the strategy allows a transition

(s1, a, s2) ∈ δ where s2 is not a target state then there is a path from s1 to
s2 that does not visit any state from F .

iv)
∧

〈s1,s2〉∈W,s2 /∈F (〈s1, s2〉 −→
∧

〈s3,b,s2〉∈X ,〈s1,s3〉∈W,s3 6=s2
(¬〈s3, b, s2〉∨〈s1, s3〉)).

If all the paths from s1 to s2 visit a state from F (different from s1, while
s2 is not a target state, then it means that for every predecessor s3 of s2,
all paths from s1 to s3 already visit a state from F .

The formula resulting of the conjunction of the previous constraints is noted
(3).

It remains to show that the strategy is indeed winning, i.e., in the arena
restricted to transitions allowed by the strategy, all the plays are winning. If this
is not the case, then there exists a (infinite) play that never visits any set of F .
Since the arena is finite, such a play necessarily contains a loop that does not
visit a target state. The constraint expressing that the strategy is not winning is
then: 〈s0, s〉∧¬〈s0, s〉∧〈s, s〉∧¬〈s, s〉. So, to express that the strategy is winning,

we just have to negate this formula and quantify over all variables of P and W .
We obtain:

∧

〈s0,s〉,〈s,s〉∈P,

〈s0,s〉,〈s,s〉∈W

(¬〈s0, s〉 ∨ 〈s0, s〉 ∨ ¬〈s, s〉 ∨ 〈s, s〉) (4)

The final formula encoding existence of a winning strategy is then the con-
junction of all previous formulae:

ψG = (1) ∧ (2) ∧ (3) ∧ (4) (5)

The detailed proof of the following theorem can be find in the Appendix.

Theorem 5. G = (S,Σ, δ, s0,Obs,REACH(F)) admits a memoryless winning
strategy if and only if ψG is satisfiable.

Proof (Sketch). Given a strategy σ on G, we define Aσ = (S,Σ, δσ, s0,Obs),
where δσ = {(s, a, s′) ∈ δ | σ(s) = a} as the game arena restricted to the
transitions allowed by the strategy σ.

Assume first that G admits a winning memoryless and observation-based
strategy σ : S → Σ. Then ψG is satisfied by the valuation νσ : (X ∪ P ∪W)→
{0, 1}, defined as follows:

– for all 〈s, a, s′〉 ∈ X , νσ(〈s, a, s′〉) =

{

1 if σ(s) = a.

0 otherwise.

– for all 〈s, s′〉 ∈ P , νσ(〈s, s′〉) =

{

1 if there is play of Aσ with a prefix s . . . s′.

0 otherwise.

– for all 〈s, s′〉 ∈ W , νσ(〈s, s′〉) =



















1 if there is play of Aσ with a prefix s . . . s′

and all prefixes starting at s and ending

with s′ visit a state from F different from s.

0 otherwise.

It is then straightforward to check that νσ(ψG) = 1.
Assume now that ψG is satisfiable and let ν : X ∪ P ∪W → {0, 1} such that

ν(ψG) = 1. We build a strategy σν : S → Σ as follows. For s ∈ S, let a ∈ Σ
and s′ ∈ S such that ν(〈s, a, s′〉) = 1 then σν(s) = a. Condition (2) ensures
that σν is well-defined. Moreover, if s1, s

′
1 ∈ S are such that o(s1) = o(s′1), then

condition (1) ensures that, for all a ∈ Σ, ν(〈s1, a, s2〉) = ν(〈s′1, a, s
′
2〉). Hence

σν(s1) = σν(s
′
1) and σν is observation-based.

To prove that σν is winning, we rely on the following observation: in a game
G = (S,Σ, δ, s0,Obs,REACH(F)), if a strategy σ is not winning, then there
exists a σ-compatible play s0 · · · s · πω , with π = s1 · · · sk for some k ∈ N, and
that play never visits a state from F . We can then prove that it is impossible to
have such a play in Aσ. ⊓⊔

4 Application: automatic synthesis of strategies for

swarms of autonomous oblivious robots

In this section, we consider applying our methodology to formally study dis-
tributed algorithms that are designed for sets of mobile oblivious robots. Robots
are mobile entities that evolve in a discrete space (here, a ring), When two robots
are positioned on the same node, they form a tower. In this model, robots cannot
remember their past actions (they are oblivious), have no common chirality nor
direction, and cannot explicitly communicate with one another. However, they
can sense their entire environment (using visual sensors). Moreover, robots are
anonymous and execute the same deterministic algorithm to achieve their goal.

Each robot evolves following an internal cycle: it takes a snapshot of the ring,
computes its next move, and then executes the movement it has computed. Sev-
eral semantics for swarms of robots have been studied. In the fully synchronous
semantics (FSYNC), all the robots evolve at the same time, completing an inter-
nal cycle simultaneously. In the semi-synchronous semantics (SSYNC), in each
round, only a non-empty subset of the robots fulfills a complete cycle. Finally, in
the asynchronous semantics (ASYNC), each robot completes its internal cycle
at its own pace. The later semantics are considered the harder to design robot
algorithms, since a robot may move based on obsolete observations.

In this section, we extend the work done by Millet et al. [23], where auto-
matic synthesis of protocols of gathering in FSYNC and SSYNC semantics was
considered. In the current paper, we first provide a general framework for auto-
matic synthesis of mobile robot protocols, for any target problem, using the most
general ASYNC semantics. Then, we use our propositional logic-based encoding
to effectively solve the problem.

4.1 Model for the robots

We partly use notations defined in [27]. We consider a fixed number of k > 0
robots evolving on a ring of fixed size n ≥ k. We denote byR the set of considered
robots. Positions on the ring of size n are numbered {0, . . . , n− 1}.

Configurations and robots views. A configuration is a vector c ∈ [0, n− 1]k

that gives the position of each robot on the ring at a given instance of time.
We assume that positions are numbered in the clockwise direction. The set of
all configurations is called Cn,k, or simply C when n and k are clear from the
context.

Decisions made by a robot are based on the snapshot it takes of the environ-
ment, called the view of that robot. We model it by the sequence of distances
between neighboring robots on the ring, a distance of 0 means that the two con-
secutive robots share the same position on the ring. Formally, a view is then a
tuple V = 〈d1, . . . , dk〉 such that Σn

i=0di = n. The set of all the views on a ring of
size n with k robots is noted V . Notice that two robots sharing the same position
should have the same view. This might be problematic with our definition since

[b]0.45

r5

r1, r2

r4

r3

Fig. 1. A configuration c with a tower

[b]0.45

r1

r2
r3

Fig. 2. A disoriented robot in configuration c′

Fig. 3. Configurations of robots on a ring

when two robots share the same node, their distance is equal to 0, and this 0 is
not at the same position in the tuple according to the concerned robot in the
tower. To ensure this, we assume that the first distance in the tuple is always
strictly greater than 0 (which is always possible by putting the first 0’s at the
end instead). In Figure 1 is shown a configuration defined by c(r1) = c(r2) = 0,
c(r3) = 3, c(r4) = 7 and c(r5) = 8. When looking in the clockwise direction, the
view of robots r1 and r2 is given by the tuple V = 〈3, 4, 1, 2, 0〉, and the view
of robot r3 is given by V′ = 〈4, 1, 2, 0, 3〉. Formally, for a view V = 〈d1, . . . , dk〉
giving the view of a robot starting in one direction, we write its view in the op-

posite direction
←−
V = 〈dj , . . . , d1, dk, . . . , dj−1〉, where 1 ≤ j ≤ k is the greatest

index such that dj 6= 0. In our example, it means that
←−
V = 〈2, 1, 4, 3, 0〉 and

←−
V′ = 〈3, 0, 2, 1, 4〉.

Given a configuration c ∈ C and a robot i ∈ R, the view of robot i when look-
ing in the clockwise direction, is given byVc[i→] = 〈di(i1), di(i2)−di(i1), . . . , n−
di(ik−1)〉, where, for all j 6= i, di(j) ∈ [1, n] is such that (c(i) + di(j)) mod n =
c(j) and i1, . . . , ik are indexes pairwise distinct such that 0 < di(i1) ≤ di(i2) ≤
· · · ≤ di(ik−1). When robot i looks in the opposite direction, its view accord-

ing to the configuration c is Vc[← i] =
←−−−−−
Vc[i→]. Hence, in the configuration

c pictured in Figure 1, Vc[r1 →] = 〈3, 4, 1, 2, 0〉 and Vc[← r1] = 〈2, 1, 4, 3, 0〉.
Observe that in Figure 2, Vc′ [r1 →] = Vc′ [← r1] = 〈3, 1, 3〉. Robot r1 is then
said to be disoriented, since it has no way to distinguish one direction from the
other. For a configuration c, we let Views(c) =

⋃

i∈R{Vc[i→],Vc[← i]} be the
set of views of all the robots in this configuration.

Since robots are anonymous, given a configuration c, the set of decisions taken
by the robots based on their view in this configuration is invariant with respect

to permutation of the robots or to any rotation of the ring. Since they have no
chirality, a robot i ∈ R takes a decision solely based on 〈Vc[i→],Vc[← i]〉, hence
the same decision is reached for any configuration symmetric to c. Regarding
decision taking, any two configurations that are obtained through symmetry or
any rotation of the ring are equivalent. The notion of views captures handily
this notion and we define the equivalence relation on configurations as follows.

Definition 6 (Equivalence relation on configurations). Two configura-
tions c and c′ ∈ C are equivalent if and only if Views(c) = Views(c′). We
write then c ≡ c′. The equivalence class of c with respect to ≡ is simply written
[c].

We now make some observations on the relations between configurations and
views of the robots.

Let V ∈ V . We note Config(V) = {c ∈ C | V ∈ Views(c)}.

Lemma 7. Let V ∈ V, and c, c′ ∈ Config(V). Then p ≡ p′.

We distinguish now some set of configurations that are useful in the remaining
of the paper. Let CT = [c] where c(i) = 0 for all i ∈ R be the set of all the
configurations where all the robots are gathered on the same position. For i ∈ R
and j ∈ [0, n− 1], let Cj

i = {c ∈ C | c(i) = j)} be the set of configurations where

the robot i is on the position j of the ring, and we let Cj =
⋃

i∈R C
j
i be the set

of configurations where there is one robot on position j of the ring.
The proof of Lemma 7 is immediate once we have made the following remark.

Remark 8. Let V = 〈d1, . . . , dk〉 ∈ V . We define rot(V) = {〈d′1, . . . , d
′
k〉 | ∃1 ≤

i ≤ k, such that for all 1 ≤ ℓ ≤ k − i + 1, d′ℓ = di−ℓ+1 and for all k − i + 1 <
ℓ ≤ k, d′ℓ = di+ℓ−1−k} the set of rotations of the tuple representing the view V.
Then, it is easy to observe that for a configuration c ∈ Config(V), Views(c) =

{〈d1, . . . , dk〉 ∈ V | 〈d1, . . . , dk〉 ∈ rot(V) ∪ rot(
←−
V) with d1 > 0}.

Protocols for the robots. We are interested in modeling distributed protocols
that govern the movements of the robots in a ring in order to achieve some
predefined goal. Such protocols control each robot according to its local view.
Robots being anonymous imply that two robots having the same view of the ring
execute the same order. Having no common chirality implies that the protocol
does not discriminate between the clockwise and the anti-clockwise view, hence
gives symmetric move orders to robots in symmetric positions, and cannot decide
where to move when the robot is disoriented, i.e. when both views are identical.

We denote by ∆ = {−1, 0, 1, ?} the set of possible decisions given by the
protocol, where 0 means that the robot won’t move, −1 means an anticlockwise
movement, 1 a clockwise movement and ? means that the robot moves but is
disoriented, hence it has no control on the exact direction to take.

We review here some basic notations. For a function f : A → B, we let
dom(f) = A its domain of definition, and for a subset C ⊆ A, we let f|C : C → B
the restriction of f on C, defined by f|C(c) = f(c) for all c ∈ C. We can now
define the notion of decision function.

Definition 9. Let D : V → ∆ be a (partially defined) function. We say that D is

a decision function if, for all V ∈ dom(D), (i)
←−
V ∈ dom(V), (ii) if V =

←−
V, then

D(V) ∈ {0, ?}, (iii) otherwise, D(V) ∈ {−1, 0, 1} and D(V) = (−1) ·D(
←−
V).

We denote by D the set of all decision functions.

A protocol P for k robots on a ring of size n is simply a total decision
function.

Executions. Recall that each robot behaves according to an internal cycle,
alternating between a phase where it looks at its environment and computes its
next move, and a phase where it actually moves. We model here the asynchronous
semantics, where other robots can execute an unbounded number of actions
between the two aforementioned phases.

Hence, to define the transition relation between two configurations, we need
to enrich the notion of configuration with that of internal state of each robot,
which determines the next action of a robot. The set of all possible internal
states for the robots is S = {−1, 0, 1,L}, where −1 represents a move in the
anti-clockwise direction, 0 not moving, 1 represents a move in the clockwise
direction, and L represents the fact that the robot is ready to take a snapshot
of its environment.

Let s ∈ Sk be the vector of internal states of the robots. An asynchronous
configuration is an element (c, s) ∈ C × Sk. We say that (c, s)→P (c′, s′) if and
only if there exists a robot i ∈ R such that:

– s′(j) = s(j) and c′(j) = c(j) for all j 6= i,
– if s(i) = L then c′(i) = c(i) and s′(i) ∈ {−1, 1} ifP(Vc[i→]) =?, and s′(i) =

P(Vc[i →]) otherwise. If s(i) 6= L then s′(i) = L and c′(i) = (c(i) + s(i))
mod n.

Observe that given two asynchronous configurations (c, s) and (c′, s′), two
protocols P and P′ such that P|Views(c) = P′

|Views(c), then (c, s)→P (c′, s′) if
and only if (c, s)→P′ (c′, s′).

Protocols for robots are meant to work starting from any initial configu-
ration, or at least from a subset of possible initial configurations. The only
requirement is that internal states of robots are set to L at the beginning of
the execution. Hence, an initial asynchronous P-run is a (finite or infinite) se-
quence ρ = (c0, s0)(c1, s1) . . . such that: (1) s0(i) = L for all robot i ∈ R, and
(2) for all 0 ≤ k < |ρ|, (ck, sk) →P (ck+1, sk+1). For a robot i ∈ R, we let
Acti(ρ) = |{0 ≤ k < |ρ| | sk(i) 6= L and sk+1(i) = L}| the number of times this
robot has been moved during the execution. A P-run is fair if, for all i ∈ R,
Acti(ρ) = ω.

For a P-run ρ, the projection of on the sequence of configurations is written
πC(ρ).

We can now define the synthesis problem under consideration in this work,
where we are given an objective for the robots, describing the set of desirable
runs.

Definition 10 (Synthesis problem). Given an objective Ω ⊆ Cω, decide
wether there exists an protocol P such that for all initial fair asynchronous P-run
ρ, πC(ρ) ⊆ Ω.

Objectives. Classical objectives for the robots are gathering, perpetual ex-
ploration and exploration with stop. Formally, we call GATHER the synthe-
sis problem where Ω = {c1 · · · ck · cωk | for some k ≥ 1, ck ∈ CT}, we call

EXPLORATION the synthesis problem where Ω = {π ∈ Cω | Inf(π) ∩ C
j
i 6=

∅ for all i ∈ R and j ∈ [0, n− 1]} and EXPLORATION-STOP the synthesis prob-
lem where Ω = {c1 . . . ck · cωk | ck ∈ CT, and for all j ∈ [0, n − 1], there exists
1 ≤ ℓ ≤ k, cℓ ∈ Cj}.

4.2 Definition of the arena

We define now a partial information game Gn,k = (Sn,k, Σn,k, δn,k, s0,Obsn,k, φ)
that captures the asynchronous model for a set R of k robots evolving on a ring
of size n. The protocol of the robots gives, according to the last view of the
robot, the next move to do, taken from the set ∆ = {−1, 0, 1, ?}. The states of
the arena are the possible distinct asynchronous configurations, enriched with
a vector of bits b ∈ {0, 1}k that keeps track of the various activated robots to
ensure the fairness of the execution. We write B = {0, 1}k. Moreover, the initial
configuration of the execution is chosen by the opponent. To ensure this, we add
a special initial state, sι, that can access any possible initial configuration.

Hence the set of states Sn,k = (C × Sk × B) ⊎ {ι}. Choosing a transition
for the protocol means choosing a decision function for the possible views of
the robots in a particular configuration c. The labeling of the transitions is
hence taken from Σn,k = D ⊎ {ε}, the set of all possible decision functions,
along with a dummy label, ε, used only for the initial state. The protocol we
look for is supposed to achieve the goal starting in any initial configuration. The
transitions starting from the initial state of the arena (which is the special state ι)
are all labelled by the same dummy action, and lead to any initial configuration.
Formally, {(ι, ε, (c, sL, 0)) | c ∈ C} ⊆ δn,k with sL(i) = L for all i ∈ R, b0(i) = 0
for all i ∈ R.

Now, in any configuration, the protagonist choses the decision function corre-
sponding to the decisions of the robots in this particular configuration, and the
opponent chooses the resulting configuration. The opponent then decides which
robot moves (the role of the scheduler), and, whenever a robot is disoriented
where it actually moves. Formally, let (c, s, b) ∈ Sn,k be a state of the arena, and
f : Views(c) → ∆ be a decision function. Let also f : V → ∆ be any protocol
such that f |Views(c) = f . Then, ((c, s, b), f, (c′, s′, b′)) ∈ δn,k iff (c, s)→f (c′, s′)
and b′ is defined as follows: let b′′ ∈ B, such that b′′(i) = b(i) if s(i) = s′(i), i.e.
if the robot i has not been scheduled, and

b
′′(i) =

{

1 if s(i) 6= L and s′(i) = L

b(i) otherwise.

Then, b′ is defined as follows. If b′′(i) = 1 for all i ∈ R, then b′(i) = 0 for all
i ∈ R, otherwise b′ = b′′. Hence, the bit b(i) is turned to 1 every time robot i has
been scheduled to move. Once they all have been scheduled to move once, every
bit is set to 1, and the entire vector is reset to 0. Finally we define the observation
sets. Indeed, when the protocol is defined, it only takes into account the view
of a robot, and it does not depend on the internal states of other robots, nor
on the scheduling. Hence the strategy computed for the protagonist should only
depend on the configuration. Moreover, as we have explained earlier, decisions of
the robots are invariant to permutation of the robots, rotation of the ring or any
symmetry transformation. The strategy then only depends on the equivalence
class of the configuration. Formally we let Obsn,k = {[c] | c ∈ C} and for any
state (c, s, b) ∈ Sn,k, o(c, s, b) = [c].

Given a set R of k robots evolving on a ring of size n, let φ ⊆ Sω
n,k. Then,

An,k = (Sn,k, Σn,k, δn,k, s0,Obsn,k) is the corresponding arena with partial infor-
mation and Gn,k = (Sn,k, Σn,k, δn,k, s0,Obsn,k, φ) is the two-player game with
winning condition φ.

Proposition 11. For each synthesis problem GATHER, EXPLORATION and
EXPLORATION-STOP, there exists a protocol for the robots if and only if there
exists a memoryless winning strategy in a partial information game, with par-
ity condition (more precisely a combination of reachability, Büchi and co-Büchi
condition).

Definition 12. Let An,k be an arena as described above, and P a protocol for
the robots. A play s0(c0, s0, b0)(c1, s1, b1) . . . in An,k is equivalent to the initial
asynchronous run (c0, s0)(c1, s1)

Moreover, observe that for any initial run (c0, s0)(c1, s1) . . . , there exists
a unique play s0(c0, s0, b0)(c1, s1, b1) . . . in Gn,k that is equivalent, since the
sequence of bi is entirely determined by the sequence of ci and si. In the following,
we have two lemmas which prove the equivalence.

Lemma 13. Let σ : Sn,k → Σn,k be an observation-based memoryless strategy
on Gn,k. Then there exists a protocol Pσ : V → ∆ such that any σ-compatible
play is equivalent to an initial P-run, and any initial P-run is equivalent to a
σ-compatible play.

Proof (Proof of Lemma 13). Let V ∈ V , and c ∈ Config(V), s ∈ Sk and b ∈ B.
We let Pσ(V) = σ(c, s,b)(V). The protocol is then uniquely defined, because
by Lemma 7, any c′ ∈ Config(V) is in [c], and because σ is observation-based.

Let s0(c0, s0,b0)(c1, s1,b1) . . . be a σ-compatible play. Let i ≥ 0. Since
it is a σ-compatible play, (ci, si,bi),P

σ
|Views(ci), (ci+1, si+1,bi+1)) ∈ δ, with

σ(ci, si,bi) = Pσ
|Views(ci). Hence, (ci, si)→Pσ (ci+1, si+1), and (c0, s0)(c1, s1) · · ·

is an initial Pσ-run.
Conversely, let (c0, s0)(c1, s1) · · · be an initial Pσ-run. Then the unique

equivalent play s0(c0, s0,b0)(c1, s1,b1) . . . is a σ-play. Indeed, let i ≥ 0, then
σ(ci, si,bi) = Pσ

|Views(ci)
by construction, and since (ci, si) →Pσ (ci+1, si+1),

((ci, si,bi),P
σ
|Views(ci)

, (ci+1, si+1,bi+1)) ∈ δ. Hence s0(c0, s0,b0)(c1, s1,b1) . . .
is a σ-compatible play.

⊓⊔

Lemma 14. Let P : V → ∆ be a protocol for k robots on a ring of size n.
Then there exists an observation-based memoryless strategy σ : Sn,k → Σn,k

such that any initial P-run is equivalent to a σ-compatible play of Gn,k and any
σ-compatible play is equivalent to an initial P-run.

Proof (Proof of Lemma 14). We build a memoryless strategy σP : Sn,k →
Σn,k as follows. Let (c, s,b) ∈ Sn,k, then σP(c, s,b) = P|Views(c). Consider
(c′, s′,b′) such that o(c, s,b) = o(c′, s′,b′). Then c ≡ c′ and by definition,
Views(c) = Views(c′). Hence σP(c, s,b)=σP(c′, s′,b′) and the strategy is in-
deed observation-based.

Let (c0, s0)(c1, s1) . . . be an initial P-run and consider the unique equivalent
play s0(c0, s0,b0)(c1, s1,b1) Then, for all i ≥ 0, (ci, si) →P (ci+1, si+1)
hence
((ci, si,bi),PViews(ci), (ci+1, si+1,bi+1)) ∈ δ and this is indeed a play in Gn,k.
Moreover, by definition of σP it is a σP-play.

Conversely, let s0(c0, s0,b0)(c1, s1,b1) . . . be a σP-play. It is immediate that
(c0, s0)(c1, s1) . . . is an initial P-run. ⊓⊔

To conclude on the equivalence between solving the game for the robots and
the synthesis problem defined in Section 4.1, it remains to state the following
lemma.

Lemma 15. Given ρ a run and π an equivalent play in the game, ρ is fair if
and only if Inf(π) ∩ {(c, s, b) | b(i) = 0 for all i ∈ R} 6= ∅.

Proof (Proof of Proposition 11). In order to solve GATHER, we need to slightly
modify the arena of Gn,k. Indeed, if the objective of the gathering resembles a
reachability objective, it is also required that once robots are gathered, they do
not leave their positions anymore, while in a reachability game, the play is won
as soon as the objective is attained no matter what happens afterwards. In order
to circumvent this problem, we modify Gn,k as follows. For all (c, s,b) ∈ Sn,k

such that c ∈ CT, for all (c
′, s′,b′) ∈ Sn,k, ((c, s,b), f, (c

′, s′,b′)) ∈ δ if and only
if f(V) = 0 for all V ∈ Views(c). The rest of the arena remains unchanged.
We call this new game G ′

n,k. Hence, this modification restricts the possibilities
to decision functions that detect that a configuration where all the robots are
gathered is reached, and commands not to move anymore. This does not change
anything for Lemma 13, and it is easy to see that Lemma 14 could be adapted
to the special protocols that command not to move while all the robots are
gathered. We then let T = {(c, s,b) | c ∈ CT and s(i) ∈ {L, 0} for all i ∈ R}. In
the modified arena, any play π = s0 · (c0, s0,b0)(c1, s1,b1) · · · ∈ REACH(T)
is such that there exists k ≥ 0, such that for all ℓ ≥ k, (cℓ, sℓ,bℓ) ∈ T . In-
deed, let k ≥ 0, such that (ck, sk,bk) ∈ F . Since we consider the modified
arena, ((ck, sk,bk), f, (ck+1, sk+1,bk+1)) ∈ δ implies that f(V) = 0 for all V ∈

Views(ck). Hence, by definition, there exists i ∈ R such that sk(i) 6= sk+1(i).
If sk(i) = L then sk+1 = 0 by definition of f and ck+1 = ck; if sk(i) = 0 then
ck+1 = ck and sk+1 = L. Then, (ck+1, sk+1,bk+1) ∈ T . We also need to consider
unfair executions that should not be considered as loosing if they fail to reach T .
Let F = {(c, s,b) | b(i) = 0 for all i ∈ R}, the set of configurations where the
vector b has been reset to 0.

There exists a protocol solving GATHER if and only if there exists a mem-
oryless observation-based strategy for the protagonist in G ′

n,k(REACH(T) ∪
coBUCHI(F)). Assume that there is a winning strategy σ in that game, and
considerP the protocol as in Lemma 13. We show thatP is winning for GATHER.
We recall the objective of this problem, ΩGATHER = {c0c1 · · · cωk | ck ∈ CT}. Let
ρ be a fair P-run and let π be its unique equivalent play. By Lemma 13, π is
a σ-play. Since it is a winning strategy, π ∈ REACH(T) ∪ coBUCHI(F). By
Lemma 15, since ρ is fair, Inf(π) ∩ {(c, s,b) | b(i) = 0 for all i ∈ R} 6= ∅ and
π /∈ coBUCHI(F). Hence π ∈ REACH(T) and πC(ρ) ∈ ΩGATHER. Reciprocally,
assume that there is a protocol P solving GATHER and consider the memoryless
observation-based strategy σ of Lemma 14. Let π be a σ-play and ρ be its equiv-
alent run. By Lemma 14, ρ is a P-run. If ρ is fair, then πC(ρ) ∈ ΩGATHER and
by construction π ∈ REACH(T). Otherwise, by Lemma 15, Inf(π) ∩ {(c, s,b) |
b(i) = 0 for all i ∈ R} = ∅ and π ∈ coBUCHI(F). ⊓⊔

With the general parity condition, one can also use Gn,k (with slight suitable
modifications) in order to solve EXPLORATION and EXPLORATION-STOP.

This encoding is then a generalization of the work presented in [23], where
the encoding allowed only for the gathering problem in synchronous or semi-
synchronous semantics.

This generalization is at the cost of an increasing of the size of the arena,
as well as lifting the problem to parity games with partial information, hence
making the problem more complex to solve, as we have seen earlier (NP-complete
instead of linear time in the case of reachability games of total information
studied in [23]). Results of Section 3.2 would allow us to solve this problem
using a SAT-solver.

5 Conclusion

We studied the implementation of partial information zero-sum games with mem-
oryless strategies. We proved that this problem is NP-complete. Moreover, we
provided its SAT-based encoding using the recent advances in the state-of-the-art
of SAT-solvers.

Furthermore, we used this framework to offer a solution to automatic synthe-
sis of protocols for autonomous networks of mobile robots in the most generic
settings (i.e. asynchronous). The arena obtained from our encoding suffers from
an important exponential blow-up and the size of the generated formula is sig-
nificantly large to be considered as input for a SAT-solver. To circumvent this
problem, we used the Presburger subset formalism of first-order to encode the

arena in a more abstract way. Indeed, the transition relation of the arena for
the robots is encoded as a predicate in Presburger logic and we use uninter-
preted functions of SMT to define predicates corresponding to the paths. Finally,
the memoryless strategy is encoded as an uninterpreted function whose value is
what the solver should find. It is worth noting that the theory we used is decid-
able, since all the variables range over finite domains. We used the SMT solver
Z3 to experiment the synthesis problem GATHER, for 4 robots on a ring of size
5, 7 and 9. In each case, the solver answered that there was no protocol able to
solve this problem, confirming handmade [28]. The files containing the formulae
in the SMT-lib formalism are available on this webpage [19]. We currently work
on covering, using our encoding, other cases (e.g. rings of greater size) for the
SP4 [28] open problem.

References

1. http://lit2.ulb.ac.be/alpaga/usermanual.html.

2. C. Auger, Z. Bouzid, P. Courtieu, S. Tixeuil, and X. Urbain. Certified impossibility
results for byzantine-tolerant mobile robots. In Proc. of SSS’13, volume 8255 of
LNCS, pages 178–190. Springer, 2013.

3. T. Balabonski, A. Delga, L. Rieg, S. Tixeuil, and X. Urbain. Synchronous gathering
without multiplicity detection: A certified algorithm. In Proc. of SSS’16, volume
10083 of LNCS, pages 7–19, 2016.

4. T. Balabonski, R. Pelle, L. Rieg, and S. Tixeuil. A foundational framework for
certified impossibility results with mobile robots on graphs. In Proc. of ICDCN’18,
pages 5:1–5:10. ACM, 2018.

5. B. Bérard, P. Lafourcade, L. Millet, M. Potop-Butucaru, Y. Thierry-Mieg, and
S. Tixeuil. Formal verification of mobile robot protocols. Distributed Computing,
29(6):459–487, 2016.

6. L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring
exploration without chirality. In N. A. Lynch and A. A. Shvartsman, editors,
Proc. of DISC’10, volume 6343 of LNCS, pages 312–327. Springer, 2010.

7. F. Bonnet, X. Défago, F. Petit, M. Potop-Butucaru, and S. Tixeuil. Discovering
and assessing fine-grained metrics in robot networks protocols. In SRDS Workshops

2014, pages 50–59. IEEE Computer Society Press, 2014.

8. F. Bonnet, M. Potop-Butucaru, and S. Tixeuil. Asynchronous gathering in rings
with 4 robots. In Proc. of ADHOC-NOW’16, volume 9724 of LNCS, pages 311–324.
Springer, 2016.

9. J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

10. P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Impossibility of gathering, a
certification. Inf. Process. Lett., 115(3):447–452, 2015.

11. P. Courtieu, L. Rieg, S. Tixeuil, and X. Urbain. Certified universal gathering in
\R ˆ2 for oblivious mobile robots. In Proc. of DISC’16, volume 9888 of LNCS,
pages 187–200. Springer, 2016.

12. G. D’Angelo, G. D. Stefano, A. Navarra, N. Nisse, and K. Suchan. A unified
approach for different tasks on rings in robot-based computing systems. In Proc. of

IPDPSW’13, pages 667–676. IEEE Press., 2013.

13. S. Devismes, A. Lamani, F. Petit, P. Raymond, and S. Tixeuil. Optimal grid
exploration by asynchronous oblivious robots. In Proc. of SSS’12, volume 7596 of
LNCS, pages 64–76. Springer, 2012.

14. H. T. T. Doan, F. Bonnet, and K. Ogata. Model checking of a mobile robots
perpetual exploration algorithm. In 6th International Workshop, SOFL+MSVL,

Revised Selected Papers, volume 10189 of LNCS, pages 201–219, 2016.
15. H. T. T. Doan, F. Bonnet, and K. Ogata. Model checking of robot gathering. In

Proc. of OPODIS17, LIPIcs, 2017.
16. L. Doyen and J.-F. Raskin. Games with Imperfect Information: Theory and Algo-

rithms, pages 185–212. Cambridge University Press, 2011.
17. N. Eén, A. Legg, N. Narodytska, and L. Ryzhyk. Sat-based strategy extraction in

reachability games. In Proc. of AAAI’, pages 3738–3745. AAAI press., 2015.
18. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In

Proc. of FOCS’91, SFCS ’91, pages 368–377, Washington, DC, USA, 1991. IEEE
Computer Society Press.

19. https://pages.lip6.fr/Nathalie.Sznajder/smt-robots.html.
20. P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicat-

ing: Ring exploration by asynchronous oblivious robots. Algorithmica, 65(3):562–
583, 2013.

21. K. Heljanko, M. Keinänen, M. Lange, and I. Niemelä. Solving parity games by a
reduction to SAT. J. Comput. System Sci., 78(2):430–440, 2012.

22. E. Kranakis, D. Krizanc, and E. Markou. The Mobile Agent Rendezvous Problem

in the Ring. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2010.

23. L. Millet, M. Potop-Butucaru, N. Sznajder, and S. Tixeuil. On the synthesis of
mobile robots algorithms: the case of ring gathering. In Proc. of SSS’14, volume
8756 of LNCS, pages 237–252, 2014.

24. https://github.com/tcsprojects/pgsolver.
25. J. H. Reif. The complexity of two-player games of incomplete information. J. Com-

put. System Sci., 29(2):274–301, 1984.
26. S. Rubin, F. Zuleger, A. Murano, and B. Aminof. Verification of asynchronous

mobile-robots in partially-known environments. In Proc. of PRIMA’15, volume
9387 of LNCS, pages 185–200. Springer, 2015.

27. A. Sangnier, N. Sznajder, M. Potop-Butucaru, and S. Tixeuil. Parameterized
verification of algorithms for oblivious robots on a ring. In Proc. of FMCAD’17,
pages 212–219. IEEE Press., 2017.

28. G. D. Stefano, P. Montanari, and A. Navarra. About ungatherability of oblivious
and asynchronous robots on anonymous rings. In Z. Lipták and W. F. Smyth,
editors, Combinatorial Algorithms - 26th International Workshop, IWOCA 2015,

Verona, Italy, October 5-7, 2015, Revised Selected Papers, volume 9538 of LNCS,
pages 136–147. Springer, 2015.

29. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput., 28(4):1347–1363, 1999.

30. http://people.cs.aau.dk/∼adavid/tiga/.

A Details of the proof of Theorem 3

Then the formula ϕ is satisfiable if and only if there is a memoryless observation-
based strategy for the game Gϕ. Suppose that the formula ϕ is satisfiable and let
ν : X → {0, 1} the valuation of the variables such that ν(ϕ) = 1. We define the
memoryless observation-based strategy σ : S → {0, 1, 2, 3} as follows: σ(s0) = 0,
for all x ∈ X , σ(sx) = σ(s¬x) = ν(x) and for all 1 ≤ i ≤ k, σ(sci) = j such
that ν(ℓi,j) = 1 (such a literal always exists since ν(ϕ) = 1). The strategy
is obviously memoryless and observation-based. Consider a σ-compatible play
π = s0s1s2s3 · · · . By construction, s1 = sci for some 1 ≤ i ≤ k, and let 1 ≤ j ≤ 3
such that σ(sci) = j. Then s2 = sℓi,j . By construction, ν(ℓi,j) = 1. If ℓi,j = x
then ν(x) = 1 and σ(sℓi,j) = 1, if ℓi,j = ¬x, then ν(x) = 0 and σ(sℓi,j) = 0. In
both cases, s3 = s⊤ by construction of the arena. Hence π is a winning play and
σ is a winning strategy.

Conversely, let σ be a memoryless observation-based winning strategy for φ.
We define a valuation of the variables ν(x) = σ(sx) for all x ∈ X . Let 1 ≤ i ≤ k
and let’s show that ν(ci) = 1. Let σ(sci) = j. Hence, and since σ is winning,
s0scisℓi,js

ω
⊤ is a σ-compatible play. By construction of the arena, it means that

if ℓi,j = x, σ(sx) = 1 = ν(x) and if ℓi,j = ¬x, σ(x) = σ(¬x) = 0 = ν(x). In both
cases, ν(ℓi,j) = ν(ci) = 1. Therefore, ν(ϕ) = 1.

B Details of the proof of Theorem 5

Lemma 16. if σ is a winning strategy of G, then νσ(ψG) = 1.

Proof. To prove lemma 16, we have to check that νσ satisfies all terms of the
equation 5 defining ψG.

– Constraint (1): let 〈s1, a, s2〉, 〈s′1, a, s
′
2〉 ∈ X s.t. o(s1) = o(s′1). Since σ is

observation-based, we have σ(s1) = σ(s′1). Thus, νσ(〈s1, a, s2〉 ←→ 〈s
′
1, a, s

′
2〉) =

1.

– Constraint (2): the satisfaction of this constraint is twofold. Let 〈s1, a, s2〉 ∈
X .

• If νσ(〈s1, a, s2〉) = 1 then σ(s1) = a and thus for all 〈s′1, b, s
′
2〉 ∈ X such

that s′1 = s1 and b 6= a, νσ(〈s′1, b, s
′
2〉) = 0. Hence, νσ satisfies the first

part of the conjunction;

• If νσ(〈s1, a, s2〉) = 0, then there exists b 6= a such that σ(s1) = b (since a
strategy is a total function) and thus there exists 〈s1, b, s′2〉 ∈ X such that
νσ(〈s1, b, , s′2〉) = 1. Hence, νσ satisfies the second part of the conjunction.

Consequently, νσ satisfies constraint (2).

– Constraint (3):

i) Let s1, s2 ∈ S, 〈s1, a, s2〉 ∈ X and 〈s1, s2〉 ∈ P . If νσ(〈s1, a, s2〉) = 1,
then it means that (s1, a, s2) ∈ δσ, hence s1s2 is a prefix of a play in Aσ

and νσ(〈s1, s2〉) = 1. Thus νσ(〈s1, a, s2〉 −→ 〈s1, s2〉) = 1.

ii) Let s1, s2, s3 ∈ S, 〈s1, s2〉 ∈ P and 〈s2, a, s3〉 ∈ X . If νσ(〈s1, s2〉 ∧
〈s2, a, s3〉) = 1, then by definition of νσ, there is a prefix of a play
in Aσ starting in s1 and ending in s2, and (s2, a, s3) ∈ δσ. Therefore,
νσ(〈s1, s3〉) = 1. So, νσ((〈s1, s2〉 ∧ 〈s2, a, s3〉) −→ 〈s1, s3〉) = 1.

iii) Let s2 ∈ S \F and 〈s1, a, s2〉 ∈ X . If νσ(〈s1, a, s2〉) = 1 then (s1, a, s2) ∈
δσ and s1s2 is a prefix of a play in Aσ. Since s2 is not a target state, it
is immediate that νσ(〈s1, s2〉) = 0.

iv) Let 〈s1, s2〉 ∈ W with s2 /∈ F . If νσ(〈s1, s2〉) = 1 then all paths starting in
s1 and ending in s2 in Aσ visit a target state different from s1. Therefore,
for each state s3 ∈ S, if there is a path from s1 to s3 inAσ and (s3, b, s2) ∈
δσ then all the paths from s1 to s3 visit a state from F (different from
s1) – otherwise that would make a path from s1 to s2 without visiting a
state from F . Hence, νσ(〈s1, s3〉) = 1.

– Constraint (4): Let s ∈ S. We check each disjunct separately.
• If there is no play in Aσ visiting s from s0, then νσ(〈s0, s〉) = 0. It follows
that (4) is satisfied.
• If all prefixes of plays in Aσ starting in s0 and ending in s visit a target
state, then νσ(〈s0, s〉) = 1. It follows that (4) is satisfied.
• If the first disjuncts are not satisfied, then there is a prefix of play in Aσ

from s0 to s that visits no target states. Since σ is winning, we face two
cases
∗ either there is no cycle over s and then νσ(〈s, s〉) = 0 with makes (4)
true;
∗ or, the cycle exists but then it visits a target state (otherwise this
would be a play not winning), and then νσ(〈s, s〉) = 1. Again, the
formula (4) is satisfied.

So, νσ satisfies (4).

Since νσ satisfies the constraints (1), (2), (3) and (4). Then νσ(ψG) = 1.

Lemma 17. If ν : X ∪P ∪W → {0, 1} is a valuation such that ν(ψG) = 1 then
σν is a winning strategy for G.

Proof (Proof of lemma 17). Suppose that σν is not winning. then there exists a
σ-compatible play s0s1 · · · si · π

ω, with π = si+1 · · · sℓ for some ℓ ∈ N. and that
play never visits a state from F . By induction on condition(??), we know that:
ν(〈s0, si〉) = 1, ν(〈s0, si〉) = 0, ν(〈si+1, si+1〉) = 1 and ν(〈si+1, si+1〉) = 0. In-
deed, there exists (s0, a1, s1) ∈ δ and σν(s0) = a1. By definition, ν(〈s0, a1, s1〉) =
1 and then ν(〈s0, s1〉) = 1 from (i). Also, because s1 /∈ F , ν(〈s0, s1〉) = 0
from (iii). By induction, let k ∈ {0, · · · , i − 1}, and suppose ν(〈s0, sk〉) = 1
and ν(〈s0, sk〉) = 0; there exists ak+1 ∈ Σ such that ν(〈sk, ak+1, sk+1〉) = 1,
and from (ii), we have ν(〈s0, sk+1〉) = 1. Besides, sk+1 /∈ F and we have
ν(¬〈sk, ak+1, sk+1〉 ∨ 〈s0, sk〉) = 0. Then, by (iv) ν(〈s0, sk+1〉) = 0. Therefore,
ν(〈s0, si〉) = 0. In the same manner, we also obtain that ν(〈si, sn〉) = 0.

Finally, we observe thus that ν(¬〈s0, si〉 ∨ 〈s0, si〉 ∨ ¬〈si, si〉 ∨ 〈si, si〉) = 0,
which is impossible because of ν(ψG) = 1.

⊓⊔

