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Abstract

The flux-difference splitting finite volume method (Leveque in J Comput Phys
131:327–353, 1997); (Leveque in Finite volume methods for hyperbolic problems.
Cambridge: Cambridge University Press, 2002) is here employed to perform numerical
simulation of impacts on elastic–viscoplastic solids on bidimensional non-uniform
quadrilateral meshes. The formulation is second order accurate in space through flux
limiters, embeds the corner transport upwind method, and uses a fractional-step
method to compute the relaxation operator. Elastic–viscoplastic constitutive models
falling within the framework of generalized standard materials (Halphen and Nguyen in
J Mech 14:667–688, 1975) in small strains are considered. Many test cases are proposed
and two particular viscoplastic constitutive models are studied, on which comparisons
with finite element solutions show a very good accuracy of the finite volume solutions,
both on stresses and viscoplastic strains.

Keywords: Elastic–viscoplastic solids, Finite volume method, Flux-difference splitting,
Non-uniform quadrilateral meshes, Generalized standard materials

Introduction
The numerical simulation of hyperbolic initial boundary value problems including
extreme loading conditions such as impacts requires the ability to accurately capture
and track the fronts of shock waves induced in the medium. Indeed, this permits to cor-
rectly follow the path ofwaves andhence understand themechanical phenomenaoccuring
within that medium. For solid-type media, it also allows for an accurate assessment of the
propagation of irreversible strains and hence of residual stresses and distortionswithin the
structure. High speed forming processes like electromagnetic material forming [1–3] are
some application examples of severe loading conditions inwhich the track ofwave fronts is
important both for understanding the development of irreversible strains in theworkpiece
and optimizing its final shape. Hence, these problems require numerical schemes capable
to rewrite the film of history of loading undergone by any material point with sufficient
precision to permit the understanding of particular physical phenomena of interest, while
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freeing oneself from any numerical disturbance that might impair that understanding. In
particular, numerical schemes able to represent regular as well as discontinuous solutions
are of interest; more precisely, they should meet both high orders of accuracy in regions
where the solution is smooth and a high resolution of discontinuities when they occur
without any numerical spurious oscillations appearing in their vicinity.
The numerical simulation of impacts on dissipative solids has been and is again mainly

performed with the classical finite element method coupled with centered differences or
Newmark finite difference schemes in time [4,5], which is implemented inmany industrial
codes. Indeed, the finite element method is still popular in the solid mechanics commu-
nity for, among others, its easy implementation of nonlinearities of partial differential
equations, that is for solid-type media it enables to account easily for history-dependent
constitutive equations through appropriate integration algorithms [6] and storage of inter-
nal variables at integration points in each element. However, on the one hand the amount
of artificial viscosity added to numerical time integrators required to reduce the high fre-
quency noise in the vicinity of shocks is hard to assess properly in order to remove the
sole spurious oscillations, without destroying the accuracy of the numerical solution. On
the other hand, finite elements do not use any feature of the characteristic structure of the
set of hyperbolic equations, and is hence not the best suited method to accurately capture
discontinuous solutions.
The finite volume method, initially developed for the simulation of gas dynamics [7,8],

has gained recentlymore andmore interest for problems involving impacts on solidmedia
(see e.g. [9–17]). This family of methods show some advantages to achieve an accurate
tracking of wavefronts; among others (i) the continuity of fields is not enforced on the
mesh in its cell-centered version, that allows for capturing discontinuous solutions, (ii) the
characteristic structure of hyperbolic equations can be introduced within the numerical
solution, either through the explicit solution of a Riemann problem at cell interfaces,
or in an implicit way through the construction of the numerical scheme, (iii) the same
order of convergence is achieved for both the velocity and stress fields [12], and (iv) the
amount of numerical viscosity introduced can be controlled locally as a function of the
local regularity of the solution, so that to permit the elimination of spurious numerical
oscillations while preserving a high order of accuracy in more regular zones.
Since the early work of Wilkins [18] and Trangenstein et al. [19], several authors have

proposed many ways to simulate impacts on dissipative solid media, such as elastic–
plastic and elastic–viscoplastic solids, with this class of methods. These can be merely
classified intoEulerian approaches, generally basedona fractional-stepmethod to treat the
irreversible processes [9,10,13,17,20] and used for extremely high strain, strain rate and
pressure problems, and lagrangian approaches [14,16,21] that allow to follow the path of
material particles and hence account for refined history-dependent constitutive equations
though limited bymesh entanglement, both being coupled with an approximate Riemann
orWENO solver. Eulerian approaches are written in a conservative formwith a relaxation
operator containing inelastic terms [22], and are often based on the so-called Maxwell-
type relaxation approach [9–11,13,17,23] which actually refers to an adapted version of
Perzyna’s elastic–viscoplastic solids [24], in fact in its perfect viscoplasticity version since
no hardening rules is generally accounted for, obtained by means of a relaxation process
of stresses [11,17]. Lagrangian approaches have been less investigated and have been
so far more treated in elastoplasticity [14,16] using classical integration of constitutive
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equations [6] coupled with acoustic Riemann solvers, or using simplified elastic–plastic
Riemann solvers [21].
We are interested in this work in elastic–viscoplastic systems, whose study is here

focused on the isothermal and linearized geometrical framework, leading to a nonho-
mogeneous system of partial differential equations, generating a system of weakly dis-
continuous waves beyond the viscoplastic yield, following a discontinuous (elastic) wave
due to the transition between elastic and elastic–viscoplastic ranges. This work intends
to apply the flux-difference splitting finite volume method, whose formalism has been
made popular by Leveque [7,25], for the simulation of impacts on elastic–viscoplastic
solid media on bidimensional non-uniform quadrilateral meshes. Its derivation for these
unstructured meshes follows classical ones [26,27] for first order terms, but the process
of limitation of waves required to achieve high resolution methods here accounts for dif-
ferent orientations between the current and upwind edges. Moreover, the approach is
here derived using the class of generalized standard materials [28] (GSM) that describes
a convenient framework to define thermodynamically consistent viscoplastic constitutive
models, which can embed refined viscoplastic models with respect to these already used
with such approach [9,17], some particular creep and hardening rules being considered
in this work. The viscoplastic relaxation system is solved by means of a fractional-step
method, whose convection part is solved with the flux-difference splitting formalism.
The paper is organized as follows. First, the elastic–viscoplastic constitutive model,

the governing balance laws and the characteristic analysis are presented in “Elastic–vis-
coplastic Initial BoundaryValue Problem” section.Next, the flux-difference splitting finite
volumemethod is presented for bidimensional non-uniform quadrilateral meshes in “The
flux-difference splitting finite volume method” section. “Computation of the viscoplas-
tic part” section discusses the asymptotic limit of the elastic–viscoplastic system, and
the fractional-step method used to compute the viscoplastic part of the behaviour. At
last, several test cases are presented in “Applications” section, mainly conducted within
the two-dimensional plane strain assumption, on which comparisons with finite element
solutions allow to show the good accuracy of finite volume solutions, both on stresses
and viscoplastic strains. The viscoplastic flow computed with two viscoplastic constitu-
tive models is compared on the last example. Especially, a very simple Chaboche-type
[29] viscoplastic model coupled with Prager’s linear kinematic [30] hardening, and amore
refined Chaboche–Nouailhas’ [31] one coupled with the Armstrong–Frederick’s [32,33]
kinematic nonlinear hardening law are considered.

Elastic–viscoplastic Initial Boundary Value Problem
Elastic–viscoplastic constitutive model

Following the local accompanying state approach [29,34], the thermodynamical state of
the material is described by a set of state variables that consists of the linearized strain
tensor ε and the temperature T , plus some internal state variables Z which describe the
evolution of internal microstructure and stored energy due to plastic deformation and
other irreversible processes. Under small strain assumption, the total strain ε is additively
decomposed into an elastic strain (εe) and a plastic strain (εp):

ε = εe + εp (1)

The set of internal state variables Z consists here of the plastic strain εp plus some addi-
tional variables αI , 1 ≤ I ≤ N . We assume the existence of a Helmholtz free-energy
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density potential ψ(ε, T,Z) ≡ ψ(ε − εp, T,αI, 1≤I≤N ), concave with respect to tempera-
ture and convex with respect to other variables, from which the state laws can be derived:

σ = ρ
∂ψ

∂εe
; s = −∂ψ

∂T
; AI = ρ

∂ψ

∂αI
, 1 ≤ I ≤ N (2)

where σ, s and AI refer to the Cauchy stress tensor, the entropy density and the force
conjugated to variable αI respectively. Thus, the mechanical dissipation reads:

D = σ : ε̇p − AI · α̇I = Y · Ż ≥ 0 (3)

with

Y = {σ, AI }; Z = {εp,−αI } (4)

where the vector Y denotes the thermodynamic forces conjugated to internal variables Z,
and the dot (�̇) applied to quantity � stands for a time rate. Following the framework of
GSM [28], we assume the existence of a dissipation pseudo-potential �(Y), convex with
respect to flux variables Y, and containing the origin, such that:

Ż = ∂�

∂Y (5)

which ensures the mechanical dissipation

D = Y · ∂�

∂Y ≥ 0 (6)

to be non-negative. The dissipation pseudo-potential �(Y) defines a family of equipo-
tential surfaces on which any point yields the same dissipation and effective viscoplastic
strain rate, and may depend on flux variables Y through a yield function f (Y), so that the
surface of zero potential delimits the elastic convex

C = {Y|f (Y) ≤ 0} (7)

The flow rule thus reads:

Ż = ∂�

∂f
∂f
∂Y = ṗ

∂f
∂Y (8)

where

ṗ = ∂�

∂f
(9)

denotes the viscoplastic flow intensity or effective viscoplastic strain rate, and ∂f /∂Y is
the flow direction, normal to the yield function f .

Balance laws and quasi-linear form

Let’s consider a continuumbody�, of boundary ∂�, and current coordinates x. The initial
boundary value problem driving the motion of the solid in the small strains framework
must satisfy the conservation of linear momentum, written here with neglected body
forces, the geometric relationships between the strain rate ε̇ and the velocity field v,
plus the constitutive equations that consist of the strain rate partition (1) combined with
the elastic law (2)1, the viscoplastic flow rule, and evolution equations of other internal
parameters:

ρv̇ = ∇ · σ (10)

ε̇ = 1
2
(∇v + (∇v)T ) (11)
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σ̇ = C : (ε̇ − ε̇p) (12)

ε̇p = ∂�

∂σ
(13)

−α̇I = ∂�

∂AI
, 1 ≤ I ≤ N (14)

which hold ∀(x, t) ∈ �×]0, T ], supplemented with appropriate initial and boundary con-
ditions, and C denotes the fourth order elastic stiffness tensor in Eq. (12). In the above
system, Eqs. (10) to (13) can be combined in order to write a system of balance equations
of the form:

∂Q

∂t
+ ∇ · F = S (Q) (15)

where Q, F and S denote the arrays of balanced quantities, associated fluxes, and the
source term respectively, defined as follows assuming a homogeneous medium:

Q =
{

σ

v

}
; F =

{
−C : v ⊗ 1

− σ
ρ

}
; S =

{
−C : ∂�

∂σ

0

}
(16)

where 1 is the second order identity tensor.More precisely, the system (15) can be derived
in full matrix form with cartesian coordinates as:

∂Q
∂t

+
3∑

k=1

∂Fk
∂xk

= S(Q) (17)

with vector components such that

Q =
{

{σ · ei}1≤i≤3
v

}
; Fk =

{
{−C : v ⊗ ek · ei}1≤i≤3

− σ·ek
ρ

}
= F · ek

S =
{{−C : ∂�

∂σ
· ei

}
1≤i≤3

0

} (18)

where ei (1 ≤ i ≤ 3) refer to the cartesian basis vectors, and redundant equations due to
symmetry of the stress tensor are of course not considered. The term C : v ⊗ ek · ei in the
kth component of the fluxes simplifies into Cpijkvjep, and if elastic isotropy is assumed
(leading to the following expression Cijkl = λδijδkl + μ(δikδjl + δilδjk ), λ and μ denoting
the Lamé’s parameters), it simplifies as follows:

C : v ⊗ ek · ei = λvkei + μ(vδik + viek ) (19)
where δik denotes the Kronecker delta symbol. From the system of balance equation (15),
a quasi-linear form is conveniently written as follows:

∂Q

∂t
+

3∑
k=1

Jk
∂Q

∂xk
= S (20)

where

Jk = ∂Fk
∂Q

= −
[
O C : ek ⊗ 1
ek ·I
ρ

0

]
(21)

whereO and I denote fourth order zero and identity tensors respectively, the same in full
matrix form can be derived from Eq. (17):

Jk = ∂Fk
∂Q = −

⎡
⎢⎢⎢⎣

[Cp1qk ]1≤p,q≤3
09×9 [Cp2qk ]1≤p,q≤3

[Cp3qk ]1≤p,q≤3
δ1k13×3

ρ
δ2k13×3

ρ
δ3k13×3

ρ
03×3

⎤
⎥⎥⎥⎦ (22)
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Characteristic analysis

Since irreversible viscoplastic effects only occur in the source term (16) by means of
the viscoplastic flow rule (13), the homogeneous part of this system is governed by the
sole elastic part of the elastic–viscoplastic behavior, meaning that any information and
in particular irreversible processes propagate along elastic characteristic curves. Let’s
consider the coordinate X = x · n and n refers to an any direction of propagation, along
the characteristic curves dX = λpdt, 1 ≤ p ≤ 9, the eigensystem

JNK(p) = λpK(p); K(p) =
{

σ(p)

v(p)

}
(23)

formed with the Jacobian matrix associated to the quasi-linear form (20)

JN = ∂(F · n)
∂Q

= Jknk = −
[
O C : n ⊗ 1
n·I
ρ

0

]
, (24)

K(p) denoting the right eigenvector associated to the pth eigenvalue (or characteristic
speed) λp of the Jacobian matrix JN , should be diagonalizable with real eigenvalues for
the system (20) to be hyperbolic. The system (23) can be decoupled into the two following
systems:

− C : n ⊗ v(p) = λpσ
(p) (25)

− σ(p) · n
ρ

= λpv(p) (26)

Eliminating σ(p) by inserting (26) into (25) yields the symmetric eigenvalue problem

CNN · Y(K )
R = ω(K )Y(K )

R 1 ≤ K ≤ 3 (27)

where [CNN ]ij = Cijklnjnl denotes the acoustic elastic tensor, which admits three nonzero
eigenvalues and associated right eigenvectors {ω(K ); Y(K )

R }1≤K≤3 thanks to the coercivity
property of the elastic stiffness tensor. This leads to six distinct characteristic speeds λp =
±√

ωK /ρ, 1 ≤ p ≤ 6, and right eigenvectors v(2K ) = v(2K−1) = Y(K )
R . The characteristic

fields can be rewritten for the non zero eigenvalues as:⎧⎨
⎩±

√
ω(K )

ρ
;

{−C : n ⊗ Y(K )
R

±
√

ω(K )
ρ

Y(K )
R

}⎫⎬
⎭

1≤K≤3

(28)

These are ordered in three pairs corresponding to pressure waves of speed UP =√
(λ + 2μ)/ρ and shear waves of speed US = √

μ/ρ for an isotropic medium, such that
λ1,2 = ±UP and λ3,4 = λ5,6 = ±US . The last step consists in completing the characteristic
basis by finding three independent vectors associated to the kernel of the Jacobianmatrix,
solving equation (26) for a null eigenvalue.
Combining (23) and (20) yields the characteristic equations satisfied along elastic char-

acteristics lines:

L(p) ·
(
dQ
dt

− S (Q)
)

= 0 (29)

where L(p) refers to the pth left eigenvector of the JacobianmatrixJN . The characteristic
equations are particularized for an elastic–viscoplastic medium as

Y(K )
L ⊗ n :

(
dσ + C :

∂φ

∂σ
dt

)
± ρλpY(K )

L · dv = 0 , 1 ≤ p ≤ 9 (30)
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where Y(K )
L refers to the K th left eigenvector of the elastic acoustic tensor. Observe that

time explicitly occurs in Eq. (30), which is a direct consequence of viscoplasticity, hence
in general they do not admit first integrals and thus Riemann invariants.

The flux-difference splitting finite volumemethod
The finite volume method is based on subdividing the computational domain in elemen-
tary cells within which, for the cell-centered version, an approximation Ui of the vector
of balanced quantities Q is defined in the cell i by integral averaging. Let’s consider the
quadrangular grid cell i shown in Fig. 1, of area |Ai|, whose edge s (1 ≤ s ≤ 4) joining
points Ps and Ps+1 is of length Ls, and has an outward unit normal ns. Integrating a system
of conservation laws, i.e. the homogeneous part of (15), on grid cell i yields the following
system of ordinary differential equations:(

dU
dt

)
i
= − 1

|Ai|
N∑
s=1

LsFs (31)

where Fs, 1 ≤ s ≤ N , denote numerical fluxes defined at cell interfaces. The order of
accuracy, the physical content and the computation cost of the finite volume method
essentially rely on the definition of these numerical fluxes.
Commonly, the approach consists in exploiting the solution of Riemann problems

defined at cell interfaces to determine these fluxes. In particular the stationary solution
(x/t = 0) of the Riemann problem yields the well known Godunov’s method [35]. The
flux-difference splitting formulation, whose formalism has been made popular by Lev-
eque [7,25], amounts to rephrase the Godunov’s method by splitting numerical fluxes
defined at cell interfaces in terms of waves contributions, known as fluctuations, denoted
by operatorsA±

k �Uk :
N∑
s=1

LsFs =
P∑

k=1
LkA+

k �Uk +
Q∑
l=1

LlA−
l �Ul (32)

where P + Q = N , N being the number of edges of grid cell i. Assuming edge k has left
(L) and right (R) states known (Fig. 1), fluctuations read:

A±
k �Uk =

Mw∑
p=1

λ±
p W (p)

k =
Mw∑
p=1

λ±
p α

(p)
k K(p)

k (33)

and quantify the effect of allMw waves travelling rightward (+) or leftward (−) respectively
in the local frame of edge k . Theses fluctuations are defined with positive and negative
parts of characteristic speeds λ±

p , and associated characteristic directionsK(p)
k ≡ K(p)(nk ),

computed at each edge. Each wave is weighted with a coefficient α
(p)
k determined by the

x

y

Ps

Ps+1

ns

L R

Fig. 1 Quadrangular finite volume
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projection of the jump of the state vector �Uk = (UR − UL)k across the edge k onto the
characteristic basis K(p)

k (1 ≤ p ≤ Mw , Mw being the number of waves, equal to five for
bidimensional plane strain case for example):

�Uk =
Mw∑
p=1

W (p)
k =

Mw∑
p=1

α
(p)
k K(p)

k = Kkαk (34)

The wave strength is defined by W (p)
k = α

(p)
k K(p)

k . This projection amounts to solve a
(linear) Riemann problem associated to edge k . The fluctuations associated to each edge
are summed to compute the contribution of first order terms to the update of the state of
grid cell i; this summation is performed on negative fluctuations for the Q edges having
an outward normal, and on positive fluctuations for the P edges having an inward normal
as shown in Fig. 2 for a non-cartesian quadrangle.
However, the above first order scheme can be improved using the class of total variation

non-increasing methods [7,25], that allow to meet both a high order of accuracy in zones
where the solution field is regular and a high resolution of discontinuitieswithout spurious
numerical oscillations when they occur. The strength of these methods relies on their
ability to introduce a controlled amount of numerical viscosity locally, so that to adapt
to the local regularity of the solution. One way among many others to implement them
amounts to add additional fluxes to these defined from fluctuations in Eq. (33), which are
limited so that a non-increasing total variation of the numerical solution be satisfied at
each time step, thus ensuring that no new extrema appear that would not have already
exist previously. These additional fluxes are either inward (in) or outward (out) ones,
depending on the edge normal, and consist of two types of contributions

F̃inl = F̃HO
l + F̃tranl . (35)

High order fluxes

The first contribution allows to reach a higher order (HO) of accuracy (order two here),
defined with wave strengthW (p)

l that has been limited, hence denoted W̃ (p)
l = α̃

(p)
l K(p)

l :

F̃HO
l = 1

2

Mw∑
p=1

|λ(p)l |
(
1 − �t

�sl
|λ(p)l |

)
W̃ (p)

l (36)

where�sl refers to the distance between barycenters of grid cells sharing edge l, as shown
in Fig. 3. Waves are limited based on an upwind ratio θ

(p)
l defined for wave p on edge l as:

x

y

n1

A+
1 ΔU1

A−
1 ΔU1

A+
3 ΔU3 (1)

(2)

(3)

(4)

A+
2 ΔU2

A+
4 ΔU4

n2

n3

n4

Fig. 2 Fluctuations
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x

y

nl

L

R

(l) (J) if λ
(p)
l < 0

(J)
if λ

(p)
l > 0

nJ

nJ

+
GL

+
GR

Δsl

Fig. 3 Upwind edge for wave comparison

θ
(p)
l = W (p)

J (nl) · W (p)
l

‖W (p)
l ‖2

(37)

where J denotes the upwind edge, that is the opposed edge to l belonging to grid cell L
located to the left in the local frame of edge l (see Fig. 3) if λ

(p)
l > 0, or the opposed edge

belonging to grid cell R located to the right if λ
(p)
l < 0. The upwind ratio (37) can be

understood as a certain measure of the local regularity of the solution. However, for non-
cartesian quadrangles, upwind and downwind edges do not necessarily have the same
normal. Thus, the computation of the upwind ratio (37) is here performed with wave
strengths computed in a same local reference frame, that of edge l. Wave strengthsW (p)

J

are hence computed from weighting coefficients α
(p)
J recomputed in the local frame of

edge l:

αJ (nl) = K−1(nl) · �UJ (38)

where �UJ denotes the jump across edge J of the state vector. Wave strengths associated
to edge J expressed in the frame of edge l are then corrected as:

WJ (nl) = diag (αJ (nl)) · K(nl) = [
diag ([K(nl)]−1 · �UJ )

] · K(nl) (39)

where WJ (nl) is the matrix made of wave strength vectors W (p), 1 ≤ p ≤ Mw . The
upwind ratio (37) can thus be correctly computed from (39). The wave strength of wave
p associated to edge l is then limited by means of a limiting function φ(θ (p)l ):

α̃
(p)
l = φ(θ (p)l )α(p)

l (40)

Many limiting functions exist and permit to obtain different known finite vol-
ume schemes [36]. Some of them enable the numerical scheme to satisfy a non-
increasing total variation, so that the appearance of spurious numerical oscillations
can be avoided in the vicinity of discontinuities. The Superbee limiter defined by
φ(θ ) = max(0,min(1, 2θ ),min(2, θ )) falls in this family, and is used in the following of
this work. More generally, the limitation of wave strength amounts to add locally some
numerical viscosity, and to locally lower the order of accuracy to properly capture discon-
tinuities. In zones where the solution field is more regular, the limitation is not active and
an accuracy of order two can be reached.

Transverse fluxes

The second contribution to additional fluxes (35) enables to improve the stability of the
numerical scheme, so that the Courant number can be set at one. These fluxes allow to
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account for information travelling in bias with respect to the considered grid cell; this is
the contribution to the grid cell to be updated of a cell only sharing a node (but not an
edge) with it. This method is known from [37] as the Corner Transport Upwind (CTU)
method. These fluxes are of great importance to ensure numerical stability for elastic
media; indeed elasticity couples strain components through Poisson’s effect, so that a
transverse information to the considered grid cell should be introduced in the numerical
scheme.
Let’s consider the patch of grid cells shown in Fig. 4. One focuses on the edge denoted

(i) whose local frame (ni, ti) is shown. This edge gives rise to the computation of normal
fluctuations A+

i �U and A−
i �U contributing to grid cells R and L respectively. These

normal fluctuations lead to the computation of transverse fluctuations giving contribution
to neighboring cells across edges (j) and (k) for cell L, and across edges (m) and (l) for
cell R. These transverse fluctuations are computed by projecting normal fluctuations on
the characteristic basis associated to the Riemann problem defined on the adjacent edge;
it appears as a transverse Riemann solver. For instance the negative normal fluctuation is
decomposed on the characteristic basis associated to edge (j) as

A−
i �U =

Mw∑
p=1

βpK(p)
j = Kjβ (41)

where Kj accounts here for the normal nj of edge (j), but also of different material prop-
erties between grid cells L and T . Coefficients βp are determined analytically for bidi-
mensional plane strain elasticity equations. For outward normals shown in Fig. 4, the
transverse fluctuations are computed with the positive operator B+, that is only waves
with positive characteristic speeds will contribute to this transverse fluctuation

B+
j A−

i �U =
Mw∑
p=1

λ+
p βpK(p)

j (42)

An additional numerical flux defined at edges is hence built from these transverse fluctu-
ations:

F̃tranj = �t
2�sj

B+
j A−

i �Ui (43)
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Fig. 4 Normal and transverse fluctuations defined from edge i
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which contributes to grid cell T . The flux F̃tranl associated to edge l appearing in Eq. (35)
thus denotes transverse contributions from adjacent grid cells to cell i.
Gathering first order fluctuations and additional fluxes, and considering an explicit

Euler time integration, the state of grid cell i is updated at time tn+1 through the following
formula:

Un+1
i = Un

i − �t
|Ai|

⎛
⎝ P∑

k=1
LkA+

k �Uk +
Q∑
l=1

LlA−
l �Ul

⎞
⎠

− �t
|Ai|

⎛
⎝ P∑

k=1
Lk F̃outk −

Q∑
l=1

Ll F̃inl

⎞
⎠ (44)

More generally, this finite volume scheme is linked, in a cartesian case, to a Taylor expan-
sion of the solution in the vicinity of a grid cell. In this framework, Godunov fluxes are first
order terms, high order fluxes are second order terms, and transverse fluxes correspond
to cross-derivatives.

Computation of the viscoplastic part
Asymptotic limit of the elastic–viscoplastic relaxation system

The elastic–viscoplastic system of Eqs. (10)–(14) appears to be a system of balance equa-
tions due to the viscoplastic flow rule (13) and evolution equation (14), leading to the
appearance of the source termS (Q) in the system (15). This source term can be identi-
fied to a relaxation operator of the form

S (Q) = R(Q)
τ

(45)

whereR(Q) is the relaxation term, and τ the relaxation time or stiffness parameter. The
relaxation term R(Q) ≡ R(f (Q)) depends on Q through the yield function f (Y), and is
such that

∂R(Q)
∂f

< 0 (46)

leading to the relaxation of the state of the system towards an equilibrium one associated
to the yield condition f = 0. The system (10)–(14) can thus be identified to a relaxation
system [38,39], that is a system of hyperbolic conservation laws with relaxation. The lat-
ter consists of conservation laws coupled with rate equations, here the set of viscoplastic
constitutive equations (12)–(14). The relaxation time τ governs the time evolution of the
viscoplastic strain and internal parameters, and determines how quickly these noncon-
served quantities approach their respective equilibrium values. Moreover, in the context
of geometric linearization, this system of conservation laws is linear.
In the asymptotic limit τ → 0, the system (15) tends to the equilibrium system

∂Q

∂t
+ ∇ · G (Q) = 0 (47)

consistent with the enforced yield (“equilibrium”) condition f = 0. More precisely, it
is well known that viscoplasticity tends to rate-independent plasticity for the limit case
of vanishing viscosity, or equivalently here for a vanishing relaxation time. In particular,
Haupt [40] gave the solution of the evolution of the overstress for thermomechanical
processes, and studied its limit for both slow processes and vanishing viscosity. In these
cases, the viscoplastic flow rule (13) reduces to the rate-independent plastic one, within
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which the expression of the plastic multiplier follows from the consistency condition
ḟ = 0. Hence, in the case of plastic loading, the fluxes G of the equilibrium system (47)
are defined from these of F (15) by replacing the elastic stiffness tensor by the tangent
moduliH of the rate-independent plastic constitutive model obtained for the limit case of
vanishing viscosity. Another way to show this result is to perform an expansion analogous
to that of Chapman–Enskog for relaxation systems [38,39,41–43], here considered in the
vicinity of the equilibrium condition f = 0, as shown in the one-dimensional case in [44]
with the elastic–viscoplastic model of [45]. The leading term of this expansion yields (47),
while theO(τ ) correction gives an additional dissipative contribution.
Note that the equilibrium system (47) satisfies the subcharacteristic condition [38],

meaning that the characteristic speeds of the equilibrium system (47) should be interlaced
between these of the relaxation system (15). If isotropic elastic and plastic behaviour is
assumed, this means that both plastic shear cPs and pressure cPL wave velocities should be
bounded by their elastic counterparts (cs and cL):

|cPs | ≤ |cs| and |cPL | ≤ |cL| (48)

This arises from the definition of tangent moduliH, whose absolute values of eigenvalues
are by construction lower than these of the elastic stiffness tensor. The subcharacteristic
condition can be understood as a stability condition, and the consequences of its violation
have been studied for the linear case in [41].

Properties of numerical schemes

A system of hyperbolic conservation laws with relaxation is said to be stiff when the
relaxation time τ is small compared to the time scale determined by the characteristic
speeds of the system and some appropriate length scales [42], or put in another way, the
wave-propagation behavior of interest occurs on amuch slower time scale than the fastest
time scales of the ordinary differential equation (ODE) arising from the source term. This
means that if the solution is perturbed away from its equilibrium condition, then it rapidly
relaxes back towards the equilibrium.
Solving stiff hyperbolic equations with relaxation can be even more challenging than

solving stiff ODEs. Indeed in a stiff hyperbolic equation, the fastest reactions are often not
in equilibrium everywhere. The stiffness of the relaxation operator can cause many diffi-
culties to numerical schemes, particularly on coarse, underresolved (�t � τ ) grids. Stiff
source terms and underresolved numerical methods, though stable, may yield spurious
nonphysical or poor numerical solutions [46]. Accordingly, numerical schemes should be
designed so that to satisfy some particular properties to ensure asymptotic convergence,
accuracy, and stability.
In particular, numerical schemes should (i) use coarse grids [42] that do not resolve the

small relaxation time τ , and still remain bounded by the Courant–Friedrichs–Lewy (CFL)
stability constraint, governed by the sole convection part of the system, (ii) be asymptotic
preserving [42,47] meaning that the numerical scheme should be consistent with the
asymptotic limit τ → 0 for fixed�x,�t, that is the limiting scheme is a gooddiscretization
of the equilibrium system (47) even if the source term is underresolved. The numerical
schemes should also (iii) be asymptotic accurate [47], that is preserve the order of accuracy
in the stiff limit, (iv) strong stability preserving [47], strong stability is maintained at
discrete level, and (v) well-balanced [43], preserving steady state numerically.



Heuzé Adv. Model. and Simul. in Eng. Sci. (2018) 5:9 Page 13 of 32

Fractional-step or splitting methods

Fractional-step methods are the most commonly used approaches to solve systems of
balance equations, and consist in solving alternatively a system of conservation laws with
no source term, and a system of ordinary differential equations. The main idea is to
take advantage of the numerical methods and mathematical backgrounds already devel-
oped both for systems of conservation laws and for stiff ODEs. The simplest (Godunov)
fractional-step method takes the form

Un+1 = S(�t)C (�t)Un (49)
where C (�t) denotes the numerical solution operator over a time step �t for the homo-
geneous part of (15), and S(�t) that for the ODE system

dQ
dt

= S (Q) (50)
However, the Godunov splitting is only first order accurate, and the well-known Strang
splitting [48]:

Un+1 = S(�t/2)C (�t)S(�t/2)Un (51)
provides second order accuracy if each step is at least second order accurate. However, it
reduces to first order for very stiff problems [42]. The implicit integrationof (50) eliminates
any influence of the relaxation time on the CFL condition, which thus depends solely on
the convection part of (15). However, any implicit ODE solver may not yield a correct
solution. For instance, although the trapezoidal method is second-order accurate and A-
stable, it is only marginally stable in the stiff case [7]. Rather, the L-stability property is
required [49], for example the simplest L-stable scheme is the Euler implicit method.
In this work, the Godunov splitting (49) coupled with an implicit backward Euler ODE

solver will be used for stiff problems (e.g. see [9,17]), while the Strang splitting and a
backward differentiation formula at order two (BDF2) will be used for less stiff problems.
However, more complex and higher order time integrators for stiff relaxation terms exist,
but are not considered in this work. These are in general not based on splitting methods,
and are still the purpose of current researches. Among others, the family of implicit–
explicit IMEX Runge–Kutta schemes [47] allows to define high order schemes using an
explicit time discretization for numerical flux and an implicit (DIRK [49]) one for the
relaxation operator. Other approaches like ADER-WENO schemes [43] are also available.

Applications
Plane waves in a one-dimensional finite mediumwith Riemann-type initial conditions

Chaboche’s viscoplastic constitutivemodel

As a simple, guideline, viscoplastic constitutive model, a Chaboche-type one [29] is con-
sidered, derived from Perzyna’s work [24], itself generalizing to three dimensions the
one-dimensional formulation initially proposed by Sokolowski [50] and Malvern [45],
and is based on the following expression of the pseudo-potential of dissipation:

� = K
N + 1

〈
f
K

〉N+1
(52)

where K andN denote viscosity and sensitivity material parameters, 〈x〉 = (x+|x|)/2 the
positive part of x, and f is the yield criterion (or viscous stress) defined from the elastic
convex C and is here associated to Mises’ norm:

f = σeq(ξ) − σy ; σeq =
√
3
2
ξ : ξ ; ξ = s − X ; C = {(σ,X)|f ≤ 0} (53)
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where s is the deviatoric part of Cauchy stresses σ,X the variable defining the center of the
elastic convex, and σy the tensile yield stress. From (9) and the potential (52), the effective
viscoplastic strain rate reads:

ṗ =
〈
f
K

〉N
(54)

This is coupled with a Prager’s [30] linear kinematic hardening:

Ẋ = 2
3
Dε̇p (55)

where D is the hardening parameter. Defining

τ =
(
K
σy

)N
(56)

the source termof the viscoplastic relaxation systemcanbewritten as a relaxationoperator
(45) with the following relaxation term:

R(Q) =
⎧⎨
⎩ −3μ

〈
σeq
σy

− 1
〉N

ξ
σeq

0

⎫⎬
⎭ (57)

where elastic isotropy has been considered and μ is the elastic shear modulus.

Numerical elastic–plastic asymptotic limit

Let’s consider a one-dimensional finite medium of length L = 6m with free boundaries
at its two ends, made of the above elastic–viscoplastic material with linear kinematic
hardening. Riemann-type initial conditions are prescribed, the velocity is prescribed to
−v̄ in the first half of the medium x ∈ [0, L/2[, and to v̄ in the second half x ∈]L/2, L],
while the stress is considered to be zero everywhere initially. The prescribed velocity is
set so that viscoplastic flow occurs:

v̄ = 2
YH
ρcL

(58)

where YH = (λ + 2μ)σy/2μ denotes the Hugoniot elastic limit and cL is the elastic
pressure wave velocity. The analytical solution of that problem for an elastic–plastic
material with linear (kinematic and/or isotropic) hardening has been introduced in [21].
The solution first consists of two elastic and plastic waves travelling from the middle in
opposite directions leading to tensile stress states. These waves are elastically reflected at
both free ends, and then interact at the middle of the medium leading to a compressive
reloading, first elastically, then plastically.
As τ tends to zero, the computed elastic–viscoplastic solution should tend to the elastic–

plastic one. On this test case, numerical solutions computedwith the Strang andGodunov
splitting are compared to that computed with classical P1-finite elements. The ODE sys-
tem (50) computed for the finite volume numerical solution is solved by means of an
implicit backward Euler scheme for the Godunov splitting and a backward differentia-
tion formula at order two (BDF2) for the Strang splitting. Then the viscoplastic strain is
updated explicitly (with a forward Euler scheme) at the end of the time step with the vis-
coplastic flow rule [(combining (13), (52) and (53)]. The finite element solution is coupled
with a central difference explicit time integrator, uses a lumped mass matrix [4], and the
constitutive equations are integrated with a radial return algorithm [6].
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Figure 5 shows a comparison between elastic–viscoplastic finite element (FEM), finite
volume (FV)with Strang andGodunov splitting solutions and the elastic–plastic analytical
solution. This comparison is performed on axial stress and viscoplastic strain fields at two
different times. The first time corresponds to elastic and plasticwaves travelling away from
the center of the one-dimensional medium, while the second pertains to the compressive
reloading with the same wave path. Numerical solutions in Fig. 5 are computed on a
mesh that consists of 200 grid cells/elements. The time step is set so that the Courant–
Friedrich–Lewy (CFL) number be equal to one. Comparison is performed using the values
extracted at integration points for the finite element solution, consistently with centroid
values of cells for finite volume solutions. In addition, solutions shown in Fig. 5a–c are
computed with a decreasing value of the relaxation parameter τ , while keeping N fixed.
Parameters of Table 1 correspond to results shown in Fig. 5b.
In Fig. 5a, a moderately low relaxation time is considered, viscous effects are observable

since the numerical elastic–viscoplastic solutions are smoother than the elastic–plastic
one.Moreover, an increased apparent tensile yield stress is observable. FEM andGodunov
splitting solutions are superposed while the Strang one appears slightly in advance. In Fig.

a b c

Fig. 5 Comparison for different values of the relaxation time τ , between the elastic–viscoplastic finite
element (FEM), finite volume (FV) with Strang and Godunov splitting numerical solutions and the
elastic–plastic analytical solution. Comparison is performed on axial stress and viscoplastic strain fields at two
different times. a τ = 10−4 s. b τ = 4.8 × 10−6 s. c τ = 10−7 s
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Table 1 Material parameters

E = 200GPa σy = 400MPa

ν = 0.3 D = 10GPa

ρ = 7800 kg/m3 K = 24.3MPa s

N = 4.37

5b, a lower relaxation time τ is set; viscous effects are now less apparent, but the same
global behaviour than previously is observed. For a very low relaxation time (see Fig. 5c),
the numerical solutions now conform as well as their respective possibility to the elastic–
plastic analytical solution. A local overshoot occurs in the viscoplastic strains computed
by the Godunov splitting scheme, and small oscillations appear: they do not subsist if
the viscoplastic flow rule is solved implicitly together with the source term. The Strang
solution shows an error in computing the sound speed of plastic waves, actually it shows
a stiff behaviour. Indeed, this very low relaxation time leads to compute a numerical
solution on an underresolved grid, since it becomes far smaller than the time step dicted
by the convection part of the system. It is well-known that though Strang splitting can
yield second-order accuracy for smooth solutions and non-stiff problems, it may fail to
correctly compute wave speeds on underresolved grids, even with L-stable ODE solvers
(see e.g. [46]).

Energy balance

Energy balance can also be performed in order to compare these schemes. Indeed, the
central difference explicit time integrator coupled to FEM is known to conserve the total
energy, while some energy is expected to be numerically dissipated for finite volume
upwind schemes. The total energy is computed as the sum of kinetic Wkin and strain
Wint energies, the latter is integrated in time with a trapezoidal rule, as discussed in [4].
These are plotted in Fig. 6 for the three schemes, computed with a CFL number set at
unity, and for three values of the relaxation parameter τ . Figure 6a–c show three stages
in their time evolution, respectively associated to the first tensile waves go, the unload
return due to reflected waves at the boundaries, and the compressive reloading go from
the middle. First, it can be observed that the FEM solution almost conserves the total
energy as expected, while this total energy is not constant for finite volumes solutions
especially during the first and third stages for which viscoplastic flow occur. It is constant
during the second stage because no viscoplastic flow occur, and since the CFL number
is set at one, flux limiters are not activated. Therefore, the energy numerically dissipated
shown in Fig. 6 arises from the fractional-step algorithms. The total energy of the FEM
solution slightly changes during this stage because small oscillations appear with elastic
unloading disturbances (see Fig. 5), they do not subsist for a lowerCFL number (see Fig. 7).
As the relaxation parameter τ decreases, the energy numerically dissipated by the

Godunov splitting slightly increases, while the Strang time evolution of the total energy
decreases markedly: it is associated to the appearance of its stiff behaviour (Fig. 5c).
Time evolutions of the total energy are also shown in the stiff case for lower values of

the CFL number in Fig. 7a, b. First, a lower CFL number decreases the time step, therefore
the Strang splitting do not show a stiff behaviour anymore for that value of relaxation time
since this fast time scale can be solved. Second, the energy numerically dissipated by the
Godunov splitting is reduced because the numerical error in integrating the ODE system



Heuzé Adv. Model. and Simul. in Eng. Sci. (2018) 5:9 Page 17 of 32

a b c

Fig. 6 Time evolution of the total energy (kinetic plus strain energies) shown for different values of the
relaxation time τ , computed with a CFL number of one, with the elastic–viscoplastic finite element (FEM),
finite volume (FV) with Strang and Godunov splitting numerical solutions. a τ = 10−4 s. b τ = 4.8 × 10−6 s. c
τ = 10−7 s

a b
Fig. 7 Time evolution of the total energy shown for different values of the CFL number, computed with a
relaxation parameter τ = 1 × 10−7 s, with the elastic–viscoplastic finite element (FEM), finite volume (FV)
with Strang and Godunov splitting numerical solutions. a CFL = 0.4. b CFL = 0.04

reduces with the time step. Third, since no viscoplastic evolution occur during the second
stage, the observed numerical dissipation in that stage only arises from flux limiters which
are activated due to the lower values set for the CFL number. However, this numerical
dissipation appears negligible with respect to that developed during the propagation of
viscoplastic flow, generated by the fractional-step algorithms.

Convergence analysis

To complete the comparison between these schemes, convergence analyses have been
performed for both discontinuous and smooth solutions, and for different values of the
relaxation parameter τ . These comparisons are done at the fixed time t = 4.34 × 10−4 s
(first goof tensilewaves), provided aCFLnumber set at one. Smooth solutions are obtained
by smoothing the velocity profile of the initial conditionwith a portion of sinus on a length
L/4, centered with respect to the middle of the one-dimensional medium.
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Figure 8a–c show the convergence curves associated to discontinuous solutions for the
three values of the relaxation parameter τ . A very close convergence rate of about 0.5
for the stress and 0.8 for the velocity is observed for the three schemes in the case of
initial discontinuous profile of the velocity. Indeed, because of the discontinuous solution,
the source term is expected to be active only over thin regions where there are fast
transients that cannot be resolvedwith a high accuracy [7]. Convergence curves are almost
superposed for the highest value of the relaxation parameter. However, the constant in the
Strang splitting convergence curves (Fig. 9b, c) becomes larger than these of the FEM and
the Godunov splitting for lower values of τ , yielding a bigger error. Indeed, as τ decreases,
the Strang splitting shows a too stiff behaviour (Fig. 5c) on an underresolved grid (for
example �x = 3 × 10−2 m, 200 grid cells). As expected, this behaviour is improved for a
lower grid size associated to a lower time step of the order of the time scale of the source
term (for example �x = 3 × 10−3 m → �t ≈ 5 × 10−7s ∼ τ ). But in general we do not
want to use such a fine grid, because larger time steps are preferred to save computational
cost.
Figure 9a–c show the convergence curves associated to smooth initial profile of the

velocity for the three values of the relaxation parameter τ . Now, convergence rates of
about 1.1 and 1.5 for stress and the velocity are observed, and are higher than these
provided for discontinuous solutions. The FEM error appears globally to be the smallest,
though that of the Godunov splitting solution is close to it in each case. However, the
Strang splitting solution appears less efficient than the two others, although its error has
decreased with respect to discontinuous solutions. But, as τ decreases, it shows again a
too stiff behaviour.

a b c

Fig. 8 Relative L2 errors of the stress and velocity computed at time 4.34 × 10−4 s with a CFL number set at
one for a discontinuous profile of the initial velocity field. Comparison is performed for three values of the
relaxation parameter τ , with the FEM, the Strang and Godunov splitting finite volume solutions. a τ = 10−4 s.
b τ = 4.8 × 10−6 s. c τ = 10−7 s
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a b c

Fig. 9 Relative L2 errors of the stress and velocity computed at time 4.34 × 10−4 s with a CFL number set at
one for a smooth profile of the initial velocity field. Comparison is performed for three values of the relaxation
parameter τ , with the FEM, the Strang and Godunov splitting finite volume solutions. a τ = 10−4 s. b
τ = 4.8 × 10−6 s. c τ = 10−7 s

As a first draw of conclusion, for very stiff problems, the Godunov splitting should be
preferred to the Strang one. For non-stiff ones, both can be used. However, it should be
noticed that the present case of a plane wave is a hard test because of its one-dimensional
strain state. Two-dimensional cases below yield less stiff solutions due to their multi-
dimensional strain state.

Partial impact on a plane

Let’s now consider the bidimensional square domain shown in Fig. 10, submitted to an
impact on a part of its top face, by means of a step function of a pressure p. A symmetry
condition is considered on the left part, free boundaries are set at the bottom face and
on the remaining part of the top face, and a perfect transmission condition is set on
its right face. This problem is treated in the bidimensional plane strain framework, for
which the expressions of characteristic speeds λp and directions K(p) (28), 1 ≤ p ≤ 5, are
detailed in [7]. For this test case, a comparison between a finite volume numerical solution
with Strang splitting and Q1-finite elements is considered. The finite element solution is
obtained with the code Cast3M [51], computed with an implicit time stepping, and an
absorbing boundary to compute the perfect transmission condition set on the right face.
The previously introduced elastic–viscoplastic constitutive model with linear kinematic
hardening is also considered with parameters listed in Table 1, to which are added these
associated to geometry and loading of the partial impact test case, summarized in Table 2.
First, the non-uniform quadrilateral mesh shown in Fig. 11 is considered, generated

with the free finite element mesh generator Gmsh [52], defined so that to achieve refined
elements close to the impact area and coarse ones far from this area. Both numerical solu-
tions are computed with this mesh, and the CFL number is set at one for both solutions.
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Fig. 10 Partial impact on a plane

Table 2 Parameters of the partial impact test case

Geometry (m) Loading

a = 0.5 p = 1.5YH = 1.05GPa

L = 2

Fig. 11 Non-uniform quadrilateral mesh

Figures 12 and 13 show the comparison between finite element and finite volume numeri-
cal solutions at two different times of computation. These figures consist on the one hand
of numerical isovalues of the normal stress σ22 and cumulated viscoplastic strains εeq ≡ p,
for which the left-half of the domain shows the finite element solution while the right one
shows the finite volume solution, and on the other hand of superposed plots of the normal
stress σ22 and cumulated viscoplastic strains εeq ≡ p along the symmetry line. At time
2.58 × 10−4 s (see Fig. 12), pressure and shear waves have been generated by the step
pressure prescribed on a part of the top face, and have propagated downward. The curved
wave front of the pressure wave is observable on stress isovalues. This front has generated
and propagated viscoplastic strains. Finite element and finite volume numerical solutions
look close, up to a slight undershoot of the finite element normal stress at the wave front
and a slightly delayed progression of viscoplastic strains for the finite volume solution. At
time 9.25×10−4 s (see Fig. 13), the pressure wave has travelled one round trip from the top
face, and still propagates forth. The solution is now smoother, but viscoplastic strains have
developed. In particular, close to the connection between loaded and free parts of the top
face of the domain, shear has been undergone leading to the spread of viscoplastic strains
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Fig. 12 Normal stress σ22 and cumulated viscoplastic strains εeq ≡ p at time 2.58 × 10−4 s, computed with
finite elements (left-half domain) and finite volumes (right-half domain). Superposed plots are made along
the symmetry line (Additional file 1)

Fig. 13 Normal stress σ22 and cumulated viscoplastic strains εeq ≡ p at time 9.25 × 10−4 s, computed with
finite elements (left-half domain) and finite volumes (right-half domain). Superposed plots are made along
the symmetry line

from that area. Second, the free boundary defined at the bottom face has led to convert the
initial pressure wave into a tensile one after reflection, which has generated viscoplastic
strains close to that bottom face. Again, finite element and finite volume solutions look
close up to few details here and there on stress and cumulated viscoplastic strains fields.
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Fig. 14 Normal stress σ22 and cumulated viscoplastic strains εeq at time 4.89 × 10−4 s, computed on a
100 × 100 refined cartesian mesh with finite elements (left-half domain) and finite volumes (right-half
domain). Superposed plots are made along the symmetry line

But a clear improvement provided by finite volumes over the finite element solution can
be observed by using a refined 100× 100 quadrangle cartesian mesh, which provided the
CFL number set at one, enables to properly capture the elastic discontinuity. Figure 14
shows the tensile wave reflected from the bottom side at time 9.25 × 10−4 s, captured in
one cell with the finite volume solution, while finite elements exhibit spurious numerical
oscillations around this wavefont. Finite volumes benefit here from flux limiters designed
to achieve a nonincreasing total variation, applied to the convectionpart of the system (15).

Double-notched specimen with tensile initial velocity

We consider now a double-notched specimen, whose quarter of geometry is shown in
Fig. 15. This double-notched specimen is submitted to a nonzero initial tensile velocity in
its extremal parts, within the shaded area (see Fig. 15). This test case is actually extracted
from [17], but is here treated with the previously defined elastic–viscoplastic material
with linear kinematic hardening. Due to the two planes of symmetry of the problem,
the sole quarter of the double-notched specimen is meshed. Its geometrical and loading
parameters are listed in Table 3. The finite volume solution is still computed with the
Strang splitting, and both finite element and finite volume solutions are computed with
a CFL number set at 0.9. Figures 16 and 17 show their comparison at two different times
of computation. These figures are organized in the same way than for the partial impact
test case, except the normal stress σ11 is now considered, and the finite element solution
is shown on the half-bottom part of the domain and the finite volume one is shown on
the half-top part. Superposed plots are performed along the horizontal symmetry line.
The nonzero initial velocity generates a tensile wave, which is first reflected on the

right free boundary, as shown in Fig. 16. The finite element solution shows spurious
oscillations upstream of the left wavefront, essentially due to the implicit time stepping,



Heuzé Adv. Model. and Simul. in Eng. Sci. (2018) 5:9 Page 23 of 32

vx(t = 0) = v̄

h

L

a

l

α

x

y

Fig. 15 One quarter of a double notched specimen, submitted to an initial tensile velocity on its right part

Table3 Parameters of the double-notched specimen test case

Geometry Loading

a = 1.5 × 10−2 m v̄ = 40m/s

L = 3.73 × 10−2 m

h = 1 × 10−2 m

α = π/6

l = 3 × 10−3 m

Fig. 16 Normal stress σ11 and cumulated viscoplastic strains εeq at time 3.45 × 10−6 s, computed with finite
elements (bottom-half domain) and finite volumes (top-half domain). Superposed plots are made along the
horizontal symmetry line

while the viscoplastic strains are close for both numerical solutions and show a conical
spread pattern due to the plane of symmetry. Then, the left front of the tensile wave is
reflected both on the notch and left plane of symmetry, which leads the normal stress σ11
to double on the symmetry line and to concentrate at the notch corner. After few waves
interactions, Fig. 17 shows viscoplastic strains which have much increased at the notch
corners, so does for the normal stress which shows shearing pattern due to multiple wave
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Fig. 17 Normal stress σ11 and cumulated viscoplastic strains εeq at time 9.54 × 10−6 s, computed with finite
elements (bottom-half domain) and finite volumes (top-half domain). Superposed plots are made along the
horizontal symmetry line

reflexions. Essentially, the two numerical solutions fit well, though the finite volume one
shows less numerical spurious oscillations.

Sudden velocity loading and unloading of a heterogeneous volume

Chaboche’s viscoplastic constitutivemodel

The last test case considered in this work is a square heterogeneous volume, of side length
2a, with an inclusion of circular cross-section of radius R centered within the volume.
This volume in an initial natural state is suddenly loaded on its left side at time t = 0
with a constant first component of velocity v̄. After time tu, the applied velocity is set
to zero. Symmetry conditions are set at the top and bottom sides of the volume, while
transmissive boundary conditions have been set on the right side. Due the symmetry of
the problem, only one half of the domain is meshed as shown in Fig. 18. We assume
an arbitrary heterogeneous material, that consists of an inclusion made of aluminium
embedded in amatrixmade of steel. Thematrix is here assumed to remain elastic, only the
inclusion undergoes viscoplastic strains, driven by the previously introduced Chaboche’s
viscoplastic constitutive model. The analysis is also carried out in plane strain, with a
CFL number set at one. Numerical data used for computations are summarized in Table
4. Figures 19 and 20 show the comparison between finite element and finite volume
numerical solutions at two different times of computation. The normal stress σ11 and the
cumulated viscoplastic strains are shown, and plotted along symmetry line.
A slot of compressive normal stress is first formed by the horizontal component of the

velocity prescribed on the left side, and travels rightward in thematrix. Then, its first front
interacts with the front interface between the matrix and the inclusion, and generates an
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v̄

R
a

a

Fig. 18 Half of a heterogeneous volume that consists of a circular inclusion embedded in a matrix, suddenly
loaded then unloaded after a time tu on its left side by a prescribed velocity v̄

Table4 Parameters values for the heterogeneous volume test case

Geometry (m) Loading

a = 10−3 v̄ = 40m/s

R = 5 × 10−4 tu = 7 × 10−8 s

Matrix Inclusion

EM = 200GPa EI = 70GPa

νM = 0.3 νI = 0.34

ρM = 7800 kg/m3 ρI = 2700 kg/m3

σyI = 350MPa

DI = 10GPa

KI = 24.3MPa s

NI = 4.37

Fig. 19 Normal stress σ11 and cumulated viscoplastic strains εeq at time 1.52 × 10−7 s, computed with finite
elements (bottom-half domain) and finite volumes (top-half domain). Superposed plots are made along the
symmetry line
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Fig. 20 Normal stress σ11 and cumulated viscoplastic strains εeq at time 3.12 × 10−7 s, computed with finite
elements (bottom-half domain) and finite volumes (top-half domain). Superposed plots are made along the
symmetry line

intermediate state of stress and velocity due to the mismatch of elastic impedances of the
matrix and the inclusion. In Fig. 19, the second front of the former stress slot interacts
with the generated intermediate state and yields a tensile stress wave, while the first
compressive loading keeps on travelling within the inclusion, and propagates viscoplastic
strains. One can observe that the finite element stress field shows spurious numerical
oscillations in the vicinity of discontinuities, especially close to lateral boundaries where
tensile spurious stress states appear.Cumulated viscoplastic strains are almost identical for
both numerical solutions, except close to the matrix/inclusion interface. Once the tensile
wave has reflected on the left side of the volume, it propagates rightward, following the
initial compression slot, as shown in Fig. 20. The former compression slot has interacted
with the back side of the inclusion interface, generating an important growth of cumulated
viscoplastic strains close to this area. Note also that the front of the tensile slot has
been curved after reflexion first on the circular matrix/inclusion interface, second on the
boundary of the volume. Generally speaking, the finite volume solution allows to obtain
the same viscoplastic strains than these of the finite element solution without the spurious
numerical oscillations on stresses obtained with the finite element solution.

Chaboche–Nouailhas’ viscoplastic constitutivemodel

The previous version of Chaboche’s viscoplastic constitutive model can be enriched to
show the generality and robustness of the method. A viscoplastic model extracted from
that of Chaboche and Nouailhas [29,31] introduces an exponential term in the expression
of the pseudo-potential of dissipation:

� = K
α(N + 1)

exp
(

α

〈
f
K

〉N+1
)

(59)
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which allows, through a parameter α, to saturate the overstress as the effective viscoplastic
strain rate increases, which now reads:

ṗ =
〈
f
K

〉N
exp

(
α

〈
f
K

〉N+1
)

(60)

The saturation of the overstress driven by expression (60) is shown in Fig. 21, and super-
posed with the previous one (54). It amounts to consider a power law with a varying
apparent exponent:

N ∗ = d ln ṗ
d ln f

= N + α(N + 1)
(
f
K

)N+1
(61)

The variation of this exponent is also shown in Fig. 21. This creep law is coupled with the
nonlinear kinematic hardening law of Armstrong–Frederick [32,33]:

Ẋ = 2
3
Dε̇p − γXṗ (62)

where γ denotes an additional hardening parameter. A tensile/compression cycle is
depicted in Fig. 22 for a strain rate ε̇ = 1/s, and γ = 200. The ODE system (50) computed
for finite volume numerical solutions is now solved together with the viscoplastic flow rule
[combining (13), (59) and (53)] and the hardening rule (62), provided the expression (60)
of the effective viscoplastic strain rate, and is still discretized with an implicit backward
Euler scheme. In the bidimensional plane strain case, the nonlinear system of equations
to be solved consists of eight equations associated to components 11, 22, 12, 33 of σ and
X. Moreover, the finite volume numerical solution is computed with a Godunov splitting,
numerical values used in plots of Figs. 21 and 22, and the same CFL number set at one.
Figure 23 shows the cumulated viscoplastic strain field in the inclusion after the com-

pression slot is passed, computed by means of finite volume method with Chaboche and
Chaboche–Nouailhas’ viscoplastic constitutive models. The latter leads to much more
important cumulated viscoplastic strain than the former. Indeed, for an overstress close
to 102 MPa, the effective cumulated strain rate has largely increased for that model (see
Fig. 21), which yields a more important viscoplastic flow. As the compression slot passes
within the inclusion, viscoplastic flow concentrates in the inclusion close to the rear part

Fig. 21 Overstress evolutions obtained with the creep laws (54) and (60), and numerical values of Table 1,
and α = 10−3
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Fig. 22 Tensile/compression stress–strain curve at ε̇ = 1 s−1

Fig. 23 Cumulated viscoplastic strain εeq ≡ p in the inclusion at time 3.35 × 10−7 s, computed with
Chaboche (right) and Chaboche–Nouailhas’ (left) viscoplastic constitutive models. Isovalues have been
warpped according to the magnitude of εeq with the same scale factor 0.2

of the interface with the matrix (see Fig. 23). This is provided by the circular geometry of
the inclusion that defines a concentrating profile as the compression wave travels right-
ward. In Figs. 24 and 25, isovalues of the effective viscoplastic strain rate are shown at two
successive instants, as the compression slot passes. The observed profiles appear quite
different in terms of the chosen viscoplastic constitutive model. In particular, the satu-
ration of the overstress predicted by expression (60) combined with the particular rear
geometry of the interface inclusion/matrix yield an effective strain rate that reaches very
high numerical values on a narrow band. This small example illustrates the importance
of the chosen viscoplastic constitutive model on the propagated viscoplastic strains in a
dynamic process.
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Fig. 24 Effective viscoplastic strain rate ṗ in the inclusion at time 1.89 × 10−7 s, computed with Chaboche
and Chaboche–Nouailhas’ viscoplastic constitutive models. Both unwarpped (left) and warpped (right)
isovalues are presented, the latter being scaled with the same scale factor 10−8

Fig. 25 Effective viscoplastic strain rate ṗ in the inclusion at time 2.25 × 10−7 s, computed with Chaboche
and Chaboche–Nouailhas’ viscoplastic constitutive models. Both unwarpped (left) and warpped (right)
isovalues are presented, the latter being scaled with the same scale factor 10−9

Conclusion
In this work, the flux-difference splitting finite volume method [7,25] has been employed
to perform numerical simulation of impacts on elastic–viscoplastic solids on bidimen-
sional non-uniform quadrilateral meshes. The elastic–viscoplastic system of equations
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identifies itself with a relaxation system with threshold, whose asymptotic limit yields an
elastic–plastic system. The linearized geometrical framework considered here leads to
a linear hyperbolic system with a nonlinear source term, driven by the viscoplastic part
of the behaviour. This relaxation system is solved by means of a fractional-step method
(Strang or Godunov splitting), whose convection part is solved with the flux-difference
splitting formalism applied here to bidimensional non-uniformquadrilateralmeshes. Sev-
eral test cases have been proposed, and show the good accuracy of the computed finite
volume solutions in terms of both stresses and viscoplastic strains with respect to finite
element ones. The flux limiters used to compute the convection part enable to remove
spurious numerical oscillations shown in the finite element solution close to the elastic
discontinuity. In addition, two viscoplastic constitutive models have been tested to illus-
trate the genericity of the approach, and their influence on the viscoplastic flow has been
shown on the heterogeneous volume test case. Notice that this work is straightforward
extendable to three-dimensional meshes following [53] for example.
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Additional file 1. Animation of the the wave propagation.
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