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Abstract

Tendermint-core blockchains offer strong consistency (no forks) in an open system relying on
two ingredients (i) a set of validators that generate blocks via a variant of Practical Byzantine
Fault Tolerant (PBFT) consensus protocol and (ii) a rewarding mechanism that dynamically
selects nodes to be validators for the next block via proof-of-stake, a non-energy consuming
alternative of proof-of-work. It is well-known that in those open systems the main threat is
the tragedy of commons that may yield the system to collapse if the rewarding mechanism is
not adequate. At minima the rewarding mechanism must be fair, i.e. distributing the rewards
in proportion to the merit of participants. The contribution of this paper is two-fold. First,
we provide a formal description of Tendermint-core protocol and we prove that in eventual
synchronous systems (i) it verifies a variant of one-shot consensus for the validation of one
single block and (ii) a variant of the repeated consensus problem for multiple blocks. Our
second contribution relates to the fairness of Tendermint rewarding mechanism. We prove that
Tendermint rewarding is not fair. However, a small twist in the protocol makes it eventually
fair. Additionally, we prove that there exists an (eventual) fair rewarding mechanism in repeated
consensus-based blockchains if and only if the system is (eventually) synchronous.

1 Introduction

Blockchain is today one of the most appealing technologies since its introduction in the BitCoin
White Paper [30] in 2008. Blockchains systems, similar to P2P systems in the early 2000, take
their roots in the non academical research. After the releasing of the most popular blockchains
(e.g. Bitcoin [30] or Ethereum [34]) with a specific focus on economical transactions, their huge
potential for various other applications ranging from notary to medical data recording became
evident. In a nutshell, Blockchain systems maintain a continuously-growing history of ordered
information, encapsulated in blocks. Blocks are linked to each others by relying on collision resistant
hash functions, i.e., each block contains the hash of the previous block. The Blockchain itself is a
distributed data structure replicated among different peers. In order to preserve the chain structure
those peers need to agree on the next block to append in order to avoid forks. The most popular
technique to decide which block will be appended is the proof-of-work mechanism of Dwork and
Naor [13]. The block that will be appended to the blockchain is owed by the node (miner) having
enough CPU power to solve first a crypto-puzzle. The only possible way to solve this puzzle is by
repeated trials. The major criticisms for the proof-of-work approach are as follows: it is assumed
that the honest miners hold a majority of the computational power, the generation of a block is
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energetically costly which yield to the creation of mining pools and finally, multiple blockchains
that coexist in the system due to accidental or intentional forks.

Recently, the non academic research developed alternative solutions to the proof-of-work tech-
nique such as proof-of-stake (the power of block building is proportional to the participant wealth),
proof-of-space (similar to proof-of-work, instead of CPU power the prover has to provide the evi-
dence of a certain amount of space) or proof-of-authority (the power of block building is proportional
to the amount of authority owned in the system). These alternatives received little attention in
the academic research. Among all these alternatives proof-of-stake protocols and in particular
those using variants of Practical Byzantine Fault-Tolerant consensus [6] became recently popular
not only for in-chain transaction systems but also in systems that provide cross-chain transactions.
Tendermint [28] was the first in this line of research having the merit to link the Practical Byzan-
tine Fault-Tolerant consensus to the proof-of-stake technique and to propose a blockchain where a
dynamic set of validators (subset of the participants) decide on the next block to be appended to
the blockchain. Although, the correctness of Tendermint has never been formally analyzed from
the distributed computing perspective, Tendermint protocol or slightly modified variants became
recently the core of several popular systems such as Casper [26] for in-chain transactions or Cosmos
[27] for cross-chain transactions.

In this paper we analyse the correctness of Tendermint agreement protocol. One of the funda-
mental results is as follows.

Theorem 1.1. In an eventual synchronous system Tendermint agreement protocol verifies the
one-shot and repeated consensus specifications provided that the number of Byzantine validators,
f , is f < n/3 where n is the number of validators participating in one-shot consensus.

We are further interested in the fairness of the rewarding mechanism in Tendermint blockchains.
As explained previously, without a glimpse of fairness a protocol based on voting committees may
collapse. Our fairness study is in line with Francez definition of fairness [19]. We define the fairness
of a protocol based on voting committees (e.g. Tendermint, Byzcoin, PeerCensus, RedBelly) by
the fairness of its selection mechanism and the fairness of its reward mechanism. The selection
mechanism is in charge of selecting the subset of processes that will participate to the agreement
on the next block to be appended to the blockchain, while the reward mechanism is how the rewards
are distributed among processes that participate in appending a new block. Our fundamental result
related to the fairness of rewarding in repeated-consensus blockchains is as follows:

Theorem 1.2. There is a (eventual) fair rewarding mechanism for repeated-consensus blockchains
if and only if the system is (eventual) synchronous.

A direct corollary is that Tendermint protocol is not fair, however with a small twist in the way
delays are handled in Tendermint its reward mechanism becomes eventually fair.

The rest of the paper is organized as follows. Section 2 discuss esrelated works. Section 3 defines
the model and the formal specifications of one shot and repeated consensus. Section 4 formalizes
the Tendermint protocol and analyzes its correctness in eventual synchronous systems. Section
6 discusses the necessary and sufficient conditions for a protocol based on repeated consensus to
achieve a fair rewarding.
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2 Related Work

Interestingly, only recently distributed computing academic scientists focus their attention on the
theoretical aspects of blockchains motivated mainly by the intriguing claim of popular blockchains
including Bitcoin and Ethereum that they implement consensus in an asynchronous dynamic open
system. This claim is refuted by the famous impossibility result in distributing computing [17].

In distributed systems, the theoretical studies of proof-of-work based blockchains have been
pioneered by Garay et al [20]. Garay et al. decorticate the pseudo-code of Bitcoin and analyse
its agreement aspects considering a synchronous round-based communication model. This study
has been extended by Pass et al. [31] to round based systems where messages sent in a round can
be received later. In order to overcome the drawbacks of Bitcoin, [15] proposes a mix between
proof-of-work blockchains and proof-of-work free blockchains referred as Bitcoin-NG. The idea is
that the execution of the system is organized in epochs. In each epoch a leader elected via a
proof-of-work mechanism will decide the order transactions will be committed in the blockchain till
the next epoch. Bitcoin-NG inherits the drawbacks of Bitcoin: costly proof-of-work process, forks,
no guarantee that a leader in an epoch is unique, no guarantee that the leader do not change the
history at will if it is corrupted.

On another line of research Decker et al. [10] propose PeerCensus system that targets lin-
earizability of transactions. PeerCensus combines the proof-of-work blockchain and the classical
results in Practical Byzantine Fault Tolerant agreement area. PeerCensus suffers of the same draw-
backs as Bitcoin and Byzcoin face to dynamic adversaries. The exact level of coherency ensured
by PeerCensus and other blockchain systems altogether with a formal framework to analyse the
blockchains coherency has been proposed in [2]. This work continues the study conducted in [1]. In
parallel and independent of the work in [2], [3] proposes a formalization of the distributed ledgers
as an ordered list of records.

In the same spirit, Byzcoin [25] builds on top of Practical Byzantine Fault-Tolerant consensus
[6] enhanced with a scalable collective signing process. [25] is based on a leader-based consensus
over a group of members chosen based on a proof-of-membership mechanism. As in Bitcoin, when a
miner succeeds to mine a block it is included in the voting members set that excludes one member.
This protocol also inherits some of the Bitcoin problems and vulnerabilities. Also, the distributed
implementation of the collective signing is still an open problem.

In order to avoid some of the previously cited problems, Micali [29] introduced (further extended
in [5, 7]) the sortition based blockchains that completely replaces the proof-of-work mechanism by
sortition. These works focus again on the agreement aspects of blockchains using probabilistic in-
gredients and providing probabilistic guarantees. More specifically, the set of nodes that are allowed
to produce and validate blocks are randomly chosen and they change over the time. Interestingly,
the study focuses only on synchronous round-based communication models.

The only academic work that addresses the consensus in proof-of-stake based blockchains is
authored by Daian et al. [9] that proposes a protocol for weakly synchronous networks. The
execution of the protocol is organized in epochs. Similar to Bitcoin-NG [15] in each epoch a different
committee is elected and inside the elected committee a leader will be chosen. The leader is allowed
to extend the new blockchain. The protocol is validated via simulations and only partial proofs
of correctness are provided. Ouroboros [24], proposes a sortition based proof-of-stake protocol and
addresses mainly the security aspects of the proposed protocol.

Red Belly [8] focuses on consortium blockchains, where only a predefined subset of processes
are allowed to append blocks, and proposes a Byzantine consensus protocol.
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Interestingly, none of the previous academic studies made the connection between the repeated
consensus specification and the literature around this problem [4, 12, 11] and the repeated agreement
process in blockchain systems. Moreover, in terms of fairness of rewards, no academic study has
been conducted related to blockchains based on repeated consensus. The closest works in blockchain
systems to our fairness study (however very different in its scope) study the chain-quality. In [20],
Garay et al. define the notion of chain-quality as the proportion of blocks mined by honest miners
in any given window; and the authors study the conditions where the ratio of blocks in the chain
that were mined by malicious players over the total blocks in a given window is bounded. Kiayias
et al. in [24] proposes Ourobouros[24], also analyses the chain-quality property. Pass et al. address
in [32] one of the vulnerabilities of Bitcoin studied formally in Eyal and Sirer [16]. In [16] the
authors prove that if the adversary controls a coalition of miners holding even a minority fraction
of the computational power, this coalition can gain twice its share. Fruitchain [32] overcomes this
problem by ensuring that no coalition controlling less than a majority of the computing power can
gain more than a factor 1+3δ by not respecting the protocol, where δ is a parameter of the protocol.
In [14], Eyal analyses the consequences of attacks in systems where pools of miners can infiltrate
each other, and shows that in such systems, there is an equilibrium where all pools earn less than
if there were no attack. In [21], Guerraoui and Wang study the effect of the delays of messages
propagation in Bitcoin, and show that in a system of two miners, a miner can take advantage of the
delays and be rewarded exponentially more that its expectation. In [22], Gürcan et al. study the
fairness in Bitcoin from the point of view of the processes that do not participate to the mining.
A similar work is done by Herlihy and Moir in [23] where the authors study the users fairness and
consider as an example Tendermint. The authors discussed how processes with malicious behaviour
can violate fairness by choosing transactions and then they propose modifcations to Tendermint to
make those violations detectable and accountable.

3 System model and Problem Definition

The system is composed of an infinite set Π of asynchronous sequential processes, namely Π =
{p1, . . . }; i is called the index of pi. Asynchronous means that each process proceeds at it own
speed, which can vary with time and remains unknown to the other processes. Sequential means
that a process executes one step at a time. This does not prevent it from executing several threads
with an appropriate multiplexing. Each process has a merit parameter that will model its stake in
Proof-of-Stake based systems. We also consider a finite subset V ∈ Π of size n of processes called
validators. The set V may change during the execution. A process is promoted in V based on its
merit parameter.

As local processing time are negligible with respect to message transfer delays, they are consid-
ered as being equal to zero.

Communication network. The processes communicate by exchanging messages through an
eventually synchronous point-to-point network. Eventually Synchronous means that after a finite
unknown a priori time τ there is a bound δ on the message transfer delay. Point-to-point means
that in the network any pair of processes is connected by a bidirectional channel. Hence, when a
process receives a message, it can identify its sender.

A process pi broadcasts a message by invoking the primitive broadcast(〈TAG,m〉), where TAG
is the type of the message, and m its content. To simplify the presentation, it is assumed that
a process can send message to itself. The primitive broadcast() is a best effort broadcast, which
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means that when a correct process broadcasts a value, eventually all the correct processes deliver
it. A process pi receives a message by executing the primitive delivery(). Messages are created with
a digital signature, and we assume that digital signatures cannot be forged. When a process pi
delivers a message, it knows the process pj that created the message.

Failure model. There is no bound on processes that can exhibit a Byzantine behaviour [33]
in the whole system, but up to f validators can exhibit a Byzantine behaviour at each point of
the execution. A Byzantine process is a process that behaves arbitrarily: it can crash, fail to send
or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary state
transition, etc.Byzantine process can control the network by modifying the order in which messages
are received, but they cannot postpone forever message receptions. Moreover, Byzantine processes
can collude to ”pollute” the computation (e.g., by sending messages with the same content, while
they should send messages with distinct content if they were non-faulty). A process (or validator)
that exhibits a Byzantine behaviour is called faulty. Otherwise, it is non-faulty or correct or honest.
To be able to solve the consensus problem, we assume that f < n/3.

Problem definition. In this paper we prove that Tendermint implements two abstractions in
distributed systems: consensus and repeated consensus defined formally as follows.

Definition 3.1 (One-Shot Consensus). We say that an algorithm implements One-Shot Consensus
if and only if it satisfies the following properties:

• Termination. Every correct process eventually decides some value.

• Integrity. No correct process decides twice.

• Agreement. If there is a correct process that decides a value B, then eventually all the
correct processes decide B.

• Validity[8]. A decided value is valid, it satisfies the predefined predicate denoted isValid().

The concept of multi-consensus is presented in [4], where the authors assume that only the faulty
processes can postpone the decision of correct processes. In addition, the consensus is made a finite
number of times. The long-lived consensus presented in [12] studies the consensus when the inputs
are changing over the time, their specification aims at studying in which condition the decisions
of correct process do not change a lot over time. None of these specifications is appropriate for
blockchain systems. In [11], Delporte-Gallet et al. defined the Repeated Consensus as an infinite
sequence of One-Shot Consensus instances, where the inputs values may be completely different
from one instance to another, but where all the correct processes have the same infinite sequence
of decisions. We consider a variant of the repeated consensus problem as defined in [11]. The main
difference is that we do not predicate on the faulty processes. Each correct process outputs an
infinite sequence of decisions. We call that sequence the output of the process.

Definition 3.2 (Repeated Consensus). An algorithm implements a repeated consensus if and only
if it satisfies the following properties:

• Termination. Every correct process has an infinite output.

• Agreement. If the ith value of the output of a correct process is B, then B is the ith value
of the output of any other correct process.

• Validity. Each value in the output of any correct process is valid, it satisfies the predefined
predicate denoted isValid().
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4 Tendermint Formalization

4.1 Informal description of Tendermint and its blockchain

Tendermint’s protocol [28] aims at building a blockchain without fork. Tendermint has two archi-
tectural levels: Tendermint-core (that implements a variant of PBFT consensus) and Tendermint
application, in charge of selecting the validators set that will execute the Tendermint-core agreement
protocol. The Tendermint blockchain is an infinite chain of blocks which serve as an immutable dis-
tributed ledger. When building the blockchain, a subset of fixed size n of processes called validators
should agree on the next block to append to the history. The set of validators is deterministically
determined by the current history. We note that this subset may change once a block is appended.
The mechanism to choose the validator for a given history is done by an upper layer application
and is further referred as selection mechanism.

The genesis block of Tendermint blockchain is at height 0, and the height of a block is the
distance that separates that block to the genesis block. Each block contains: (i) a Header which
contains a pointer to the previous block and the height of the block, (ii) the Data which is a list of
transactions, and (iii) a set LastCommit which is the set of validators that signed for the previous
block. Except the first block, each block refers to the previous block in the chain. We say that the
history of length l of the blockchain is the finite chain composed of the blocks at the height smaller
than l.

Giving a current height of the Tendermint blockchain, a total order set of validators is selected
to add a new block. The validators start a One-Shot Consensus. The first validator proposes a
block B that it creates, if at least 2n/3 of the validators accept B, then B will be appended as
the next block, otherwise the next validator proposes a block, and the mechanism is repeated until
more than 2n/3 of the validators accept a block. For each height of the Tendermint blockchain, the
mechanism to append a new block is the same, only the set of validators may change. Therefore,
Tendermint applies a Repeated Consensus to build a blockchain, and at each height, it relies on a
One-Shot Consensus to decide the block to be appended.

Although the choice of validators in the sets of validators is managed by the Tendermint ap-
plication layer, the rewards for the validators that contributed to the block at some specific height
H are determined during the construction of the block at height H + 1. The validators for H that
get a reward for H are the ones that validators for H + 1 ”saw” when proposing a block. This
mechanism can be unfair, since some validator for H may be slow, and its messages may not reach
the validators involved in H+1, implying that it may not get the rewards it deserved. More details
on the fairness issues in Tendermint and similar protocols are discussed in Section 6.

4.2 Tendermint One-Shot Consensus algorithm
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Function consensus(H,Π, signature); %One-Shot Consensus for the super-round H with the set Π of processes%

Init:
(1) r ← 0; T imeOutPropose← ∆Propose; T imeOutPrevote← ∆Prevote; B ← ⊥; lockedBlocki ← nil;

(2) PoLCRi ← ⊥; proposalReceivedH,r
i ← ⊥; prevotesReceivedH,r

i ← ⊥; precommitsReceivedH,r
i ← ⊥;

(3) LLRi ← ⊥;
———————————————————————
while (true) do

(4) r ← r + 1;
(5) PoLCRi ← ⊥;
——– Propose step r ——–
(6) if (pi == proposer(H, r)) then

(7) if (LLRi 6= nil) then PoLCRi = LLRi; endif
(8) B ← createNewBlock(signature);
(9) trigger broadcast 〈PROPOSE, (B,H, r, PoLCRi)i〉;
(10) else

(11) set timerProposer to T imeOutPropose;

(12) wait until ((timerProposer expired) ∨ (proposalReceivedH,r′

i 6= ⊥));

(13) if ((timerProposer expired) ∧ (proposalReceivedH,r′

i == ⊥)) then

(14) T imeOutPropose← T imeOutPropose+ 1;
(15) endif

(16)endif
——– Prevote step r ——–
(17) if ((PoLCRi 6= ⊥) ∧ (LLRi 6= ⊥) ∧ (LLRi < PoLCRi < r)) then

(18) wait until |prevotesReceivedH,PoLCR
i | > 2/3;

(19) if (∃B′ : (is23Maj(B′, prevotesReceived
H,PoLCRi

i ))) then lockedBlocki ← nil; endif
(20)endif
(21) if (lockedBlocki 6= nil) then trigger broadcast 〈PREV OTE, (lockedBlocki, H, r)i〉;

(22) else if (isValid(proposalReceivedH,r
i )) then

(23) trigger broadcast 〈PREV OTE, (proposalReceivedH,r
i ,H, r)i〉;

(24) endif

(25) else trigger broadcast 〈PREV OTE, (nil,H, r)i〉;
(26)endif

(27)wait until ((is23Maj(nil, prevotesReceivedH,r
i )) ∨ (∃B′′ : (is23Maj(B′′, prevotesReceivedH,r

i )))∨

(|prevotesReceivedH,r
i | > 2/3)); %Delivery of any 2n/3 prevotes for the round r%

(28) if (¬(is23Maj(nil, prevotesReceivedH,r
i )) ∧ ¬(∃B′′ : (is23Maj(B′′, prevotesReceivedH,r

i )))) then

(29) set timerPrevote to T imeOutPrevote;
(30) wait until (timerPrevote expired);
(31) if (timerPrevote expired) then

(32) T imeOutPrevote← T imeOutPrevote+ 1;
(33) endif

——– Precommit step r ——–

(34) if (∃B′ : (is23Maj(B′, prevotesReceivedH,r
i ))) then

(35) lockedBlocki ← B′;
(36) trigger broadcast 〈PRECOMMIT, (B′,H, r)i〉;
(37) LLRi ← r;

(38) else if (is23Maj(nil, prevotesReceivedH,r
i )) then

(39) lockedBlocki ← nil;
(40) trigger broadcast 〈PRECOMMIT, (nil,H, r)i〉;
(41) endif

(42) else trigger broadcast 〈PRECOMMIT, (nil,H, r)i〉);
(43)endif

(44)wait until ((is23Maj(nil, prevotesReceivedH,r
i )) ∨ (|precommitsReceivedH,r

i | > 2/3))
endwhile

Figure 1: Begining of the pseudocode of the One-shot Consensus Algorithm executed by a correct
process pi.
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upon event delivery 〈PROPOSE, (B′,H, r′, P oLCRj)j〉:

(45) if (proposalReceivedH,r′

i == ⊥) then

(46) proposalReceivedH,r′

i ← (B′,H, r′)j ;
(47) PoLCRi ← PoLCRj ;
(48) trigger broadcast 〈PROPOSE, (B′,H, r′, P oLCRj)j〉;
(49)endif
———————————————————————
upon event delivery 〈PREV OTE, (B′,H, r′)j〉:

(50) if ((B′, H, r′)j /∈ prevotesReceivedH,r′

i ) then

(51) prevotesReceivedH,r′

i ← prevotesReceivedH,r′

i ∪ (B′, H, r′)j ;
(52) trigger broadcast 〈PREV OTE, (B′,H, r′)j〉;

% Commom exit condition for prevotes%

(53) if ((r < r′) and (|prevotesReceivedH,r′

i
| > 2/3)) then

(54) r ← r′;
(55) goto Prevote step r;
(56) endif

(57)endif
———————————————————————
upon event delivery 〈PRECOMMIT, (B′,H, r′)j〉:

(58) if ((B′, H, r′)j /∈ precommitsReceivedH,r′

i ) then

(59) precommitsReceivedH,r′

i ← precommitsReceivedH,r′

i ∪ (B′,H, r′)j ;
(60) trigger broadcast 〈PRECOMMIT, (B′, H, r′)j〉;

% Commom exit condition for precommits%

(61) if ((r < r′) and (|precommitsReceivedH,r′

i | > 2/3)) then

(62) r ← r′;
(63) goto Precommit step r;
(64) endif

(65)endif
———————————————————————

when (∃B′ : is23Maj(B′, precommitsReceivedH,r′

i )):
(66)return B’;%Terminate the consensus for the super-round H by deciding B′%

Figure 1: End of the pseudocode of the One-shot Consensus Algorithm executed by a correct
process pi.

The One-Shot Consensus process in deciding the next block for a given height H proceeds in
rounds. A round r, during which the processes try to decide on a proposed block, consists in three
steps: (i) the Propose step, the proposer of the round broadcasts a proposal; (ii) the Prevote step,
all processes broadcast their prevotes; and (iii) the Precommit step, all processes broadcast their
precommits. When pi broadcasts a message (〈TAG,m〉), m contains a block B, and we say that
pi prevotes or precommint on m if TAG=PREV OTE or TAG=PRECOMMIT respectively. A
process has a Proof-of-LoCk (PoLC) for a block B (resp. for nil) at a round r for the height H if
it received at least 2n/3 prevotes for B (resp. for nil). A PoLC-Round (PoLCR) is a round such
that there was a PoLC for a block at round PoLCR.

Messages syntax, variables and data structures. PoLCRi is an integer. lockedBlocki is
the last block on which pi is locked. If it is equal to a block B, we say that pi is locked on B,
otherwise it is equal to nil, and we say that pi is not locked. When lockedBlocki 6= nil and is
taking the value nil, then pi unlocks. Last-Locked-Round (LLRi) is an integer representing the
last round where pi locked on a block. T imeOutPropose is the maximum time a process has to
stay in the Propose step. At the beginning of the height, the value of T imeOutPropose is set to
∆Propose and is incremented each time T imeOutPropose expires. T imeOutPrevote is the maxi-
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mum time a process has to stay in the Prevote step. At the beginning of the height, the value of
T imeOutPrevote is set to ∆Prevote and is incremented each time T imeOutPrevote expires. B is
the block the process created. proposalReceivedH,r

i is the proposal that pi delivered for the round

r at height H. prevotesReceivedH,r
i is the set containing all the prevotes pi delivered for the round

r at height H. precommitsReceivedH,r
i is the set containing all the precommits pi delivered for the

round r at height H.

Functions. We denote by Block the set containing all blocks, and by MemPool the structure
containing all the transactions.

• proposer : V ×Height×Round → Π is a deterministic function which gives the proposer for
a given round at a given height in a round robin fashion.

• createNewBlock : 2Π×MemPool → Block is an application-dependent function which creates
a valid block (w.r.t. the application).

• is23Maj : (Block ∪ nil) × (prevotesReceived ∪ precommitsReceived) → Bool is a predicate
that checks if there is at least 2n/3 of prevotes or precommits on the given block or nil in
the given set.

• isValid : Block → Bool is an application dependent predicate that is satisfied if the given
block is valid. If there is a block B such that isValid(B) = true, we say that B is valid. We
note that for any non-block, we set isValid to false, (e.g. isValid(⊥) = false).

Detailed description of the algorithm. In Figure 1 we describe the algorithm to solve the
One-Shot Consensus as defined in Section 3 for a given height H. Note that in order to prove that
the protocol implements the One-Shot Consensus, we add the line 32 which is not present in the
original implementation of Tendermint.

The algorithm proceeds in 3 phases for any given round r at height H:

1. Propose step (lines 6 - 16): If pi is the proposer of the round, it creates a valid proposal and
broadcasts it. Otherwise, it waits for the proposal from the proposer. pi sets the timer to
T imeOutProposal, if the timer expires before the delivery of the proposal then pi increases
the time-out, otherwise it stores the proposal in proposalReceivedH,r

i . In any case, pi goes to
the Prevote step.

2. Prevote step (lines 17 - 33): If pi delivered the proposal during the Propose step, then it
checks the data on the proposal. If lockedBlocki 6= nil, and pi delivers a proposal with
a valid PoLCR then it unlocks. After that check, if pi is still locked on a block, then
it prevotes on lockedBlocki; otherwise it checks if the block B in the proposal is valid or
not, if B is valid, then it prevotes B, otherwise it prevotes on nil. Then pi waits until
|prevotesReceivedH,r

i | > 2n/3. If there is no PoLC for a block or for nil for the round r,
then pi sets the timer to T imeOutPrevote, waits for the timer’s expiration and increases
T imeOutPrevote. In any case, pi goes to Precommit step.

3. Precommit step (lines 34 - 44): pi checks if there was a PolC for a particular block or nil
during the round (lines 34 and 38). There are three cases: (i) if there is a PoLC for a block
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New Height
(H=H+1)

Propose
(H,r=r+1)

Prevote
(H,r)

Precommit
(H,r)

Commit
(H)

lines 6 - 16 lines 17 - 33 lines 34 - 44r
=

0

TimeOutPropose expired ∨

Propose(B,PolCR) delivered

More than 2n/3 Prevote(B) ∨

More than 2n/3 Prevote(nil) ∨

TimeOutPrevote expired ∨

More than 2n/3 of any Prevote(-)

More than

2n/3 Precommit(B)

More than 2n/3 Prevote(nil) ∨

TimeOutPrecommit expired ∨

More than 2n/3 of any Precommit(-)

Figure 2: State Machine for the Tendermint Consensus described in Figure 1. For ease of readability,
not all the common exit conditions are represented.

B, then it locks on B, and precommits on B (lines 34 - 36); (ii) if there is a PoLC for nil,
then it unlocks and precommits on nil (lines 38 - 40); (iii) otherwise, it precommits on nil
(line 42); in any case, pi waits until |precommitsReceivedH,r

i | > 2n/3, and it goes to the next
round.

Whenever pi delivers a message, its broadcasts it (lines 48, 52 and 60). Moreover, during a
round r, some conditions may be verified after a delivery of some messages and either (i) pi decides
and terminates or (ii) pi goes to the round r′ (with r′ > r). Those conditions are called the common
exists conditions:

• For any round r′, if for a block B, is23Maj(B, prevotesReceivedH,r′

i ) = true , then pi decides
the block B and terminates, or

• If pi is in the round r at height H and |prevotesReceivedH,r′

i | > 2n/3 where r′ > r, then it
goes to the Prevote step for the round r′, or

• If pi is in the round r at height H and |precommitsReceivedH,r′

i | > 2n/3 where r′ > r, then
it goes to the Precommit step for the round r′.

Complexity. The One-Shot Consensus requires f < n/3 and weakly synchrony assumption.
During the period of synchrony, if the proposer is correct and if 2n/3 of processes can prevote on
the proposal then the consensus terminates at the end of the round (see Lemma 5.4), thus in the
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lock(B)
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Figure 3: State machine Lock/Unlock

best case scenario the Terdermint One-Shot Consensus terminates in O(1) round. Otherwise, in the
worst case scenario, the algorithm terminates when a process already locked become a proposer,
which is eventually true due to the round robin selection function. Thus, in the worst case the
protocol terminates in O(n) rounds, while the optimum is O(f) [18]. Thus, contrarily to RedBelly,
it is not optimal w.r.t. the number of rounds.

4.3 Tendermint Repeated Consensus algorithm

For a given height, the set V of validators does not change. Note that each height corresponds to
a block. Therefore, in the following we say the set of validators for a block, instead of the set of
validators for a height.

Data structures. The integer H is the height where is called the Consensus instance. V is
current set of validators. B is the block to be appended. commitsReceivedHi is the set containing
all the commits pi delivered for the height H. toRewardHi is the set containing the validators from
which pi delivered commits for the height H. T imeOutCommit represents the time a validator has
for collecting commits after on instance of consensus. T imeOutCommit is set to ∆Commit.

Functions.

• validatorSet : Height → 2Π is an application dependent and deterministic selection function
which gives the set of validators for a given height w.r.t the blockchain history. We have
∀H ∈ Height, |validatorSet(H)| = n.

• consensus : Height × 2Π × commitsReceived → Block is the One-Shot Consensus instance
presented in 4.2.

• createNewBlock : 2Π×MemPool → Block is the application-dependent function that creates
a valid block (w.r.t. the application) from the One-Shot Consensus, we specified that it
rewards the given subset of processes.

• atLeastOneThird : Block ∪ 2Π → Bool is a predicate which checks if there is at least n/3 of
commits of the given block in the given set.
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Function repeatedConsensus(Π); %Repeated Consensus for the set Π of processes%

Init:
(1) H ← 1; %Height%
(2) V ← ⊥; %Set of validators%
(3) B ← ⊥;
(4) commitsReceivedHi ← ∅
(5) toRewardHi ← ∅
(6) T imeOutCommit← ∆Commit;
———————————————————————
while (true) do

(7) B ← ⊥;
(8) V ← validatorSet(H); %Application and blockchain dependant%
(9) if (pi ∈ V ) then

(10) B ← consensus(H, V, toRewardH−1

i ); %Consensus function for the height H%
(11) trigger broadcast 〈COMMIT, (B,H)i〉;
(12) else

(13) wait until (∃B′ : |atLeastOneThird(B′, commitsReceivedHi )|);
(14) B ← B′;
(15)endif
(16) set timerCommit to T imeOutCommit;
(17)wait until(timerCommit expired);
(18) trigger decide(B);
(19)H ← H + 1;
endwhile

———————————————————————
upon event delivery 〈COMMIT, (B′, H′)j〉:

(20) if (((B′ ,H′)j /∈ commitsReceivedH
′

i ) ∧ (pj ∈ validatorSet(H′))) then

(21) commitsReceivedH
′

i ← commitsReceivedH
′

i ∪ (B′, H′)j ;

(22) toRewardH
′

i ← toRewardH
′

i ∪ pj ;
(23) trigger broadcast 〈COMMIT, (B′,H′)j〉;
(24)endif

Figure 4: Pseudocode of the Repeated Consensus Algorithm executed by a correct process pi.

• isValid : Block → Bool is the same predicate as in the One-shot Consensus, which checks if a
block is valid or not.

Detailed description of the algorithm. In Figure 4 we describe the algorithm to solve the
Repeated Consensus as defined in Section 3. The algorithm proceeds as follows:

• pi computes the set of validators for the current height;

• If pi is a validator, then it calls the consensus function solving the consensus for the current
height, then broadcasts the decision, and sets B to that decision;

• Otherwise, if pi is not a validator, it waits for at least n/3 commits from the same block and
sets B to that block;

• In any case, it sets the timer to T imeOutCommit for receiving more commits and lets it
expires. Then pi decides B and goes to the next height.

Whenever pi delivers a commit, it broadcasts it (lines 20 - 24). Note that the reward for the height
H is given during the height H + 1, and to a subset of validators who committed the block for H
(line 10).
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5 Tendermint Correctness

5.1 Correctness of Tendermint One-Shot Consensus

In this section we prove the correctness of Tendermint One-Shot Consensus algorithm in Figure 1
for a height H.

Lemma 5.1 (Integrity). In an eventual synchronous system, Tendermint One-Shot Consensus
Algorithm verifies the following property: No correct process decides twice.

Proof The proof follows by construction. A correct process decides when it returns (line 66).
�Lemma 5.1

Lemma 5.2 (Validity). In an eventual synchronous system, Tendermint One-Shot Consensus Algo-
rithm verifies the following property: A decided value is valid, if it satisfies the predefined predicate
denoted isValid().

Proof
Let pi be a correct process, we assume that there exists a block B, such that pi decides B. We

show by construction that if pi decides on a value B, then B is valid.
If pi decides B, then is23Maj(B, precommitsReceivedH,r

i ) = true (line 66), since the signature of
the messages are unforgeable by hypothesis and f < n/3, then more than n/3 of those precommits
for round r are from correct processes. It means that each of those correct processes had a PoLC
for B during the round r (lines 34 - 36), and thus at least n/3 of those prevotes are from correct
processes.

Let pj be one of the correct processes which prevoted on B during the round r. pj prevotes on
a block B during a round r in two cases. Either Case a, during r, pj is not locked on any block
and checks the validity of B, or Case b: pj is already locked on B and does not checks its validity
(lines 21 - 26).

• Case a: If pj is not locked on any block then before prevoting it checks the validity of B and
prevotes on B if B is valid;

• Case b: If pj was locked on B, it did not check the validity of B, it means that pj was locked
on B during the round r; which means that there was a round r′ < r such that pj had a
PoLC for B for the round r′ (lines 34 - 36), by the same argument, there is a round which
happens previously than r′ where pj was locked or B is valid.

Since a process locks during a round smaller than the current one, and that there exists a
first round where all correct processes are not locked (line 3), there is a round r′′ < r′ where
pj was not locked on B but prevoted B, so B is valid (lines 22 and 23).

Therefore a decided value by a correct process is valid. �Lemma 5.2

Lemma 5.3 (Agreement). In an eventual synchronous system, Tendermint One-Shot Consensus
Algorithm verifies the following property: If there is a correct process that decides a value B, then
eventually all the correct processes decide B.
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Proof Let pi be a correct process. Without loss of generality, we assume that pi is the first correct
process to decide, and decides B. If pi decides B, then is23Maj(B, precommitsReceivedH,r

i ) = true

(line 66), since the signature of the messages are unforgeable by hypothesis and f < n/3, then pi
delivers more than n/3 of those precommits for round r from correct processes, and those correct
process are locked on B (line 35). pi broadcasts all the precommits it delivers (line 60), so eventually
all correct processes will deliver those precommits, because of the best effort broadcast guarantees.

We now show that before delivering the precommits from pi, the other correct processes cannot
decide a different block than B. Since at least n/3 of the correct processes are locked on B, they
only prevote on B (line 21), there cannot be a PoLC for a block different than B, even if all the
faulty processes voted for it, so the correct processes that are locked cannot unlock after the round
r (line 19). The number of precommit for a different block than B is then bounded by f , which is
not enough to decide. All the correct processes will eventually deliver the 2n/3 signed precomits
pi delivered and broadcasted, and then will decide B. �Lemma 5.3

Lemma 5.4. In an eventual synchronous system, Tendermint One-Shot Consensus Algorithm
verifies the following property: If the system becomes synchronous, the proposal is delivered during
the Propose step, the prevotes for correct processes are delivered during the prevotes step and there
is a correct proposal, then eventually a correct process decides.

Proof Let r be the round where the communication becomes synchronous and all the messages are
delivered by the correct processes within their respective step. If a correct process decides before r,
then by lemma 5.3 all the correct process eventually decided. Otherwise, no correct process decided
yet, and we have three cases:

• Case 1: No correct process is locked on a block before r.

That means that there is no PoLCR for the round and the correct processes delivered the
proposal with a block B (lines 12 and 46 and 48) before the Prevote step. Since the proposal
is valid, then they all broadcast their prevote for that block (line 23), and deliver the others’
prevotes and broadcast them before entering the Precommit step (lines 27 - 33 and 52). Then
is23Maj(B, precommitsReceivedH,r

i ) = true for them. The correct processes will lock on B,
precommit on B, and broadcast their precommit (lines 34 - 36). Eventually a process pi will
have is23Maj(B, precommitsReceivedH,r

i ) = true then pi will decide (line 66).

• Case 2: Some correct process is locked on a block, and there is a valid PoLCR in the proposal.

Since the PoLCR is valid, then the processes that are locked will unlock (line 19) and the
proof follows as in the previous case.

• Case 3: Some correct processes are locked on a block, and there is no PoLCR in the proposal.

– If the number of processes that are locked are less than n/3− f (which means that even
without them, there are more than 2n/3 other correct processes unlocked), then as in
the case 1, a correct process will decide.

– If the number of processes that are locked is greater or equal than n/3− f , then during
that round, ∄B′ : is23Maj(B′, precommitsReceivedH,r

i ) = true, but since the proposer is
selected in a round robin fashion, then eventually, a process that is locked on a block
will be the proposer and propose a valid PoLCR, and the proof follows the case 2.
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�Lemma 5.4

Lemma 5.5 (Termination). In an eventual synchronous system, Tendermint One-Shot Consensus
Algorithm verifies the following property: Every correct process eventually decides some value.

Proof By construction, if a correct process does not deliver a proposal during the proposal step
or enough prevotes during the Prevote step, then that process increases its time-outs (lines 13 -
15 and 28 - 33), so eventually, during the synchrony period of the system all the correct processes
will deliver the proposal and the prevotes respectively during the Propose and the Prevote step.
In the synchronous period, the function proposer() (line 6) operates in a round robin fashion and
eventually (in at most after f + 1 rounds) there is a round where the proposer is a correct process
and that a correct process proposes a valid proposal. By lemma 5.4, a correct process decides a
value, and by the lemma 5.3, every correct process eventually decides the same value. �Lemma 5.5

Theorem 5.6. In an eventual synchronous system, Tendermint One-Shot Algorithm implements
the One-Shot Consensus.

Proof The proof follows directly from Lemmas 5.1, 5.2, 5.3 and 5.5. �Theorem 5.6

5.2 Correctness of Tendermint Repeated Consensus

In this section we prove the correctness of Tendermint Repeated Consensus algorithm in Figure 4.

Lemma 5.7 (Termination). In an eventual synchronous system, Tendermint Repeated Consensus
Algorithm verifies the following property: Every correct process has an infinite output.

Proof By contradiction, let pi be a correct process, and we assume that pi has a finite output.
Two scenarios are possible, either pi cannot advance to a new height, or from a certain height H it
outputs only ⊥.

• If pi cannot advance, one of the following case is satisfied:

– The function consensus() does not terminate (line 10), which is a contradiction due to
Lemma 5.5; or

– pi waits an infinite time for receiving enough commits (line 13), which cannot be the
case because of the best effort broadcast guarantees. Since all the correct validators
terminate the One-Shot Consensus and broadcast their commit.

• If pi decides at each height (line 18), it means that from a certain height H, pi only outputs
⊥. That means that: (i) either pi is a validator for H and the function consensus(H ′) is only
returning ⊥ for all H ′ ≥ H (lines 9 and 10), or (ii) pi is not a validator for H but received at
least n/3 commits for ⊥ (lines 13 and 23).

– (i): Since consensus() returns the value ⊥, that means by Lemma 5.2 that isValid(⊥) =
true, which is a contradiction with the definition of the function isValid().

– (ii): Since only the validators commit, and each of them broadcasts its commit (lines 9 -
11), and because f < n/3, it means that pi delivered a commit from at least one correct
validator (process). By Lemma 5.2, processes only decide/commit on valid value, and
⊥ is not valid, which is a contradiction.
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We conclude that if pi is a correct process, then it has an infinite output. �Lemma 5.7

Lemma 5.8 (Agreement). In an eventual synchronous system, Tendermint Repeated Consensus
Algorithm verifies the following property: If the ith value of the output of a correct process is B,
then B is the ith value of the output of any other correct process.

Proof We prove this lemma by construction. Let pj and pk be two correct processes. Two cases
are possible:

• pj and pk are validators for the height i, so they call the function consensus() (lines 9 and 10).
By lemma 5.3 pj and pk decide the same value and then output that same value (line 18).

• At least one of pj and pk is not a validator for the height i. Without loss of generality, we
assume that pj is not a validator for the height i. Since all the correct validators commit the
same value, let say B, thanks to lemma 5.3, and broadcast their commit (line 11), eventually
there will be more than 2n/3 of commits for B. So no other value B′ 6= B can be present
at least n/3 times in the set commitReceivedHi . So pj outputs the same value B as all the
correct validators. (line 13). If pk is a validator, that ends the proof. If pk is not a validator,
then by the same argument as for pj , pk outputs the same value B. Hence pj and pk both
output the same value B.

�Lemma 5.8

Lemma 5.9 (Validity). In an eventual synchronous system, Tendermint Repeated Consensus Al-
gorithm verifies the following property: Each value in the output of any correct process is valid, it
satisfies the predefined predicate denoted isValid().

Proof We prove this lemma by construction. Let pi be a correct process, and we assume that
the Hth value of the output of pi is B. If pi decides a value (line 18), then that value has been set
during the execution and for that height (line 7).

• If pi is a validator for the height H, then B is the value returned by the function consensus(),
by the lemma 5.2 we have that isValid(B) = true.

• If pj is not a validator for the height H, it means that it received at least n/3 signed commits
from the validators for the block B (lines 9 - 11 and 20 - 24), hence at least one correct
validator commited B, and by lemma 5.2 we have have that isValid(B) = true.

So each block that a correct process outputs satisfies the predicate isValid(). �Lemma 5.9

Theorem 5.10. In an eventual synchronous system, Tendermint Repeated Consensus Algorithm
implements the repeated consensus.

Proof The proof follows directly from Lemmas 5.7, 5.8 and 5.9. �Theorem 5.10
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6 Tendermint Fairness

In [32] the authors define the fairness of a Proof-of-Work based blockchain protocol for a system
of n processes as follows: A blockchain protocol is fair if honest process that wield φ fraction of the
computational resources will reap at least φ fraction of the blocks in any sufficiently long window
of the chain, where the computational resources represent the merit of the process. We note that
in their model, a block in the blockchain was created by only one process, and that process gets a
reward for the created block. In Tendermint, for each block, there is a subset of processes called
the validators that produced that block. The correct validators for a block are the processes that
have to be rewarded for that block.

We therefore extend the definition of [32] for a system with an infinite number of processes, and
where each block is produced by a subset of processes.

Informally, we say that a blockchain protocol is fair if any correct process that wield φ of the
total merit in the system will get at least φ of the total reward that is given in the system.

In order to study the fairness of a protocol in a consensus based blockchain, we split the protocol
in two mechanisms: (i) the selection mechanism which selects for each new height the validators
for that height taking into account the merit of each process, and (ii) the reward mechanism, which
is the mechanism giving the rewards for the correct processes that agreed on a new block in the
blockchain.

Informally, if the selection mechanism is fair, then every process will become validator propor-
tionally to its merit parameter; and if the reward mechanism is fair then for each height only the
correct validators get a reward. By combining the two mechanisms, a correct process gets rewarded
at least a number proportional to its merit parameter, since the faulty processes do not get any
reward.

For a process pi we denote αi its merit proportional to the total merit, and by vi the number
of time pi becomes validator proportionally to the number of blocks.

Definition 6.1 (Fairness of a Selection Mechanism). We say that a selection mechanism is fair if
it respects the following properties:

• If α 6= 0 then vi 6= 0, informally, this means that each process with a positive merit parameter
should become a validator infinitely often;

• If a process pi has a merit parameter αi and a process pj has a merit parameter αj , then if
αi ≥ αj then vi ≥ vj .

For each block that is in the blockchain, the validators who contributed to its creation should
be rewarded. We define the following properties for the fairness of a reward mechanism.

1. For any block in the blockchain, all the correct validators for that block have a reward
parameter for that block greater than 0,

2. For any block in the blockchain, all faulty validators and the processes that are not validators
should have a reward parameter for that block equal to 0.

3. A process gets a reward for a block if and only if it has a reward parameter for that block
greater than 0.
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3’. There exists a height H such that for all blocks in the blockchain at height H ′ > H a process
gets a reward for that block if and only if it has a reward parameter for that block greater
than 0.

Definition 6.2 (Fairness of a reward mechanism). A reward mechanism is fair if it satisfies the
conditions 1, 2 and 3.

If a reward mechanism is fair, it means that all and only the correct validators for each block
in the blockchain get the reward for it.

Definition 6.3 (Eventual fairness of a reward mechanism). A reward mechanism is eventually fair
if it satisfies the conditions 1, 2 and 3’.

If a reward mechanism is eventually fair, it means that some correct validators may not get
some rewards at the begin of the execution, but there is a height from which all and only the correct
validators for the next blocks are rewarded.

We note that if a reward mechanism is fair, then it also is eventually fair but the reverse is not
necessarily true.

Definition 6.4 ((Eventual) Fairness of a blockchain protocol). A blockchain protocol is fair (resp.
eventually fair) if it has a fair selection mechanism and a fair (resp. eventually fair) reward
mechanism.

Remark 1. If |V | > 1 then for a reward mechanism to be (eventually) fair, the reward cannot be
given directly in the block. In fact the set of correct validators cannot be known in advance. If
|V | = 1 the reward can be directly given to the only validator, so in the block.

6.1 Tendermint’s reward mechanism

We note that in Tendermint, the selection of the validators is let at the discretion of the Tendermint
application layer. We study the reward mechanism of Tendermint, and assume the fairness of its
selection mechanism.

The reward mechanism in Tendermint is the following:

• Once a new block is decided for height H, processes wait for at most TimeOutCommit time
to collect the decision from the other validators for H, and put them in their set toReward
(Figure 4, lines 17 and 20 - 24).

• During the consensus at height H, let us assume that pi proposes the block that will get
decided in the consensus. pi gives the reward to the processes in its set toReward (Figure 4,
line 10).

Only the processes from which pi delivered a commit will get a reward for the block at height H−1.

Lemma 6.1. The reward mechanism of Tendermint is not eventually fair.

Proof We assume that the system becomes synchronous, and that T imeOutPropose < ∆, where
∆ is the maximum message delay in the network. For any height H, let pi be a validator for the
height H − 1. And pj the validator whose proposal get decided for the height H. It may happen
that pj did not receive the commit from pi before proposing its block. Hence when the block is
decided, pi does not get a reward for its effort, which contradicts the condition 3’ of the reward
mechanism fairness. The Tendermint’s reward mechanism is not eventually fair. �Lemma 6.1
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Lemma 6.2. The variant of Tendermint where the TimeOutCommit increases for each round until
it catches up the message delay, has an eventual fair reward mechanism.

Proof We change the reward mechanism in Tendermint as follows:

• Once a new block is decided, say for height H, processes wait for at most TimeOutCommit
to collect the decision from the other validators for that height, and put them in their set
toReward.

• If a process did not get the commits from all the validators for that height before the expiration
of the time-out, it increases the time-out for the next height.

• During the consensus at height H, let us assume that pi proposes the block that will get
decided in the consensus. pi gives the reward to the processes in its toReward.

In this reward mechanism, TimeOutCommit is increased whenever a process does not have the
time to deliver all the commits for the previous round. We prove that this reward mechanism is
eventually fair.

There is a point in time t from when the system will become synchronous, and all the commits
will be delivered by correct processes before the next height. From the time t, at height H all
correct processes know the exact set of validators that commited the block from H − 1, and they
give to those validators from H − 1 a reward parameter greater than 0. The validators in H give
the reward to the validators that committed and which are the only one with a reward parameter
greater than 0 for H−1, which satisfy the fairness conditions 1, 2 and 3’, so the reward mechanism
presented is eventually fair. �Lemma 6.2

Theorem 6.3. In an eventual synchronous system, if the selection mechanism of Tendermint is
fair, then Tendermint with modulable time-out is eventually fair.

Proof The proof follows by lemma 6.2. �Theorem 6.3

6.2 Necessary and Sufficient Conditions for a Fair Reward Mechanism

In this section, we discuss the consequences of the synchrony on the existence of a fair reward in
Repeated Consensus based (RC) blockchain protocols. We say that a blockchain protocol is a RC
if it builds the blockchain by a mechanism of repeated consensus, where at each height, a subset of
processes called validators produces a block executing an instance of One-Shot Consensus.

Theorem 6.4. There exists a fair reward mechanism in a RC blockchain protocol iff the system
is synchronous.

Proof We prove this theorem by double implication.

• If the system is synchronous, then there exists a fair reward mechanism.

We assume that the system is synchronous and all messages are delivered before the x following
blocks, we consider the following reward mechanism. For all the correct validators at any
height H, if H − x ≤ 0, do not reward yet, otherwise:
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– Set to 1 the reward parameters of all correct validators in H − x, and to 0 the merit
parameters of the others.

– Reward only the validators with a reward parameter equal to 1 from the height H − x.

We prove that the reward mechanism presented is fair.

The system is synchronous and messages sent are delivered within at most x blocks. The
exact set of correct validators from H − x is known by all at H. The validators in H exactly
give the reward to the correct validators who are the only one with a reward parameter for
H − x greater than 0, which satisfy the fairness conditions (1, 2 and 3).

• If there exists a fair reward mechanism, then the system is synchronous.

By contradiction, we assume that P is a protocol having a fair reward mechanism and that, the
system is not synchronous. We say that the validators following P are the correct validators.
Let V i be a set of validators for the height i, and V j, (j > i) be the set of validators who
gave the reward to the correct validators in V i. Since the system is not synchronous, the
validators in V j may not receive all messages from V i before giving the reward.

By conditions 1, and 2, we know that all and only the correct validators in V i have a reward
parameter greater than 0. Since the reward mechanism is fair, with the condition 3, we have
the validators in V j gave the reward only the correct validators in V i. That means that the
correct validators in V j know exactly who were the correct validators in V i, so they got all
the messages before giving the reward. Contradiction. Which conclude the proof.

�Theorem 6.4

If there is no synchrony, then there cannot be a fair consensus based protocol for blockchain.
The fairness we define states that every time during the execution, the system is fair, so if a process
leaves the system, it receives all rewards it deserves for the time it was in the system.

Corollary 6.4.1. There exists an eventual fair reward mechanism in a RC blockchain protocol iff
the system is eventually synchronous or synchronous.

Proof We proof this result by double implication.

• If the system is eventually synchronous or synchronous, then there exists an eventual fair
reward mechanism.

If the system is synchronous, the proof follows directly by theorem 6.4. Otherwise, we prove
the following reward mechanism is eventually fair. When starting the height H, the correct
validator for H do the following:

– Start the time-out for the reception of the messages from validator from the block H−1;

– Wait for receiving the messages from validators for the block H − 1 or the time-out
to expire. If the time-out expires before the reception of all the messages, increase the
time-out for the next time.

– Set to 1 the reward parameters for H−1 of the correct validators which messages where
received, and to 0 the merit parameters of the others.

– Reward only the validators from the height H−1 which have a merit parameter different
than 0.
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Since the system is eventually synchronous, eventually when the system will become syn-
chronous, the processes, in particular the validators for H will receive all the messages from
round H − 1 before the round H. We note that the condition 3’ is a weaker form of the
condition 3 where we do not care about the beginning. So by applying the theorem 6.4 from
the time when the system becomes synchronous, we end the proof.

• If there exists an eventual fair reward mechanism, then system is eventually synchronous or
synchronous.

If the reward mechanism is fair, by theorem 6.4, the communication is synchronous, which
ends the proof. Otherwise, since the reward mechanism is eventually fair, then there is a
point in time t from when all the rewards are correctly distributed. By considering t as the
beginning of our execution, then we have that the reward mechanism is fair after t, so by the
theorem 6.4, the system is synchronous from t. If the system were not synchronous before t,
that means that it is eventually synchronous, otherwise, it is synchronous. Which ends the
proof.

The proof follows directly by the theorem 6.4. �Corollary 6.4.1

Remark 2. In an asynchronous system, there is no (eventual) reward mechanism, so if the com-
munication system is asynchronous, then there is no (eventual) fair RC Blockchain protocol. Note
that this result is valid even if all the processes are correct.

7 Conclusion

This paper has formalized Tendermint a PBFT-based repeated consensus protocol where the set of
validators is dynamic. One-shot instance of Tendermint takes O(n) rounds where n is the number
of validators in that round. We also studied the fairness aspects of the reward mechanism in
Tendermint and proved it becomes eventually fair with a small twist in the timeouts tuning. We also
prove that the fairness of the reward mechanism of repeated-consensus blokchains is (eventually)
fair iff the system communication is (eventually) synchronous. As future work we intend to study
the fairness of the selection mechanism.
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[22] Önder Gürcan, Antonella Del Pozzo, and Sara Tucci Piergiovanni. On the bitcoin limitations
to deliver fairness to users. In On the Move to Meaningful Internet Systems. OTM 2017
Conferences - Confederated International Conferences: CoopIS, C&TC, and ODBASE 2017,
Rhodes, Greece, October 23-27, 2017, Proceedings, Part I, pages 589–606, 2017.

[23] Maurice Herlihy and Mark Moir. Enhancing accountability and trust in distributed ledgers.
CoRR, abs/1606.07490, 2016.

[24] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, pages 357–388, 2017.

[25] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing Bitcoin
Security and Performance with Strong Consistency via Collective Signing. In Proceedings of
the 25th USENIX Security Symposium, 2016.

[26] Artem Koltsov, Vitaly Cheremensky, and Stanislav Kapulkin. Casper White Paper. https:

//casperproject.io/docs/Casper_whitepaper_eng.pdf.

[27] Jae Kwon and Ethan Buchman. Cosmos: A Network of Distributed Ledgers. https://cosmos.
network/resources/whitepaper.

[28] Jae Kwon and Ethan Buchman. Tendermint. https://tendermint.readthedocs.io/en/master/specification.html.

[29] Silvio Micali. Algorand: The efficient and democratic ledger. arXiv preprint arXiv:1607.01341,
2016.

[30] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/

bitcoin.pdf, 2008.

23



[31] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part II, pages 643–673, 2017.

[32] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA,
July 25-27, 2017, pages 315–324, 2017.

[33] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, April 1980.

[34] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. http://gavwood.
com/Paper.pdf.

24


