Yackolley Amoussou-Guenou

Antonella Del Pozzo

Maria Potop-Butucaru

Sara Tucci

Sara Tucci-Piergiovanni

Correctness and Fairness of Tendermint-core Blockchains

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

Blockchain is today one of the most appealing technologies since its introduction in the Bitcoin White Paper [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] in 2008. Blockchain systems, similar to P2P systems in the early 2000, take their roots in the non academical research. After the releasing of the most popular blockchains (e.g. Bitcoin [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] or Ethereum [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF]) with a specific focus on economical transactions, their huge potential for various other applications ranging from notary to medical data recording became evident. In a nutshell, Blockchain systems maintain a continuously-growing history of ordered information, encapsulated in blocks. Blocks are linked to each other by relying on collision resistant hash functions, i.e., each block contains the hash of the previous block. The Blockchain itself is a distributed data structure replicated among different peers. In order to preserve the chain structure those peers need to agree on the next block to append in order to avoid forks. The most popular technique to decide which block will be appended is the proof-of-work mechanism of Dwork and Naor [START_REF] Dwork | Pricing via processing or combatting junk mail[END_REF]. The block that will be appended to the blockchain is owned by the node (miner) having enough CPU power to solve first a crypto-puzzle. The only possible way to solve this puzzle is by repeated trials. The major criticisms for the proof-of-work approach are as follows: it is assumed that the honest miners hold a majority of the computational power, the generation of a block is energetically costly, which yield to the creation of mining pools and finally, multiple blockchains that coexist in the system due to accidental or intentional forks.

Recently, the non academic research developed alternative solutions to the proof-of-work technique such as proof-of-stake (the power of block building is proportional to the participant wealth), proof-of-space (similar to proof-of-work, instead of CPU power the prover has to provide the evidence of a certain amount of space) or proof-of-authority (the power of block building is proportional to the amount of authority owned in the system). These alternatives received little attention in the academic research. Among all these alternatives proof-of-stake protocols and in particular those using variants of Practical Byzantine Fault-Tolerant consensus [START_REF] Castro | Practical byzantine fault tolerance and proactive recovery[END_REF] became recently popular not only for in-chain transaction systems but also in systems that provide cross-chain transactions. Tendermint [START_REF] Kwon | Tendermint[END_REF][START_REF] Buchman | Tendermint: Byzantine Fault Tolerance in the Age of Blockchains[END_REF][START_REF] Kwon | Tendermint: Consensus without mining[END_REF][START_REF] Malkhi | The BFT lens: Tendermint[END_REF] was the first in this line of research having the merit to link the Practical Byzantine Fault-Tolerant consensus to the proof-of-stake technique and to propose a blockchain where a dynamic set of validators (subset of the participants) decide on the next block to be appended to the blockchain. Although, the correctness of the original Tendermint protocol [START_REF] Kwon | Tendermint[END_REF][START_REF] Buchman | Tendermint: Byzantine Fault Tolerance in the Age of Blockchains[END_REF][START_REF] Kwon | Tendermint: Consensus without mining[END_REF] has never been formally analyzed from the distributed computing perspective, it or slightly modified variants became recently the core of several popular systems such as Cosmos [START_REF] Kwon | Cosmos: A Network of Distributed Ledgers[END_REF] for cross-chain transactions.

In this paper we analyse the correctness of the original Tendermint agreement protocol as it was described in [START_REF] Kwon | Tendermint[END_REF][START_REF] Buchman | Tendermint: Byzantine Fault Tolerance in the Age of Blockchains[END_REF][START_REF] Kwon | Tendermint: Consensus without mining[END_REF] and discussed in [START_REF] Malkhi | The BFT lens: Tendermint[END_REF][START_REF] Herlihy | Enhancing accountability and trust in distributed ledgers[END_REF]. The code of this protocol is available in [START_REF] Tendermint | Tendermint: Tendermint Core (BFT Consensus) in Go[END_REF]. One of our fundamental results proved in this paper is as follows:

In an eventual synchronous system, a slightly modified variant of the original Tendermint protocol implements the one-shot and repeated consensus, provided that (i) the number of Byzantine validators, f , is f < n/3 where n is the number of validators participating in each single one-shot consensus instance and (ii) eventually a proposed value will be accepted by at least 2n/3+1 processes (Theorem 7 and Theorem 11).

More in detail, we prove that the original Tendermint verifies the consensus termination with a small twist in the algorithm (a refinement of the timeout) and with the additional assumption stating that there exists eventually a proposer such that its proposed value will be accepted, or voted, by more than two-third of validators.

We are further interested in the fairness of Tendermint-core blockchains because without a glimpse of fairness in the way rewards are distributed, these blockchains may collapse. Our fairness study, in line with Francez definition of fairness [START_REF] Francez | Fairness. Texts and Monographs in Computer Science[END_REF], generally defines the fairness of protocols based on voting committees (e.g. Byzcoin [START_REF] Kokoris-Kogias | Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing[END_REF], PeerCensus [START_REF] Decker | Bitcoin Meets Strong Consistency[END_REF], RedBelly [START_REF] Crain | Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains[END_REF], SBFT [START_REF] Golan-Gueta | SBFT: a scalable decentralized trust infrastructure for blockchains[END_REF] and Hyperledger Fabric [START_REF] Androulaki | Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains[END_REF] etc), by the fairness of their selection mechanism and the fairness of their reward mechanism. The selection mechanism is in charge of selecting the subset of processes that will participate to the agreement on the next block to be appended to the blockchain, while the reward mechanism defines the way the rewards are distributed among processes that participate in the agreement. The analysis of the reward mechanism allowed to establish our second fundamental result with respect to the fairness of repeated-consensus blockchains as follows: There exists a(n) (eventual) fair reward mechanism for repeated-consensus blockchains if and only if the system is (eventual) synchronous (Theorem 16).

Moreover, we show that even in an eventual synchronous setting, the original Tendermint protocol is not eventually fair, however with a small twist in the way delays and commit messages are handled it becomes eventually fair.

Note that our work is the first to analyze the fairness of protocols based on voting committees elected by selection mechanisms as proof-of-stake.

The rest of the paper is organized as follows. Related works are discussed in Section 2. Section 3 defines the model and the formal specifications of one-shot and repeated consensus. Section 4 formalizes the original Tendermint protocol through pseudo-code and proves the correctness of the One-Shot Consensus anf the Repeated Consensus algorithms. In Section 5 we present a full descriptions of the counter-example that motivates the modification of the original algorithm and the additioinal assumptions needed for the correctness. Section 6 discusses the necessary and sufficient conditions for a protocol based on repeated consensus to achieve a fair rewarding.

Related Work

Interestingly, only recently distributed computing academic scholars focus their attention on the theoretical aspects of blockchains motivated mainly by the intriguing claim of popular blockchains, as Bitcoin and Ethereum, that they implement consensus in an asynchronous dynamic open system. This claim is refuted by the famous impossibility result in distributing computing [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF].

In distributed systems, the theoretical studies of proof-of-work based blockchains have been pioneered by Garay et al [START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF]. Garay et al. decorticate the pseudo-code of Bitcoin and analyse its agreement aspects considering a synchronous round-based communication model. This study has been extended by Pass et al. [START_REF] Pass | Analysis of the blockchain protocol in asynchronous networks[END_REF] to round based systems where messages sent in a round can be received later. In order to overcome the drawbacks of Bitcoin, [START_REF] Eyal | Bitcoin-ng: A scalable blockchain protocol[END_REF] proposes a mix between proof-of-work blockchains and proof-of-work free blockchains referred as Bitcoin-NG. Bitcoin-NG inherits the drawbacks of Bitcoin: costly proof-of-work process, forks, no guarantee that a leader in an epoch is unique, no guarantee that the leader does not change the history at will if it is corrupted.

On another line of research Decker et al. [START_REF] Decker | Bitcoin Meets Strong Consistency[END_REF] propose the PeerCensus system that targets linearizability of transactions. PeerCensus combines the proof-of-work blockchain and the classical results in Practical Byzantine Fault Tolerant agreement area. PeerCensus suffers the same drawbacks as Bitcoin and Byzcoin against dynamic adversaries.

Byzcoin [START_REF] Kokoris-Kogias | Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing[END_REF] builds on top of Practical Byzantine Fault-Tolerant consensus [START_REF] Castro | Practical byzantine fault tolerance and proactive recovery[END_REF] enhanced with a scalable collective signing process. [START_REF] Kokoris-Kogias | Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing[END_REF] is based on a leader-based consensus over a group of members chosen by a proof-of-membership mechanism. When a miner succeeds to mine a block, it gains a membership share, and the miners with the highest shares are part of the fixed size voting member set. In the same spirit, SBFT [START_REF] Golan-Gueta | SBFT: a scalable decentralized trust infrastructure for blockchains[END_REF] and Hyperledger Fabric [START_REF] Androulaki | Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains[END_REF] build on top of [START_REF] Castro | Practical byzantine fault tolerance and proactive recovery[END_REF].

In order to avoid some of the previously cited problems, Micali [START_REF] Micali | Algorand: The efficient and democratic ledger[END_REF] introduced (further extended in [START_REF] Bentov | The sleepy model of consensus[END_REF][START_REF] Chen | Algorand[END_REF]) sortition based blockchains, where the proof-of-work mechanism is completely replaced by a probabilistic ingredient.

The only academic work that addresses the consensus in proof-of-stake based blockchains is authored by Daian et al. [START_REF] Daian | Snow white: Provably secure proofs of stake[END_REF], which proposes a protocol for weakly synchronous networks. The execution of the protocol is organized in epochs. Similar to Bitcoin-NG [START_REF] Eyal | Bitcoin-ng: A scalable blockchain protocol[END_REF] in each epoch a different committee is elected and inside the elected committee a leader will be chosen. The leader is allowed to extend the new blockchain. The protocol is validated via simulations and only partial proofs of correctness are provided. Ouroboros [START_REF] Kiayias | Ouroboros: A provably secure proof-of-stake blockchain protocol[END_REF] proposes a sortition based proof-of-stake protocol and addresses mainly the security aspects of the proposed protocol. Red Belly [START_REF] Crain | Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains[END_REF] focuses on consortium blockchains, where only a predefined subset of processes are allowed to append blocks, and proposes a Byzantine consensus protocol.

Interestingly, none of the previous academic studies made the connection between the repeated consensus specification [START_REF] Bar-Noy | Optimal amortized distributed consensus[END_REF][START_REF] Dolev | Stability of long-lived consensus[END_REF][START_REF] Delporte-Gallet | With finite memory consensus is easier than reliable broadcast[END_REF] and the repeated agreement process in blockchain systems. Moreover, in terms of fairness of rewards, no academic study has been conducted related to blockchains based on repeated consensus.

The closest works in blockchain systems to our fairness study (however very different in its scope) study the chain-quality. In [START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF], Garay et al. define the notion of chain-quality as the proportion of blocks mined by honest miners in any given window and study the conditions under which the ratio of blocks in the chain mined by malicious players over the total number of blocks in a given window is bounded. Kiayias et al. in [29] propose Ouroboros [START_REF] Kiayias | Ouroboros: A provably secure proof-of-stake blockchain protocol[END_REF] and also analyse the chain-quality property. Pass et al. address in [START_REF] Pass | Fruitchains: A fair blockchain[END_REF] one of the vulnerabilities of Bitcoin studied formally in Eyal and Sirer [START_REF] Eyal | Majority is not enough: Bitcoin mining is vulnerable[END_REF]. In [START_REF] Eyal | Majority is not enough: Bitcoin mining is vulnerable[END_REF] the authors prove that if the adversary controls a coalition of miners holding even a minority of the computational power, this coalition can gain twice its share. Fruitchain [START_REF] Pass | Fruitchains: A fair blockchain[END_REF] overcomes this problem by ensuring that no coalition controlling less than a majority of the computational power can gain more than a factor 1 + 3δ by not respecting the protocol, where δ is a parameter of the protocol. In [START_REF] Eyal | The miner's dilemma[END_REF], Eyal analyses the consequences of attacks in systems where pools of miners can infiltrate each other and shows that in such systems there is an equilibrium where all pools earn less than if there were no attack. In [START_REF] Guerraoui | On the unfairness of blockchain[END_REF], Guerraoui and Wang study the effect of message propagation delays in Bitcoin and show that, in a system of two miners, a miner can take advantage of the delays and be rewarded exponentially more than its expectation. In [START_REF] Önder Gürcan | On the bitcoin limitations to deliver fairness to users[END_REF], Gürcan et al. study the fairness from the point of view of users that do not participate to the mining. A similar work is done by Herlihy and Moir in [START_REF] Herlihy | Enhancing accountability and trust in distributed ledgers[END_REF] where the authors study the users fairness and consider as an example the original Tendermint [START_REF] Kwon | Tendermint[END_REF][START_REF] Buchman | Tendermint: Byzantine Fault Tolerance in the Age of Blockchains[END_REF][START_REF] Kwon | Tendermint: Consensus without mining[END_REF]. The authors discussed how processes with malicious behaviour can violate fairness by choosing transactions, then they propose modifications to the original Tendermint to make those violations detectable and accountable.

System model and Problem Definition

The system is composed of an infinite set Π of asynchronous sequential processes, namely Π = {p 1 , . . . }; i is called the index of p i . Asynchronous means that each process proceeds at it own speed, which can vary with time and remains unknown to the other processes. Sequential means that a process executes one step at a time. This does not prevent it from executing several threads with an appropriate multiplexing. As local processing time are negligible with respect to message transfer delays, they are considered as being equal to zero.

Arrival model. We assume a finite arrival model [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF], i.e. the system has infinitely many processes but each run has only finitely many. The size of the set Π ρ ⊂ Π of processes that participate in each system run is not a priori-known. We also consider a finite subset V ⊆ Π ρ of validators. The set V may change during any system run and its size n is a-priori known. A process is promoted in V based on a so-called merit parameter, which can model for instance its stake in proof-of-stake blockchains. Note that in the current Tendermint implementation, it is a separate module included in the Cosmos project [START_REF] Kwon | Cosmos: A Network of Distributed Ledgers[END_REF] that is in charge of implementing the selection of V .

Communication network. The processes communicate by exchanging messages through an eventually synchronous network [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]. Eventually Synchronous means that after a finite unknown time τ there is a bound δ on the message transfer delay.

Failure model. There is no bound on processes that can exhibit a Byzantine behaviour [START_REF] Pease | Reaching agreement in the presence of faults[END_REF] in the system, but up to f validators can exhibit a Byzantine behaviour at each point of the execution. A Byzantine process is a process that behaves arbitrarily: it can crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary state transition, etc. Byzantine processes can control the network by modifying the order in which messages are received, but they cannot postpone forever message receptions. Moreover, Byzantine processes can collude to "pollute" the computation (e.g., by sending messages with the same content, while they should send messages with distinct content if they were non-faulty). A process (or validator) that exhibits a Byzantine behaviour is called faulty. Otherwise, it is non-faulty or correct or honest. To be able to solve the consensus problem, we assume that f < n/3.

Communication primitives. In the following we assume the presence of a broadcast primitive. A process p i broadcasts a message by invoking the primitive broadcast(TAG, m), where TAG is the type of the message, and m its content. To simplify the presentation, it is assumed that a process can send messages to itself. The primitive broadcast() is a best effort broadcast, which means that when a correct process broadcasts a value, eventually all the correct processes deliver it. A process p i receives a message by executing the primitive delivery(). Messages are created with a digital signature, and we assume that digital signatures cannot be forged. When a process p i delivers a message, it knows the process p j that created the message.

Let us note that the assumed broadcast primitive in an open dynamic network can be implemented through gossiping, i.e. each process sends the message to current neighbors in the underlying dynamic network graph. In these settings the finite arrival model is a necessary condition for the system to show eventual synchrony. Intuitively, a finite arrival implies that message losses due to topology changes are bounded, so that the propagation delay of a message between two processes not directly connected can be bounded [START_REF] Baldoni | Looking for a definition of dynamic distributed systems[END_REF].

Problem definition. In this paper we analyze the correctness of Tendermint protocol against two abstractions in distributed systems: consensus and repeated consensus defined formally as follows.

Definition 3.1 (One-Shot Consensus). We say that an algorithm implements One-Shot Consensus if and only if it satisfies the following properties:

• Termination. Every correct process eventually decides some value.

• Integrity. No correct process decides twice.

• Agreement. If there is a correct process that decides a value B, then eventually all the correct processes decide B.

• Validity [START_REF] Crain | Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains[END_REF]. A decided value is valid, it satisfies the predefined predicate denoted isValid().

The concept of multi-consensus is presented in [START_REF] Bar-Noy | Optimal amortized distributed consensus[END_REF], where the authors assume that only the faulty processes can postpone the decision of correct processes. In addition, the consensus is made a finite number of times. The long-lived consensus presented in [START_REF] Dolev | Stability of long-lived consensus[END_REF] studies the consensus when the inputs are changing over the time, their specification aims at studying in which condition the decisions of correct process do not change over time. None of these specifications is appropriate for blockchain systems. In [START_REF] Delporte-Gallet | With finite memory consensus is easier than reliable broadcast[END_REF], Delporte-Gallet et al. defined the Repeated Consensus as an infinite sequence of One-Shot Consensus instances, where the inputs values may be completely different from one instance to another, but where all the correct processes have the same infinite sequence of decisions. We consider a variant of the repeated consensus problem as defined in [START_REF] Delporte-Gallet | With finite memory consensus is easier than reliable broadcast[END_REF]. The main difference is that we do not predicate on the faulty processes. Each correct process outputs an infinite sequence of decisions. We call that sequence the output of the process. Definition 3.2 (Repeated Consensus). An algorithm implements a repeated consensus if and only if it satisfies the following properties:

• Termination. Every correct process has an infinite output.

• Agreement. If the i th value of the output of a correct process is B, then B is the i th value of the output of any other correct process.

• Validity. Each value in the output of any correct process is valid, it satisfies the predefined predicate denoted isValid().

Tendermint Formalization

Informal description of Tendermint and its blockchain

Tendermint protocol [START_REF] Kwon | Tendermint[END_REF][START_REF] Buchman | Tendermint: Byzantine Fault Tolerance in the Age of Blockchains[END_REF] aims at building a blockchain without forks relying on a variant of PBFT consensus. When building the blockchain, a subset of fixed size n of processes called validators should agree on the next block to append to the blockchain. The set of validators is deterministically determined by the current content of the blockchain, referred as the history. We note that this subset may change once a block is appended. The mechanism to choose the validators from a given history is further referred as selection mechanism. Note that in the current Tendermint implementation, it is a separate module included in the Cosmos project [START_REF] Kwon | Cosmos: A Network of Distributed Ledgers[END_REF] that is in charge of implementing the selection mechanism. Intuitively, such mechanism should be based on the proofof-stake approach but its actual implementation is currently left open. Let us recall that Tendermint agreement protocol relies on the assumption that the selection mechanism, for each block, selects up to f Byzantine processes from the current history. The first block of Tendermint blockchain, called the genesis block, is at height 0. The height of a block is the distance that separates that block to the genesis block. Each block contains: (i) a Header which contains a pointer to the previous block and the height of the block, (ii) the Data which is a list of transactions, and (iii) a set LastCommit which is the set of validators that signed on the previous block. Except the first block, each block refers to the previous block in the chain. Given a current height of Tendermint blockchain, a total ordered set of validators V is selected to add a new block. The validators start a One-Shot Consensus algorithm. The first validator creates and proposes a block B, then if more than 2n/3 of the validators accept B, B will be appended as the next block, otherwise the next validator proposes a block, and the mechanism is repeated until more than 2n/3 of the validators accept a block. For each height of Tendermint blockchain, the mechanism to append a new block is the same, only the set of validators may change. Therefore, Tendermint applies a Repeated Consensus algorithm to build a blockchain, and at each height, it relies on a One-Shot Consensus algorithm to decide the block to be appended.

Although the choice of validators is managed by a separate module (see Cosmos project [START_REF] Kwon | Cosmos: A Network of Distributed Ledgers[END_REF]) the rewards for the validators that contributed to the block at some specific height H are determined during the construction of the block at height H + 1. The validators for H that get a reward for H are the ones that validators for H + 1 "saw" when proposing a block. This mechanism can be unfair, since some validator for H may be slow, and its messages may not reach the validators involved in H + 1, implying that it may not get the rewards it deserved.

Tendermint One-Shot Consensus algorithm

Tendermint One-Shot Consensus algorithm is a round-based algorithm used to decide on the next block for a given height H. In each round there is a different proposer that proposes a block to the validators that try to decide on that block. A round consists of three steps: (i) the Propose step, the proposer of the round broadcasts a proposal for a block; (ii) the Prevote step, validators broadcast their prevotes depending on the proposal they delivered during the previous step; and (iii) the Precommit step, validators broadcast their precommits depending on the occurrences of prevotes for the same block they delivered during the previous step. To preserve liveness, steps have a timeout associated, so that each validator moves from one step to another either if the timeout expires or if it delivers enough messages of a particular typology. When p i broadcasts a message (TAG, m), m contains a block B along with other information. We say that p i prevotes (resp. precommits) on B if TAG = PREVOTE (resp. TAG=PRECOMMIT). In Figure 2 is depicted the state machine for Tendermint Consensus.

To preserve safety, when a validator delivers more than 2n/3 prevotes for B then it "locks" on such block. Informally, it means that there are at least n/3+1 prevotes for B from correct processes, then B is a possible candidate for a decision so that validators try to stick on that. More formally, a validator has a Proof-of-LoCk (PoLC) for a block B (resp. for nil) at a round r for the height H if it received at least 2n/3 + 1 prevotes for B (resp. for nil). In this case we say that a process is locked on such block. A PoLC-Round (PoLCR) is a round such that there was a PoLC for a block at round PoLCR. In Figure 3 the state machine concerning the process of locking and unlocking on a block B is shown. On the edges are reported the conditions on the delivered messages that have to be met in order to lock or unlock on a block. Intuitively, when a process delivers 2n/3 of the same message B of type prevote when in a precommit step, it locks on B. A process unlocks a block only if it delivers 2n/3 of a value B ′ or when it commits. When a process is locked on a block B, it does not send any value different than B. This mechanism is necessary to ensure the safety of the protocol and to satisfy the Agreement property stated in Section 3.

Preamble. Note that our analysis of the original Tendermint protocol [START_REF] Kwon | Tendermint[END_REF][START_REF] Buchman | Tendermint: Byzantine Fault Tolerance in the Age of Blockchains[END_REF][START_REF] Kwon | Tendermint: Consensus without mining[END_REF] led to the conclusion that several modifications are needed in order to implement One-Shot Consensus problem. Full description of these bugs in the original Tendermint protocol are reported in Section 5. In more details, with respect to the original Tendermint, our Tendermint One-shot Consensus algorithm (see Figure 1) has the following modifications. We added line 29 in order to catch up the communication delay during the synchronous periods. Moreover, we modified the line 19 in order to guarantee the agreement property of One-Shot Consensus (defined in Section 3). The correctness of Tendermint One-shot Consensus algorithm needs an additional assumption stating that eventually a proposal is accepted by a majority of correct processes. This assumption, stated formally in Theorem 7, is necessary to guarantee the termination.

Variables and data structures. r and PoLCR i are integers representing the current round and the PolCR. lockedBlock i is the last block on which p i is locked, if it is equal to a block B, we Function consensus(H, Π, signature); %One-Shot Consensus for the super-round H with the set Π of processes% Init:

(1) r ← 0; --- -------------------Prevote step r -------------------

LLR i ← -1; PoLCR i ← ⊥; lockedBlock i ← nil; B ← ⊥; (2) TimeOutPropose ← ∆ Propose ; TimeOutPrevote ← ∆ Prevote ; (3) proposalReceived H,r i ← ⊥; prevotesReceived H,r i ← ⊥; precommitsReceived H,r i ← ⊥;
- while (true) do (4) r ← r + 1; PoLCR i ← ⊥; --------------------Propose step r -------------------- (5) if (p i == proposer(H, r)) then (6) if (LLR i = -1) then PoLCR i ← LLR i ; B ← lockedBlock i ; (7) else B ← createNewBlock(signature); (8) endif (9) trigger broadcast PROPOSE, (B, H, r, PoLCR i) i ; (10) else (11) set timerP roposer to TimeOutPropose ; (12) wait until ((timerP roposer expired) ∨ (proposalReceived H,r ′ i = ⊥)); (13) if ((timerP roposer expired) ∧ (proposalReceived H,r ′ i == ⊥)) then (14) TimeOutPropose ← TimeOutPropose + 1; (15) endif (16) endif -
- (17) if ((PoLCR i = ⊥) ∧ (LLR i = -1) ∧ (LLR i < PoLCR i < r)) then (18) wait until |prevotesReceived H,PoLCR i | > 2n/3; (19) if (∃B ′ : (is23Maj(B ′ , prevotesReceived H,PoLCR i i)) ∧ (B ′ = lockedBlock i)) then lockedBlock i ← nil; endif (20) endif (21) if (lockedBlock i = nil) then trigger broadcast PREVOTE, (lockedBlock i , H, r) i ; (22) else if (isValid(proposalReceived H,r i)) then trigger broadcast PREVOTE, (proposalReceived H,r i , H, r) i ; endif (23) else trigger broadcast PREVOTE, (nil, H, r) i ; (24) endif (25) wait until ((is23Maj(nil, prevotesReceived H,r i)) ∨ (∃B ′′ : (is23Maj(B ′′ , prevotesReceived H,r i)))∨ (|prevotesReceived H,r i | > 2n/3
)); %Delivery of any 2n/3 prevotes for the round r% say that p i is locked on B, otherwise it is equal to nil, and we say that p i is not locked. When lockedBlock i = nil and switch the value to nil, then p i unlocks. Last-Locked-Round (LLR i) is an ---------------------------------- integer representing the last round where p i locked on a block. B is the block the process created.

(26) if (¬(is23Maj(nil, prevotesReceived H,r i)) ∧ ¬(∃B ′′ : (is23Maj(B ′′ , prevotesReceived H,r i)))) then (27) set timerP revote to TimeOutPrevote; (28) wait until (timerP revote expired); (29) if (timerP revote expired) then TimeOutPrevote ← TimeOutPrevote + 1; endif --------------------Precommit step r ------------------- (30) if (∃B ′ : (is23Maj(B ′ , prevotesReceived H,r i))) then (31) lockedBlock i ← B ′ ; (32) trigger broadcast PRECOMMIT, (B ′ , H, r) i ; (33) LLR i ← r; (34) else if (is23Maj(nil, prevotesReceived H,r i)) then (35) lockedBlock i ← nil; LLR i ← -1; (36) trigger broadcast PRECOMMIT, (nil, H, r) i ; (37) endif (38) else trigger broadcast PRECOMMIT, (nil, H, r) i); (39) endif (40) wait until ((is23Maj(nil, prevotesReceived H,r i)) ∨ (|precommitsReceived H,r i | > 2n/3)) endwhile
upon event delivery PROPOSE, (B ′ , H, r ′ , PoLCR j) j : (41) if (proposalReceived H,r ′ i = ⊥) then (42) proposalReceived H,r ′ i ← (B ′ , H, r ′) j ; (43) PoLCR i ← PoLCR j ; (44) trigger broadcast PROPOSE, (B ′ , H, r ′ , PoLCR j) j ; (45) endif -
- upon event delivery PREVOTE, (B ′ , H, r ′ , LLR) j : (46) if ((B ′ , H, r ′ , LLR) j / ∈ prevotesReceived H,r ′ i) then (47) prevotesReceived H,r ′ i ← prevotesReceived H,r ′ i ∪ (B ′ , H, r ′ , LLR) j ; (48) trigger broadcast PREVOTE, (B ′ , H, r ′ , LLR) j ; (49) if ((r < r ′) and (|prevotesReceived H,r ′ i | > 2/3)) then (50) r ← r ′ ; (51) goto Prevote step r; (52) endif (53) endif ------------------------------------ upon event delivery PRECOMMIT, (B ′ , H, r ′) j : (54) if ((B ′ , H, r ′) j / ∈ precommitsReceived H,r ′ i) then (55) precommitsReceived H,r ′ i ← precommitsReceived H,r ′ i ∪ (B ′ , H, r ′) j ; (56) trigger broadcast PRECOMMIT, (B ′ , H, r ′) j ; (57) if ((r < r ′) and (|precommitsReceived H,r ′ i | > 2/3)) then (58) r ← r ′ ; (59) goto Precommit step r; (60) endif (61) endif ------------------------------------ when (∃B ′ : is23Maj(B ′ , precommitsReceived H,r ′
Each validator manages timeouts, TimeOutPropose and TimeOutPrevote, concerning the propose and prevote phases respectively. Those timeouts are set to ∆ Propose and ∆ Prevote and started at the beginning of the respective step. Both are incremented if they expire before the validator moves to the next step.

Each validator manages three sets for the messages delivered. In particular, the set proposalReceived H,r i contains the proposal that p i delivered for the round r at height H. prevotesReceived H,r i is the set containing all the prevotes p i delivered for the round r at height H. precommitsReceived H,r i is the set containing all the precommits p i delivered for the round r at height H.

Functions. We denote by Block the set containing all blocks, and by MemPool the structure containing all the transactions.

• proposer : V × Height × Round → V is a deterministic function which gives the proposer out of the validators for a given round at a given height in a round robin fashion.

• createNewBlock : 2 Π × MemPool → Block is an application-dependent function which creates a valid block (w.r.t. the application), where the subset of processes is a parameter of the One-Shot Consensus, and is the subset of processes that send a commit for the block at the previous height, called the signature of the previous block. • is23Maj : (Block ∪ nil) × (prevotesReceived ∪ precommitsReceived) → Bool is a predicate that checks if there is at least 2n/3 + 1 of prevotes or precommits on the given block or nil in the given set.

• isValid : Block → Bool is an application dependent predicate that is satisfied if the given block is valid. If there is a block B such that isValid(B) = true, we say that B is valid. We note that for any non-block, we set isValid to false, (e.g. isValid(⊥) = false).

Detailed description of the algorithm. In Figure 1 we describe Tendermint One-Shot algorithm to solve the One-Shot Consensus (defined in Section 3) for a given height H.

For each round r at height H the algorithm proceeds in 3 phases: Whenever p i delivers a message, it broadcasts it (lines 44, 48 and 56). Moreover, during a round r, some conditions may be verified after a delivery of some messages and either (i) p i decides and terminates or (ii) p i goes to the round r ′ (with r ′ > r). The conditions are:

• For any round r ′ , if for a block B, is23Maj(B, precommitsReceived H,r ′ i) = true , then p i decides the block B and terminates, or

• If p i is

Correctness of Tendermint One-Shot Consensus

In this section we prove the correctness of Tendermint One-Shot Consensus algorithm (Fig. 1) for a height H under the assumption that during the synchronous period there exists eventually a proposer such that its proposed value will be accepted by at least 2n/3 + 1 processes.

Lemma 1 (One-Shot Integrity). In an eventual synchronous system, Tendermint One-Shot Consensus Algorithm verifies the following property: No correct process decides twice.

Proof The proof follows by construction. A correct process decides when it returns (line 62).

Lemma 1

Lemma 2 (One-Shot Validity). In an eventual synchronous system, Tendermint One-Shot Consensus Algorithm verifies the following property: A decided value is valid, if it satisfies the predefined predicate denoted isValid().

Proof

Let p i be a correct process, we assume that there exists a value B, such that p i decides B. We show by construction that if p i decides on a value B, then B is valid.

If p i decides B, then is23Maj(B, precommitsReceived H,r i) = true (line 62), since the signature of the messages are unforgeable and f < n/3 by hypothesis, then more than n/3 of those precommits for round r are from correct processes. This means that for each of those correct processes p j , is23Maj(B, prevotesReceived H,r j) = true (lines 30 -32), and thus at least n/3 of those prevotes are from correct processes.

Let p j be one of the correct processes which prevoted on B during the round r. p j prevotes on a value B during a round r in two cases: Case a, during r, p j is not locked on any value or Case b: p j is already locked on B and does not checks its validity (lines 21 -24).

• Case a: If p j is not locked on any value than before prevoting it checks the validity of B and prevotes on B if B is valid (line 22);

• Case b: If p j was locked on B, it did not check the validity of B, it means that p j was locked on B during the round r; which means that there was a round r ′ < r such that p j had a PoLC for B for the round r ′ (lines 30 -32), by the same argument, there is a round which happened before r ′ where p j was locked or B is valid.

Since a process locked during a round smaller than the current one, and that there exists a first round where all correct processes are not locked (line 1), there is a round r ′′ < r ′ where p j was not locked on B but prevoted B, as in Case a, p j checks if B is valid and then prevotes on B if B is valid (lines 22).

A value prevoted by a correct process is thus valid. Therefore a decided value by a correct process is valid since more than n/3 correct processes prevote that value. Lemma 2

Lemma 3. In an eventual synchronous system, Tendermint One-Shot Consensus Algorithm verifies the following property: If f + 1 correct processes locked on the same value B during a round r then no correct process can lock during round r ′ > r on a value B ′ = B.

Proof We assume that f + 1 correct processes are locked on the same value B during the round r, and we denote by X r the set of those processes. We first prove by induction that no process in X r will unlock or lock on a new value. Let let p i ∈ X r .

• Initialization: round r + 1. At the beginning of round r + 1, all processes in X r are locked on B. Moreover, we have that LLR i = r, since p i locks on round r (line 31). Let p j be the proposer for round r + 1. If LLR j = r, it means that p j is also locked on B, since there cannot be a value B ′ = B such that is23Maj(B, prevotesReceived H,r j) = true, for that to happen, at least n/3 processes should prevote both B and B ′ during round r, which means that at least a correct process prevoted two times in the same round, which is not possible, since it is correct, and the protocol does not allow to vote two times in the same round (lines 17 -29). Three cases can then happen:

p j locked on a value B j during the round LLR j ≤ r. This means that during the round LLR j is23Maj(B j , prevotesReceived H,LLR j j) = true (line 31). p j the proposer proposes a value B j along with LLR j (lines 5 -9). Since LLR j ≤ LLR i = r, p i does not unlock and prevotes B for the round r + 1, and so are all the other processes in X r (lines 17 -21). The only value that can have more than 2n/3 prevotes is then B. So p i is still locked on B at the end of r + 1.

-If p j is not locked, the value it proposes cannot unlock processes in X r because -1 = LLR j < r, and they will prevote on B (lines 17 -21). The only value that can have more than 2n/3 prevotes is then B. So p i is still locked on B at the end of r + 1.

p j locked on a value B j during the round LLR j > r, p j the proposer proposes a value B j along with LLR j (lines 5 -9). Since LLR j ≥ r + 1, p i does not unlock and prevotes B for the round r + 1, and so are all the other processes in X r (lines 17 -21). The only value that can have more than 2n/3 prevotes is then B. So p i is still locked on B at the end of r + 1.

At the end of round r + 1, all processes in X r are still locked on B and it may happen that other processes are locked on B for round r + 1 at the end of the round.

• Induction: We assume that for a given a > 0, the processes in X r are still locked on B at each round between r and r + a. We now prove that the processes in X r will still be locked on B at round r + a + 1.

Let p j be the proposer for round r + a + 1. Since the f + 1 processes in X r were locked on B for all the rounds between r and r + a, no new value can have more than 2n/3 of prevotes during one of those rounds, so ∄B ′ = B : is23Maj(B ′ , prevotesReceived H,r j j) = true where r < r j < r + a + 1. Moreover, if p j proposed the value B along with a LLR > r, since the processes in X r are already locked on B, they do not unlock and prevote B (lines 17 -21). The proof then follows as in the Initialization case. Therefore all processes in X r will stay locked on B at each round after round r. Since f + 1 processes will stay locked on the value B on rounds r ′ > r, they will only prevote on B (lines 17 -21) for each new round. Let B ′ be a value, we have that ∀r

′ ≥ r if B ′ : is23Maj(B ′ , prevotesReceived H,r ′ j) = true then B ′ = B. Lemma 3
Lemma 4 (One-Shot Agreement). In an eventual synchronous system, Tendermint One-Shot Consensus Algorithm verifies the following property: If there is a correct process that decides a value B, then eventually all the correct processes decide B.

Proof Let p i be a correct process. Without loss of generality, we assume that p i is the first correct process to decide, and it decides B at round r. If p i decides B, then is23Maj(B, precommitsReceived H,r i) = true (line 62), since the signature of the messages are unforgeable by hypothesis and f < n/3, then p i delivers more than n/3 of those precommits for round r from correct processes, and those correct process are locked on B at round r (line 31). p i broadcasts all the precommits it delivers (line 56), so eventually all correct processes will deliver those precommits, because of the best effort broadcast guarantees.

We now show that before delivering the precommits from p i , the other correct processes cannot decide a different value than B. f < n/3 by hypothesis, so we have that at least f + 1 correct processes are locked on B for the round r. By Lemma 3 no correct process can lock on a value different than B. Let B ′ = B, since correct processes lock only when they precommit (lines 30 -32), no correct process will precommit on B ′ for a round bigger than r, so is23Maj(B ′ , precommitsReceived H,r ′ i) = false for all r ′ ≥ r since no correct process will precommit on B ′ . No correct process cannot decide a value B ′ = B (line 62) once p i decided. Eventually, all the correct processes will deliver the 2n/3 signed precommits p i delivered and broadcasted, thanks to the best effort broadcast guarantees and then will decide B.

Lemma 4

Lemma 5. In an eventual synchronous system, and under the assumption that during the synchronous period eventually there is a correct proposer p k such that |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f , Tendermint One-Shot Consensus Algorithm verifies the following property: Eventually a correct process decides.

Proof Let r be the round where the communication becomes synchronous and when all the messages broadcasted by correct processes are delivered by the correct processes within their respective step. The round r exists, since the system is eventually synchronous and correct processes increase their time-outs when they did not deliver enough messages (lines 13 -15, 26 -29 and 40). If a correct process decides before r, that ends the proof. Otherwise no correct process decided yet. Let p i be the proposer for the round r. We assume that p i is correct. Let B be the value such that p i proposes (B, LLR i), we have three cases:

• Case 1: No correct process is locked on a value before r. ∀p j ∈ Π such that p j is correct,

LLR j = -1.
Correct processes delivered the proposal (B, LLR i) before the Prevote step (lines 12, 42 -44). Since the proposal is valid, then all correct processes will prevote on that value (line 22), and they deliver the others' prevotes and broadcast them before entering the Precommit step (lines 25 -29 and 48). Then for all correct process p j , we have is23Maj(B, precommitsReceived H,r j) = true. The correct processes will lock on B, precommit on B (lines 30 -32) and will broadcast all precommits delivered (line 56). Eventually a correct process p j will have is23Maj(B, precommitsReceived H,r j) = true then p j will decide (line 62).

• Case 2: Some correct processes are locked and if p j is a correct process, LLR j < LLR i . Since LLR j < LLR i for all correct processes p j , then the correct processes that are locked will unlock (line 19) and the proof follows as in the Case 1.

• Case 3: Some correct processes are locked on a value, and there exist a correct process p j such that LLR i ≤ LLR j .

-(i) If |{p j : LLR i ≤ LLR j and p j is correct}| < n/3 -f (which means that even without the correct processes that are locked in a higher round than the proposer p i , there are more than 2n/3 other correct processes unlock or locked in a smaller round than LLR i), then as in the case 2, a correct process will decide.

-(ii) If |{p j : LLR i ≤ LLR j and p j is correct}| ≥ n/3 -f , then during the round r, ∄B ′ : is23Maj(B ′ , precommitsReceived H,r i) = true, in fact correct processes only precommit once in a round (lines 30 -40). Eventually, thanks to the additional assumption, there exists a round r 1 where the proposer p k is correct and at round r 1 , |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f . The proof then follows as case (3.i).

If p i is Byzantine and more than n/3 correct processes delivered the same message during the proposal step, and the proposal is valid, the situation is like p i was correct. Otherwise, there are not enough correct processes that delivered the proposal, or if the proposal is not valid, then there will be less than n/3 processes that will prevote that value. No value will be committed. Since the proposer is selected in a round robin fashion, a correct process will eventually be the proposer, and a correct process will decide. Lemma 5

Lemma 6 (One-Shot Termination). In an eventual synchronous system, and under the assumption that during the synchronous period eventually there is a correct proposer p k such that |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f , Tendermint One-Shot Consensus Algorithm verifies the following property: Every correct process eventually decides some value.

Proof By construction, if a correct process does not deliver a proposal during the proposal step or enough prevotes during the Prevote step, then that process increases its time-outs (lines 13 -15 and 26 -29), so eventually, during the synchrony period of the system, all the correct processes will deliver the proposal and the prevotes from correct processes respectively during the Propose and the Prevote step. By Lemma 5, a correct process decides a value, and then by the Lemma 4, every correct process eventually decides. Lemma 6

Theorem 7. In an eventual synchronous system, and under the assumption that during the synchronous periods eventually there is a correct proposer p k such that |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f : Tendermint One-Shot Algorithm implements the One-Shot Consensus.

Proof The proof follows directly from Lemmas 1, 2, 4 and 6. T heorem 7

Tendermint Repeated Consensus algorithm

For a given height, the set V of validators does not change. Note that each height corresponds to a block. Therefore, in the following we refer this set as the set of validators for a block.

Data structures. The integer H is the height where is called a One-Shot Consensus instance. V is the current set of validators. B is the block to be appended. commitsReceived H i is the set containing all the commits p i delivered for the height H. toReward H i is the set containing the validators from which p i delivered commits for the height H. TimeOutCommit represents the time a validator has for collecting commits after an instance of consensus. TimeOutCommit is set to ∆ Commit .

Functions.

• validatorSet : Π×Height → 2 Π is an application dependent and deterministic selection function which gives the set of validators for a given height w.r.t the blockchain history. We have ∀H ∈ Height, |validatorSet(H)| = n.

Function repeatedConsensus(Π); %Repeated Consensus for the set Π of processes% ----------------------------------- ------------------------------------ • consensus : Height × 2 Π × commitsReceived → Block is the One-Shot Consensus instance presented in 4.2.

Init: (1) H ← 1 %Height%; B ← ⊥; V ← ⊥ %Set of validators%; (2) commitsReceived H i ← ∅; toReward H i ← ∅; TimeOutCommit ← ∆ Commit ; -
- upon event delivery COMMIT, (B ′ , H ′) j : (16) if (((B ′ , H ′) j / ∈ commitsReceived H ′ i) ∧ (p j ∈ validatorSet(H ′))) then (17) commitsReceived H ′ i ← commitsReceived H ′ i ∪ (B ′ , H ′) j ; (18) toReward H ′ i ← toReward H ′ i ∪ p j ; (19) trigger broadcast COMMIT, (B ′ , H ′) j ; (20) endif
• createNewBlock : 2 Π × MemPool → Block is the application-dependent function that creates a valid block (w.r.t. the application) from the One-Shot Consensus.

• atLeastOneThird : Block × commitsReceived → Bool is a predicate which checks if there is at least n/3 of commits of the given block in the given set.

• isValid : Block → Bool is the same predicate as in the One-shot Consensus, which checks if a block is valid or not.

Detailed description of the algorithm. In Fig. 4 we describe the algorithm to solve the Repeated Consensus as defined in Section 3. The algorithm proceeds as follows:

• p i computes the set of validators for the current height;

• If p i is a validator, then it calls the consensus function solving the consensus for the current height, then broadcasts the decision, and sets B to that decision;

• Otherwise, if p i is not a validator, it waits for at least n/3 commits from the same block and sets B to that block;

• p j and p k are validators for the height i, so they call the function consensus() (lines 5 and 6). By Lemma 4 p j and p k decide the same value and then output that same value (line 14).

• At least one of p j and p k is not a validator for the height i. Without loss of generality, we assume that p j is not a validator for the height i. Since all the correct validators commit the same value, let say B, thanks to Lemma 4, and since they broadcast their commit (line 7), eventually there will be more than 2n/3 of commits for B. So no other value B ′ = B can be present at least n/3 times in the set commitReceived H i . So p j outputs the same value B as all the correct validators (line 9). If p k is a validator, that ends the proof. If p k is not a validator, then by the same argument as for p j , p k outputs the same value B. Hence p j and p k both output the same value B.

Lemma 9

Lemma 10 (Repeated Validity). In an eventual synchronous system, Tendermint Repeated Consensus Algorithm verifies the following property: Each value in the output of any correct process is valid, it satisfies the predefined predicate denoted isValid().

Proof We prove this lemma by construction. Let p i be a correct process, and we assume that the H th value of the output of p i is B. If p i decides a value (line 14), then that value has been set during the execution and for that height (line 3).

• If p i is a validator for the height H, then B is the value returned by the function consensus(), by the Lemma 2 we have that isValid(B) = true.

• If p j is not a validator for the height H, it means that it delivered more than n/3 signed commits from the validators for the value B (lines 5 -7 and 16 -20), hence at least one correct validator committed B, and by Lemma 2 we have that isValid(B) = true.

So each value that a correct process outputs satisfies the predicate isValid(). Lemma 10

Theorem 11. In an eventual synchronous system, Tendermint Repeated Consensus algorithm implements the Repeated Consensus. In an eventual synchronous system, and under the additional assumption that during the synchronous period eventually there is a correct proposer p k such that |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f , Tendermint Repeated Consensus algorithm implements the repeated consensus.

Proof The proof follows directly from Lemmas 8, 9 and 10. we showed that Tendermint protocol satisfies respectively the Termination property, the Agreement property and the Validity property.

T heorem 11

5 Bugs in the original Tendermint The line 29 allows the correct process p i to increase its time-out to catch up the communication delay in the network. If the correct processes never increase their TimeOutPrevote, even when the system becomes synchronous, the correct process may never deliver enough prevotes at time. Thus it can never precommit. To decide, a correct process needs more than 2n/3 precommits for the same value for the same round (and so more that n/3 precommits from correct processes) to decide (line 62), no correct process ever decides, which does not satisfies the One-Shot Termination property. When a process increases its TimeOutPrevotewhenever it does not deliver enough messages, it will eventually catch-up the delay, and during the synchronous period, there will be a time from when it will deliver prevotes from all correct processes.

5.2 Modification of line 19 on Fig. 1 Originally, the line 19 was

if (∃B ′ : (is23Maj(B ′ , prevotesReceived H,PoLCR i i)) then lockedBlock i ← nil; endif
In that version, it is possible that if a process p i is locked on a value B during a round r, a process locked on the same value B during a round r ′ > r makes p i unlock, but does not ensure that p i locks again. That is a problem since it causes a violation of the Agreement property.

In the following, we exhibit a problematic scenario. Assume that there are 4 processes in the network. 3 correct processes p 1 , p 2 , p 3 and a Byzantine process p 4 .

1. Round 1: p 1 is the proposer and proposes B. All process deliver the proposal and prevote on B from round 1.

p 1 and p 2 deliver all prevotes for B, and then lock and precommit on B.

p 1 delivers the precommit of p 1 , p 2 and from p 4 for Band then it decides B. Neither p 2 and p 3 delivers enough precommit to decide.

The state is: p 1 decides B and left. p 2 is locked on (B, 1), p 3 is not locked, p 4 is Byzantine so we do not say anything about its state.

2. Round 2: p 1 exit, and do not take part any more. p 2 and p 3 do not deliver the precommit for B.

p 2 is the proposer. Since p 2 is locked on B, it proposes B along with 1 where it locked. p 2 and p 3 deliver the proposal. p 2 does not unlock since it locked at round 1 and prevote on B. p 3 is not locked, but since it delivered the proposal, it prevotes on B. p 4 sends a prevote on B only to p 3 such that p 3 delivers all the prevotes during this step but not p 2 , so during the precommit step, p 3 locked on B but for the round 2.

The state is: p 1 already decided. p 2 is locked on (B, 1), p 3 is locked on (B, 2), p 4 is Byzantine so we do not say anything about its state.

3. Round 3: p 2 and p 3 do not deliver the precommit for B from round 1.

p 3 is the proposer. Since p 3 is locked on B, it proposes B along with 2 where it locked. p 2 and p 3 deliver the proposal. p 2 unlocks since it receives 2 but was locked at 1 and prevote the proposal B. p 3 does not unlock since it locked exactly at round 1 and prevote on B. p 4 sends a prevote on B such that p 3 delivers all the prevotes during its step but not p 2 , so during the precommit step, p 3 locked on B but for the round 2.

The state is: p 1 already decided B. p 2 is not locked, p 3 is locked on (B, 2), p 4 is Byzantine so we do not say anything about its state.

4. Round 4: p 2 and p 3 do not deliver the precommit for B from round 1.

p 4 is the proposer and proposes (B, 3). p 2 is not locked, but since it delivered the proposal, it prevotes on B. p 3 unlocks since it receives 3 but was locked at 2 and prevote the proposal B. p 4 does nothing. Neither p 2 nor p 3 delivers enough prevotes to lock.

The state is: p 1 already decided B. p 2 is not locked, p 3 is not locked, p 4 is Byzantine so we do not say anything about its state.

5. Round 5: p 2 and p 3 do not deliver the precommit for B from round 1.

p 1 is the proposer but since it left, there is no proposal. p 2 and p 3 are not locked and did not deliver a proposal so they prevote on nil. p 4 does nothing. Neither p 2 nor p 3 delivers enough prevotes to lock.

The state is: p 1 already decided B. p 2 is not locked, p 3 is not locked, p 4 is Byzantine so we do not say anything about its state.

6. Round 4: p 2 and p 3 do not deliver the precommit for B from round 1.

p 2 is the proposer. Since it is not locked, it proposes a new value B ′ . p 2 and p 3 deliver the proposal before their respective prevote step. p 2 and p 3 are not locked and did deliver the proposal B ′ , so they prevote on B ′ . p 4 sends prevote B ′ to both p 2 and p 3 .

p 2 and p 3 deliver the 3 prevotes before entering the precommit step, and hence locked on B ′ and precommit on B, and p 4 also send precommit to p 2 .

p 2 delivers precommit from p 2 , p 3 and p 4 and thus it decides B ′ .

The state is: p 1 already decided B. p 2 decides B ′ , p 3 is locked on B ′ , p 4 is Byzantine so we do not say anything about its state.

At the end of the round 4, p 1 and p 2 decide on two different values, which does not satisfy the One-Shot Agreement property.

Counter-example for the One-Shot Termination without the additional assumption

We recall the additional assumption : eventually there is a correct proposer p k such that |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f . In [START_REF] Cachin | Blockchains consensus protocols in the wild[END_REF] the authors advocate without providing any evidence that there is a livelock problem in Tendermint description proposed in the Buchman's manuscript [START_REF] Buchman | Tendermint: Byzantine Fault Tolerance in the Age of Blockchains[END_REF]. Hereafter, we exhibit this evidence. We thank anonymous reviewers of the preliminary version of this work appeared as technical report [START_REF] Amoussou-Guenou | Correctness and Fairness of Tendermint-core Blockchains[END_REF] to point us the scenario below. We consider a system of 4 processes, p 1 to p 4 , where p 4 is a Byzantine process. The round number 1 has p 1 as a proposer, and we assume that it happens before the system is synchronous (before GST in DLS terminology [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]), and only p 1 locks value v 1 in this round (lockedBlock = v 1 , LLR = 1 at p 1 , and for other processes equal to initial values. PoLCR = ⊥ for p 1 , p 2 , and p 3 (p 4 is faulty so we don't talk about it's state).

Starting with round number 2, all rounds happen during synchronous period (after GST), so communication between correct processes is reliable and timely, i.e., all correct processes receive messages from all correct processes. Note that during synchronous period we don't have the same guarantee on messages sent by Byzantine processes, i.e., a Byzantine process can send a message only to a subset of correct processes on time so it is delivered in the current round, and although a message is eventually delivered by all correct processes, it might not be delivered by all correct processes in the round r in which it is sent. This scenario repeats forever, so the algorithm never terminates, which violates the One-Shot Termination property. This scenario cannot repeat forever with the additional assumption that during the synchronous period eventually there is a correct proposer p k such that |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f .

Let us call that assumption assumption T .

Assumption T vs. Symmetric Byzantine : Symmetric Byzantine processes [START_REF] Kieckhafer | Reaching approximate agreement with mixed-mode faults[END_REF] are processes that behave arbitrarily, but their behaviour is perceived the same by all correct processes. We note that in our case; the assumption of Symmetric Byzantine is stronger than the assumption T .

In fact the Symmetric Byzantine assumption restrict the Byzantine behaviour during the whole execution of the algorithm, whereas the assumption T requires that eventually, during an interval of one round of the execution after the synchronous period, Byzantine processes behaviour do not impact at least 2n/3 correct processes.

Tendermint Fairness

Recently Pass and Shi defined the fairness of a Proof-of-Work based blockchain protocol for a system of n processes as follows (please refer to [START_REF] Pass | Fruitchains: A fair blockchain[END_REF] for the formal definition): A blockchain protocol is fair if honest process that wield φ fraction of the computational resources will reap at least φ fraction of the blocks in any sufficiently long window of the chain, where the computational resources represent the merit of the process. We note that in their model, a block in the blockchain was created by only one process, and that process gets a reward for the created block. We extend the definition of [START_REF] Pass | Fruitchains: A fair blockchain[END_REF] for a system with an infinite number of processes, and where each block is produced by a subset of processes. This is the case of Tendermint for example where for each block there is a subset of processes called the validators that produce that block. The correct validators for a block (those that followed the protocol and participated in the agreement process) are the processes that have to be rewarded for that block. Informally, we say that a blockchain protocol is fair if any correct process (a process that followed the protocol) that wield φ fraction of the total merit in the system will get more or less φ fraction of the total reward that is given in the system. In order to study the fairness of a protocol in a consensus-based blockchain such as Tendermint, Redbelly, SBFT or Hyperledger Fabric, we split the protocol in two mechanisms: (i) the selection mechanism which selects for each new height the validators (the processes that will run the consensus instance) for that height taking into account the merit of each process, and (ii) the reward mechanism, which is the mechanism giving rewards to correct validators that decided on the new block. Informally, if the selection mechanism is fair, then every process will become validator proportionally to its merit parameter; and if the reward mechanism is fair then for each height only the correct validators get a reward. By combining the two mechanisms, a correct process gets rewarded at least a number proportional to its merit parameter, since the faulty processes do not get any reward. We define the following properties for characterizing the fairness of a reward mechanism. For each height, each validator has a boolean variable which we call a reward parameter.

1. For each block in the blockchain, all correct validators for that block have a reward parameter equal to 1, 2. For each block in the blockchain, all faulty validators and the processes that are not validators should have a reward parameter for that block equal to 0.

Tendermint's Reward Mechanism

The validators selection mechanism is part of a separate module of Cosmos project [START_REF] Kwon | Cosmos: A Network of Distributed Ledgers[END_REF], which has Tendermint as core-blockchain. The selection mechanism is today left configurable by the application, therefore in the following we do not address this part. The rewarding mechanism, on the other hand, referred as the Tendermint's reward mechanism is part of the original Tendermint protocol and it is reported in Figure 4 at lines 13 and 16 -20. Tendermint's reward mechanism works as follows:

• Once a new block is decided for height H, processes wait for TimeOutCommit time to collect the decision from the other validators for H, and put them in their set toReward (Fig. 4, lines 13 and 16 -20).

• During the consensus at height H, let us assume that p i proposes the block that will get decided in the consensus. p i proposes to reward processes in its set toReward (Fig. 4, line 6). That is, only the processes from which p i delivered a commit will get a reward for the block at height H -1.

Lemma 12. The reward mechanism of Tendermint is not eventually fair.

Proof We assume that the system becomes synchronous, and that TimeOutCommit < ∆, where ∆ is the maximum message delay in the network. For any height H, let p i be a validator for the height H -1 and p j the validator whose proposal get decided for the height H. It may happen that p j did not receive the commit from p i before proposing its block. Hence when the block is decided, p i does not get a reward for its effort, which contradicts the condition 3' of the reward mechanism fairness. Tendermint's reward mechanism is not eventually fair. Lemma 12

Let us observe that to make Tendermint's reward mechanism at least eventually fair it is necessary to increase TimeOutCommit for each round until it catches up the message delay. We refer to this variant as the Tendermint's reward mechanism with modulable timeouts. Moreover, the commit message should contain enough information to keep track of process participation in each phase, in order to exclude from the reward a process that did not send a propose or vote message but that sends a commit because he is aware about the block produced. This scenario can be avoided, for instance, by including in the toReward variable a process p i only if f + 1 commit messages contain the process p i . Lemma 13. When the commit messages are sufficient to detect a process that did not send expected messages, Tendermint's reward mechanism with modulable timeouts is eventually fair.

Proof We change the reward mechanism in Tendermint as follows:

• Once a new block is decided, say for height H, processes wait for at most TimeOutCommit to collect the decision from the other validators for that height, and put them in their set toReward .

• If a process did not get the commits from all the validators for that height before the expiration of the time-out, it increases the time-out for the next height.

• During the consensus at height H, let us assume that p i proposes the block that will get decided in the consensus. p i gives the reward to the processes in its toReward .

In this reward mechanism, TimeOutCommit is increased whenever a process does not have the time to deliver all the commits for the previous round. We prove that this reward mechanism is eventually fair. There is a point in time t from when the system will become synchronous, and all the commits will be delivered by correct processes before the next height. From the time t, at height H all correct processes know the exact set of validators that committed the block from H -1, and from those commit messages, they can exclude the set of processes that did not participate to the consensus, and they give to those validators from H -1 a reward parameter greater than 0. The validators in H give the reward to the correct validators that committed and which are the only one with a reward parameter greater than 0 for H -1, which satisfy the fairness conditions 1, 2 and 3', so the reward mechanism presented is eventually fair.

Lemma 13

Theorem 14. In an eventual synchronous system, if the selection mechanism is fair, and from the commit messages processes can differentiate correct and Byzantine behaviour, then Tendermint Repeated Consensus with the reward mechanism with modulable time-outs, is eventually fair.

Proof The proof follows by Lemma 13.

T heorem 14

Necessary and Sufficient Conditions for a Fair Reward Mechanism

In this section, we discuss the consequences of the synchrony on the existence of a fair reward in Repeated Consensus based blockchain protocols where the blockchain is constructed by a mechanism of repeated consensus. That is, at each height, a subset of processes called validators produce a block executing an instance of One-Shot Consensus.

Theorem 15. There exists a fair reward mechanism in a Repeated Consensus based blockchain protocol iff the system is synchronous.

Proof We prove this theorem by double implication.

• If the system is synchronous, then there exists a fair reward mechanism.

We assume that the system is synchronous and all messages are delivered before the x following blocks. We consider the following reward mechanism. For all the correct validators at any height H, if H -x ≤ 0, do not reward yet, otherwise:

-Set to 1 the reward parameters of all correct validators in H -x, and to 0 the merit parameters of the others.

-Reward only the validators with a reward parameter equal to 1 from the height H -x.

We prove in the following that the above reward mechanism is fair.

Note that the system is synchronous and messages sent are delivered within at most x blocks. Therefore, the exact set of correct validators at H -x is known by all at H. By construction, the validators in H exactly give the reward to the correct validators who are the only one with a reward parameter for H -x greater than 0, which satisfies the fairness conditions (1, 2 and 3).

• If there exists a fair reward mechanism, then the system is synchronous.

By contradiction, we assume that P is a protocol having a fair reward mechanism and that, the system is not synchronous. We say that the validators following P are the correct validators. Let V i be a set of validators for the height i, and V j , (j > i) be the set of validators who gave the reward to the correct validators in V i . Since the system is not synchronous, the validators in V j may not receive all messages from V i before giving the reward.

By conditions 1, and 2, it follows that all and only the correct validators in V i have a reward parameter greater than 0. Since the reward mechanism is fair, with the condition 3, we have the validators in V j gave the reward only to the correct validators in V i . That means that the correct validators in V j know exactly who were the correct validators in V i , so they got all the messages before giving the reward. Contradiction, which conclude the proof.

T heorem 15

If there is no synchrony, then there cannot be a fair consensus based protocol for blockchain. The fairness we define states that every time during the execution, the system is fair, so if a process leaves the system, it receives all rewards it deserves for the time it was in the system. Theorem 16. There exists an eventual fair reward mechanism in a Repeated Consensus based blockchain protocol iff the system is eventually synchronous or synchronous.

Proof We proof this result by double implication.

• If the system is eventually synchronous or synchronous, then there exists an eventual fair reward mechanism.

If the system is synchronous, the proof follows directly from theorem 15. Otherwise, we prove that the following reward mechanism is eventually fair. When starting the height H, the correct validator for H do the following:

-Start the time-out for the reception of the messages from validators for the block H -1;

-Wait for receiving the messages from validators for the block H -1 or the time-out to expire. If the time-out expires before the reception of more that 2n/3 of the messages, increase the time-out for the next time;

-Set to 1 the reward parameters for H -1 of the correct validators which messages where received, and to 0 the merit parameters of the others;

-Reward only the validators for the height H -1 which have a merit parameter different than 0.

Since the system is eventually synchronous, eventually when the system will become synchronous, the processes, in particular the validators for H will receive messages for all the correct validators from round H -1 before the round H. We note that condition 3' is a weaker form of the condition 3 where we do not consider the beginning. So we end the proof by applying the theorem 15 from the time when the system becomes synchronous.

• If there exists an eventual fair reward mechanism, then system is eventually synchronous or synchronous.

If the reward mechanism is fair, by theorem 15, the communication is synchronous, which ends the proof. Otherwise, since the reward mechanism is eventually fair, then there is a point in time t from when all the rewards are correctly distributed. By considering t as the beginning of our execution, then we have that the reward mechanism is fair after t, so by the theorem 15, the system is synchronous from t. If the system were not synchronous before t, that means that it is eventually synchronous, otherwise, it is synchronous. Which ends the proof.

T heorem 16

Corollary 16.1. In an asynchronous system, there is no (eventual) fair reward mechanism, so if the communication system is asynchronous, then there is no (eventual) fair Repeated Consensus-based Blockchain protocol. Note that this result is valid even if all the processes are correct.

Conclusion

The first contribution of this paper is the improvement and the formal analysis of the original Tendermint protocol, a PBFT-based repeated consensus protocol where the set of validators is dynamic. Each improvement we introduce is motivated by bugs we discover in the original protocol.

A preliminary version of this paper has been reported in [START_REF] Amoussou-Guenou | Correctness and Fairness of Tendermint-core Blockchains[END_REF]. Very recently a new version of Tendermint has been advertised in [START_REF] Buchman | The latest gossip on BFT consensus[END_REF] by Tendermint foundation without an operational release.

The authors argue that their solution works if the two hypothesis below are verified: Hypothesis 1 : if a correct process receives some message m at time t, all correct processes will receive m before max(t, global stabilization time) + ∆. Note that this property called by the authors gossip communication should be verified even though m has been sent by a Byzantine process. Hypothesis 2 : there exists eventually a proposer such that its proposed value will be accepted by all the other correct processes. Moreover, the formal and complete correctness proof of this new protocol is still an open issue (several not trivial bugs have been reported recently e.g. [START_REF] Tendermint | Tendermint: correctness issues[END_REF]).

Our second major contribution is the study of the fairness of the reward mechanism in repeatedconsensus blockchains. We proved that there exists a reward mechanism in repeated-consensus blockchains that is (eventually) fair if and only if the system communication is (eventually) synchronous. In addition, we show that even if Tendermint protocol evolves in an eventual synchronous setting, it is not eventually fair. However, it becomes eventually fair when timeouts are carefully tuned, and under the assumption that commit messages contains enough information to distinguish between correct and Byzantine processes in the synchronous period. Our study opens an interesting future research direction related to the fairness of the selection mechanism in repeated-consensus based blockchains.

Figure 1 :

 1 Figure 1: First part of Tendermint One-shot Consensus algorithm at correct process p i .

Figure 1 :

 1 Figure 1: Second part of Tendermint One-shot Consensus algorithm at correct process p i .

40 Figure 2 :Figure 3 :

 4023 Figure2: State Machine for Tendermint One-Shot algorithm described in Figure1. For ease of readability, common exit conditions are represented.

 in the round r at height H and |prevotesReceived H,r ′ i | > 2n/3 where r ′ > r, then it goes to the Prevote step for the round r ′ , or • If p i is in the round r at height H and |precommitsReceived H,r ′ i | > 2n/3 where r ′ > r, then it goes to the Precommit step for the round r ′ .

Figure 4 :

 4 Figure 4: Tendermint Repeated Consensus algorithm at correct process p i .

5. 1

 1 Addition of line 29 on Fig.1

 it creates a valid proposal and broadcasts it. Otherwise it broadcasts the block it is locked on. If p i is not the proposer then it waits for the proposal from the proposer. p i sets the timer to T imeOutP roposal, if the timer expires before the delivery of the proposal then p i increases the time-out, otherwise it stores the proposal in proposalReceived H,r i . In any case, p i goes to the Prevote step. 2. Prevote step (lines 17 -29): If p i delivers the proposal during the Propose step, then it checks the data on the proposal. If lockedBlock i = nil, and p i delivers a proposal with a valid PoLCR then it unlocks. After that check, if p i is still locked on a block, then it prevotes on lockedBlock i ; otherwise it checks if the block B in the proposal is valid or not, if B is valid, then it prevotes B, otherwise it prevotes on nil. Then p i waits until |prevotesReceived H,r i | > 2n/3. If there is no PoLC for a block or for nil for the round r, then p i sets the timer to TimeOutPrevote, waits for the timer's expiration and increases TimeOutPrevote. In any case, p i goes to Precommit step. 3. Precommit step (lines 30 -40): p i checks if there was a PolC for a particular block or nil during the round (lines 30 and 34). There are three cases: (i) if there is a PoLC for a block B, then it locks on B, and precommits on B (lines 30 -32); (ii) if there is a PoLC for nil, then it unlocks and precommits on nil (lines 34 -36); (iii) otherwise, it precommits on nil (line 38); in any case, p i waits until |precommitsReceived H,r i | > 2n/3 or (is23Maj(nil, prevotesReceived H,r i)), and it goes to the next round.

1. Propose step (lines 5 -16): If p i is the proposer of the round and it is not locked on any block, then

 1. In round 2, p 2 proposes (v 2 , ⊥), where B = v 2 , and PoLCR = ⊥ as p 2 hasn't locked any value.p 1 rejects this proposal and Prevote v 1 as it has v 1 locked in round 1 (condition at line 17 evaluates to false as upon receipt of Proposal all correct processes set PoLCR to ⊥). p 2 and p 3 accept the proposal and prevote v 2 , but as p 4 stay silent, no process locks a value in round 2. So at the end of round 2, we have the following state: lockedBlock = v 1 , LLR = 1 at p 1 , and for other processes equal to initial values (lockedBlock = nil and LLR = ⊥) PoLCR = ⊥ at p 1 , p 2 , and p 3 (p 4 is faulty so we don't talk about it's state). 2. In round 3, p 3 proposes (v 3 , ⊥) as it hasn't locked any value. p 1 rejects this proposal and prevote v 1 as it has v 1 locked in round 1 (condition at line 17 evaluates to false as upon receipt of Proposal all correct processes set PoLCR to ⊥). p 2 and p 3 accept the proposal and prevote v 3 , but p 4 sends Prevote message for v 3 only to p 3 . Furthermore, p 4 sends Prevote v 3 message to p 3 just before timerP revote expires at p 3 , and after timerP revote expired at p 1 and p 2 , and they moved to round 4. So although Prevote messages that are received by p 3 are propagated to other processes, they will be received by p 1 and p 2 after they moved to round 4. So in the round 3 only p 3 locks v 3 . At the end of the round 3, lockedBlock = v 1 , LLR = 1 at p 1 , lockedBlock = v 3 , LLR = 3 at p 3 , lockedBlock = nil, LLR = ⊥ at p 2 , and PoLCR = ⊥ for p 1 , p 2 , and p 3 (p 4 is faulty so we don't talk about it's state).3. In round 4, p 4 is a proposer and as it is Byzantine process we assume it stays silent, so nothing change.4. In round 5, p 1 proposes (v 1 , 1). p 3 rejects this proposal and prevote v 3 as it has v 3 locked in round 3, therefore the condition at line 17 evaluates to false as LLR = 3 and PoLCR = 1 at p 3 . p 1 and p 2 accept the proposal, and prevote v 1 . p 4 sends Prevote message for v 1 only to p 1 just before timerP revote expires at p 1 and after timerP revote expires at p 2 and p 3 . So p 2 and p 3 receives Prevote from p 4 from round 5 only after they moved to round 6. So in the round 5 only p 1 locks v 1 . At the end of the round 5, lockedBlock = v 1 , LLR = 5 at p 1 , lockedBlock = v 3 , LLR = 3 at p 3 , lockedBlock = nil, LLR = ⊥ at p 2 , and PoLCR = 1 for p 1 , p 2 , and p 3 (p 4 is faulty so we don't talk about it's state).5. In round 6, p 2 proposes (v 2 , 1) as it hasn't locked any value. p 1 rejects this proposal and prevote v 1 as it has v 1 locked in round 5. p 3 rejects the proposal and prevote v 3 as it has locked v 3 in round 3, and p 4 stays silent, so no process lock a value in round 2. At the end of the round 6, lockedBlock = v 1 , LLR = 5 at p 1 , lockedBlock = v 3 , LLR = 3 at p 3 , lockedBlock = nil, LLR = ⊥ at p 2 , and PoLCR = 1 for p 1 , p 2 , and p 3 (p 4 is faulty so we don't talk about it's state).6. In round 7, p 3 proposes (v 3 , 3). p 1 rejects this proposal and prevote v 1 as it has v 1 locked in round 5. p 2 and p 3 accept the proposal and prevote v 3 , and p 4 sends Prevote message for v 3 only to p 3 , just before timerP revote expires at p 3 and after timerP revote expires at p 1 and p 2 , and after they moved to round 8. So similar as above in the round 7 only p 3 locks v 3 . At the end of the round 7, lockedBlock = v 1 , LLR = 5 at p 1 , lockedBlock = v 3 , LLR = 7 at p 3 , lockedBlock = nil, LLR = ⊥ at p 2 , and PoLCR = 3 for p 1 , p 2 , and p 3 (p 4 is faulty so we don't talk about it's state).

 3. A process gets a reward for a block if and only if it has a reward parameter for that block equal to 1.3'. There exists a height H such that for a block in the blockchain at height H ′ > H a process gets a reward for that block if and only if it has a reward parameter for that block equal to 1.

	Definition 6.1 (Fairness of a reward mechanism). A reward mechanism is fair if it satisfies the
	conditions 1, 2 and 3.
	Definition 6.2 (Eventual fairness of a reward mechanism). A reward mechanism is eventually fair
	if it satisfies the conditions 1, 2 and 3'.

Definition 6.3 ((Eventual) Fairness of a blockchain protocol). A blockchain protocol is fair (resp. eventually fair) if it has a fair selection mechanism and a fair (resp. eventually fair) reward mechanism.

• In any case, it sets the timer to TimeOutCommit for receiving more commits and lets it expire. Then p i decides B and goes to the next height.

Whenever p i delivers a commit, it broadcasts it (lines 16 -20). Note that the reward for the height H is given during the height H + 1, and to a subset of validators who committed the block for H (line 6).

Correctness of Tendermint Repeated Consensus

In this section we prove the correctness of Tendermint Repeated Consensus algorithm in Figure 4.

We now show that Tendermint Repeated Algorithm (Fig. 4) implements the Repeated Consensus.

Lemma 8 (Repeated Termination). In an eventual synchronous system, and under the additional assumption that during the synchronous period eventually there is a correct proposer p k such that |{p j : LLR k ≤ LLR j and p j is correct}| < n/3 -f , Tendermint Repeated Consensus Algorithm verifies the following property: Every correct process has an infinite output.

Proof By contradiction, let p i be a correct process, and we assume that p i has a finite output. Two scenarios are possible, either p i cannot go to a new height, or from a certain height H it outputs only ⊥.

• If p i cannot progress, one of the following cases is satisfied:

-The function consensus() does not terminate (line 6), which is a contradiction due to Lemma 6; or p i waits an infinite time for receiving enough commits (line 9), which cannot be the case because of the best effort broadcast guarantees and the eventual synchronous assumption, all the correct validators terminate the One-Shot Consensus and broadcast their commit.

• If p i decides at each height (line 14), it means that from a certain height H, p i only outputs ⊥. That means that: (i) either p i is a validator for H and the function consensus(H ′) is only returning ⊥ for all H ′ ≥ H (lines 5 and 6), or (ii) p i is not a validator for H but delivered at least n/3 commits for ⊥ (lines 9 and 19).

-(i): Since consensus() returns the value ⊥, that means by Lemma 2 that isValid(⊥) = true, which is a contradiction with the definition of the function isValid().

-(ii): Since only the validators commit, and each of them broadcasts its commit (lines 5 -7), and because f < n/3, it means that p i delivered a commit from at least one correct validator (process). By Lemma 2, correct processes only decide/commit on valid value, and ⊥ is not valid, which is a contradiction.

We conclude that if p i is a correct process, then it has an infinite output. Lemma 8

Lemma 9 (Repeated Agreement). In an eventual synchronous system, Tendermint Repeated Consensus Algorithm verifies the following property: If the i th value of the output of a correct process is B, then B is the i th value of the output of any other correct process.

Proof We prove this lemma by construction. Let p j and p k be two correct processes. Two cases are possible: