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Parametric modeling of an electromagnetic
compression device with the Proper Generalized
Decomposition

Thomas Heuzé · Adrien Leygue ·
Guillaume Racineux

Abstract Optimization of forming processes seeks an optimal choice of many
process parameters. In Electromagnetic Material Forming (EMF), parameters
associated to the geometry of the forming device or related to the generation
of the pulsed currents have to be set, and are of primary importance to achieve
the proper geometry of the formed part. Usual optimization procedures pro-
ceed by defining a trial choice of the set of parameters and then evaluate the
optimality of a given cost function computed from a direct analysis. This iter-
ative process requires many assessments of the cost function and may lead to a
prohibitive computation cost since the direct analysis may involve a structural
analysis. Others approaches have been proposed to circumvent this problem;
based on a separated representation of the solution, the Proper Generalized
Decomposition allows for a parametric resolution by introducing optimization
parameters as extra-coordinates of the problem, hence the optimization pro-
cedure reduces to a simple post-treatment of the multidimensional numerical
solution.

The aim of this work is to develop a numerical tool dedicated to the op-
timization of the design of an electromagnetic compression device. This tool
should enable to optimize process parameters of the generator and geometrical
parameters of the electromagnetic forming device by solving the set of elec-
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E-mail: adrien.leygue@ec-nantes.fr

G. Racineux
Research Institute in Civil and Mechanical Engineering (GeM, UMR 6183 CNRS), École
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tromagnetic equations in quasistatics. To this end, we take advantage of the
Proper Generalized Decomposition (PGD) to perform a parametric resolution.
We show solutions computed with a parameterization of the discharged cur-
rent, and with a parameterization of the geometry considering a multi-layered
structure. Finally, an example of optimization procedure is shown on the lat-
ter solution, seeking the configuration maximising the radial component of the
resultant compression force applied on the part to be formed.

Keywords Parametric modeling · optimization · electromagnetic compression
device · Proper Generalized Decomposition

1 Introduction

Electromagnetic Material Forming (EMF) allows forming electrical conductive
metallic materials at high strain rates. It uses pulsed magnetic fields to apply
electromagnetic (Lorentz) body forces to shape sheet and tube metal parts.
The magnetic field is generated by discharging into a coil high intensity cur-
rents pulsed from a high energy capacitor equipped with fast action switches.
This kind of forming processes presents several advantages on classical low
strain-rate forming processes, among which contact-free force application, pro-
cess repeatability, and small duration can be cited. But the main interest lies
in the fact that it enables to increase dramatically the forming limits classically
reached with steady-state forming processes. The gain is all the more signif-
icant that the alloy in question has a low ductility at low strain rate. It also
allows for the reduction of wrinkling and strongly limits the springback due
to the forming operation. Thus, EMF processes are of great industrial interest
for all types of industries, particularly concerning the weight reduction and
multi-material assembly issues or for the design of complex geometry parts,
thanks to a better formability of metallic alloys at high strain rate. We refer
to [30] for a complete review of EMF.

From the industrial viewpoint, its implementation requires to determine
many process parameters to achieve the proper geometry of the part to be
formed; these parameters can be either related to the geometry of the elec-
tromagnetic forming device (geometries of the part and the coil) or related
to the physical properties of the components embedded within the device, or
even related to the chain generator-coil that pulses the discharged currents.
Mastering the EMF requires a good knowledge of a domain of validity of these
process parameters, which is often determined by the accumulated know-how
of users. In this context, numerical simulations appear to be an effective way
to explore parameter space, and therefore can limit a more expensive trial and
error approach. Numerical parametric analysis may thus enable to improve
and optimize these forming processes, but leads to the definition of optimiza-
tion procedures that may turn out to be computationally very costly. Indeed,
the often prohibitive numerical cost of the optimization procedure arises from
the direct analysis run for each given set of parameters in order to evaluate
the cost function and its optimality [4]. This iterative process leads to many
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assessments of the cost function and therefore to many direct computations
of a given model. Since the numerical model may involve a structural analysis
or the resolution of a Boundary Value Problem (BVP), this kind of approach
may lead to a huge computation time, and we are led to limit as much as
possible the number of parameters considered in the analysis, and therefore
the size of the problem.

However, others approaches have been proposed to decrease the optimiza-
tion computation time. Recently, procedures based on separated representa-
tions such as the Proper Generalized Decomposition (PGD) [32,10,3,26] have
proved to be particularly effective to reduce the complexity of problems ex-
hibiting high dimensions, and circumvent the so-called curse of dimension-
ality. Indeed, while classical mesh-based methods like finite elements exhibit
a complexity increasing exponentially with the number of dimensions, sep-
arated representations enable to alleviate this difficulty and shows a com-
plexity scaling only linearly with the dimension of the problem. Introducing
extra dimensions appears therefore much less penalizing with this approach.
The Proper Generalized Decomposition enables a parametric resolution by in-
troducing optimization parameters as extra-coordinates of the problem, and
uses a separated representation to approximate the multidimensional solution.
Consequently, the evaluation of the cost function does not require anymore a
direct analysis, the computational effort being previously provided upstream
of the optimization step. Thus, the optimization procedure reduces to a simple
post-treatment of the multidimensional numerical solution, and can be done
in real time on light computing devices. This decreases drastically the com-
putation time allocated to the optimization procedure compared to classical
approaches. PGD has already been used successfully in the framework of para-
metric analysis for the resolution of thermal problems, accounting for varying
geometric [25] or material parameters [29,12,23], or related to boundary con-
ditions [18,19,12]. PGD has also been used to solve stochastic problems [27],
for the simulation of composites manufacturing [11], for thin structures [7] and
in crack problems [20], in rheology and kinetic theory [3].

The aim of this paper is to take advantage of the Proper Generalized De-
composition to build a numerical tool dedicated to the optimization of the
design of an electromagnetic compression device. This tool should allow to
perform optimization procedures on this device at a much lower cost than that
generated by conventional procedures coupled with mesh-based discretization
methods. In this work, only the set of electromagnetic equations in quasistatics
is solved on the electromagnetic compression device. The objective is to extract
from the electromagnetic solution the Lorentz body forces. These body forces
may afterwards be used as an input to any finite element code to perform the
simulation of the mechanical stage of the process. It is well-known that EMF
processes involve coupled multiphysical problems [14,35,34]; though a decou-
pled approach leads to introduce further simplifying assumptions, it may also
enable (up to an accepted error of modeling) to view the coupled problem as
a chain of different Boundary Value Problems, each associated to one phys-
ical phenomenon, and thus allows for a simplified approach and decoupling
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difficulties that can prove to be well-suited both for understanding occuring
physical phenomena and for process optimization purposes. The study of cou-
pling effects may afterwards be carried out if needed, but is not part of the
scope of this work. It has to be emphazised that from the industrial viewpoint,
it is of primary interest to have access to the Lorentz body forces defined on a
parameter space. First, the Lorentz forces magnitude is a good indicator of the
behavior of the part during the forming operation, and EMF users can either
complete the numerical simulation by plugging their own mechanical solver
or use their accumulated experimental know-how to relate the magnitude of
these forces to the quality of the formed part. Second, these forces defined on
a parameter space enable to compute efficiently sensitivities with respect to
additional parameters, quantities of great interest for optimization purpose,
without the need to run further computations. At last, defining the Lorentz
forces on a parameter space allows to build a numerical chart and to evaluate
the solution at a very low cost with respect to classical approaches.

The paper starts by recalling the principles of Electromagnetic Material
Forming processes in section 2. Next, the problem considered in this work and
the formulation of the set of electromagnetic equations in quasistatics in term
of the magnetic vector potential are detailed. The bidimensional axisymmetric
case is retained as usual in EMF modeling of compression devices [35]. Section
3 is devoted to the Proper Generalized Decomposition, basic principles [32,10,
12] and the multidimensional weak form of the problem considered are pre-
sented. In this work, attention is focused on the generation of Lorentz body
forces, the aim of the numerical tool built is to optimize the process parameters
of the chain generator-coil and the geometrical parameters of the electromag-
netic compression device with respect to the mechanical loading required to
form the part. In section 4, we consider as a first step a parameterization of
the discharged current through the decay time τ and its angular frequency ω.
These two additional parameters can be related to more convenient quanti-
ties from the viewpoint of the user (capacitance, inductance and resistance),
but it enables a more compact parameterization. Thus, this model leads to a
five-dimensional numerical solution. In section 5, parameterization of the ge-
ometry of the electromagnetic compression device is carried out. We consider
a multi-layered structure where the thicknesses of all layers are introduced as
extra-coordinates in the considered problem. The numerical problem has then
height dimensions. Though geometric parameters have already been treated
in the 1D case within the framework of the PGD [25], it is shown here that
some complications may arise in the axisymmetric case, and that the com-
plexity of the computation may grows asymptotically as O(m2) if we consider
an m-layered structure. In order to illustrate possibilities offered by the mul-
tidimensional solution, an example of optimization procedure is carried out in
section 6, in which we seek the geometrical configuration of the electromag-
netic compression device maximizing the radial component of the resultant
compression force applied on the part to be formed. For illustration purpose,
the radial component of the resultant force is plotted on a part of the design
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space; it is shown that a minimum exists and is unique. This illustrates a first
step towards the optimization of an electromagnetic compression device.

2 Electromagnetic Material Forming

2.1 Principles

Electromagnetic Material Forming (EMF) is a high-speed forming technology
that relies on the use of electromagnetic forces to form metallic workpieces at
high strain rate [30,13,16]. Generally speaking, these processes use a magnetic
coil as a ”tool”. It consists in discharging a high intensity and oscillating current
(figure 1(a)) into a coil using a high voltage capacitor bank with high-speed
switches. This current, flowing within the coil, generates a pulsed magnetic
field in the vicinity of coil windings. Providing the Faraday’s law saying that
in the presence of a time-varying magnetic field any electrical conductive ma-
terial is subjected to induced eddy currents, the interaction between the pulsed
magnetic flux density and these eddy currents creates strong repulsive body
forces called Lorentz forces. The resulting brief and intense mechanical load-
ing accelerates and deforms the workpiece until it contacts a die giving it its
final shape. Figure 1(b) shows a magnetic pulse crimping configuration, which
is actually a special case of EMF processes. This configuration is required if
we want to assemble a ring on a shaft, traditionally of circular cross-sections.
The ring is accelerated and deforms until it contacts the shaft, achieving the
crimping operation.

I

t

I(t) = I0e−t/τ sin(ωt)

I0e−t/τ

(a) Discharged current
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ring
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(b) Crimping configuration

Fig. 1 Electromagnetic Material Forming process

The main interest to form at high strain rate lies in the fact that it im-
proves the formability of metallic alloys, thus it allows to overcome traditional
formability barriers that prevent a more widespread use of aluminium alloys
in lightweight structural applications [16]. Usual strain rates reached with



6 Thomas Heuzé et al.

such processes are of the order of 103s−1. This impressive increase of ductility
of metallic alloys results from the strain-rate sensitivity of the material con-
stitutive’s response, as shown experimentally in [5] and [6]. EMF processes
show as well many advantages with respect to classical low strain rate form-
ing processes, such as the reduction of wrinkling in compression forming, re-
duction of springback due to the dynamics of contact with the forming die,
high-productivity due to the high-speed forming operation, contact-free force
application, high-repeatability [30].

2.2 Modeling

Electromagnetic Material Forming processes are coupled multiphysical prob-
lems. Electromagnetic, thermal and mechanical effects combine during the
forming operation. Electromagnetic phenomena generate the mechanical load-
ing (Lorentz body forces) on the workpiece, which deforms and heats due to
the mechanical and electrical dissipations. Many authors have already studied
the theoretical formulation of this strongly coupled problem [14,35,34,28], and
its numerical resolution with the finite element method [33,31].

However in this kind of applications, all the couplings are not necessarily
activated; thus it is commonly accepted to simplify the modeling by intro-
ducing some assumptions. First, the effective current frequencies being of the
order of 10kHz, i.e. a characteristic length of the electromagnetic forming de-
vice being much smaller than the electromagnetic wavelength, the propagation
is neglected [34,33,31]. Second, looking at the ratio of characteristic times of
the different physical phenomena occuring during the process, many couplings
may be neglected. Indeed, we can observe that for a classical aluminium (2xxx
series for instance) the ratio of characteristic times related to magnetic and
thermal phenomena is of the order of 5 · 10−3. Hence, magnetic and thermal
phenomena can be solved separately. The decoupling between magnetic and
mechanical effects is less evident as stated by many authors that pointed out
the importance of this coupling [35,34,33,13]. However, this coupling will be
neglected in this work as stated in the introduction of this paper, so that the
set of electromagnetic equations be solved independently. The approach fol-
lowed here falls into a decoupled strategy of the resolution of the multiphysical
problem, and attention will be focused in this work on electromagnetic effects.

The geometry considered is defined in the bidimensional axisymmetric case
and is presented in figure 2. The domain Ω consists of a magnetic coil (Ωcoil)
surrounding the workpiece (Ωwp) of cylindrical shape, defining an electromag-
netic compression device being plunged into a volume of air (Ωair). Hence, the
domain Ω admits the following decomposition:

Ω =
⋃
i

Ωi ; i = {coil,wp, air} (1)

The boundary ∂Ω of the domain Ω admits the decomposition:

∂Ω = Γ0 ∪ Γ1 (2)
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where Γ0 and Γ1 stand for the part of the boundary for which Dirichlet and
Neuman boundary conditions are respectively prescribed, see figure 2. A sym-
metry condition allows for limiting the domain of study, and helicity of the
magnetic coil has been neglected.

z

Ωair

a = 0

∂a
∂n

= 0
a

=
0

a
=

0

Ωwp
Ωcoil

Fig. 2 Geometry of the computational domain

It is usual to solve the set of electromagnetic equations by introducing
potentials. Among them, the most popular is a formulation in term of the
magnetic potential vector [35,33,31], using the third Maxwell’s equation stat-
ing the non-existence of magnetic charge:

b = curl a (3)

where b denotes the magnetic flux density and a the magnetic vector potential.
For bidimensional axisymmetric formulation, only the hoop component of the
magnetic potential vector does not vanish:

a = aeθ (4)

It is thus easy to show that the total electric charge balance and the classical
Coulomb gauge are automatically satisfied, therefore the initial boundary value
problem considered in this work reads:

σ
∂a

∂t
= 1
µ

(
∂2a

∂r2 + 1
r

∂a

∂r
− a

r2 + ∂2a

∂z2

)
+ j0 ∀x ∈ Ω (5)

a = 0 ∀x ∈ Γ0 (6)
∂a

∂n
= 0 ∀x ∈ Γ1 (7)

a(r, z, t = 0) = a0 ∀x ∈ Ω (8)
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where σ refers to the electrical conductivity (vanishing in the air) and µ refers
to the magnetic permeability of the medium. In this study, we consider the
magnetic coil made of copper and the workpiece made of aluminium alloy,
therefore the magnetic permeability in these media is almost equal to the vac-
uum permeability µ0 = 4π ·107 H.m−1. Indeed, these materials are respectively
diamagnetic and paramagnetic, for which the relative magnetic permeabilities
are close to unity. Consequently, the initial boundary value problem (5)-(8)
is linear. The partial differential equation defined on the hoop component a
of the magnetic potential vector is supplemented with appropriate initial (8)
and boundary conditions. First, a symmetry condition is prescribed on Γ1 to
restrict the domain of computation:

n× h = 0 ∀x ∈ Γ1 (9)

where h denotes the magnetic field and n the outward unit normal. The equa-
tion (9) combined with (3) and the following magnetic constitutive equation:

b = µh (10)

reduces to (7). Second, the magnetic potential vector vanishes on the symmetry
axis [35] and tends to vanish far from the device, this leads to equation (6).
Finally, a time-varying current density j0 = j0eθ is prescribed within the coil,
according to a damped sinusoid (figure 1(a)):

j0 = I0
S
e−t/τ sin(ωt) (11)

where S denotes the cross-section of the windings, τ a decay time and ω the
angular frequency of the pulsed current. The prescribing of a homogeneous
distribution of the current density in each coil turn constitutes an approxima-
tion which is acceptable here given the intended applications involving a small
dimension of coil turn and a sufficient mean radius of the coil, otherwise the
total current should be applied in accordance to [33] and [35]. The Lorentz
body forces are then computed in post-treatment from the magnetic flux den-
sity b and from induced eddy currents flowing within electrical conductive
components of the device j = −σ∂a/∂t, such that:

f = j× b (12)

3 PGD

The Proper Generalized Decomposition [32,10,26,12] or PGD consists in seek-
ing the solution of a boundary value problem in a separated representation.
Let’s consider a field u depending of d coordinates (x1, . . . , xd) ∈ (Ω1 × . . .×
Ωd), this approximation reads:

u(x1, . . . , xd) '
N∑
i=1

d∏
j=1

X
(j)
i (xj) (13)
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In other words, if each dimension xj is discretized on a unidimensional mesh
that consists of Nj nodes, x(j)

i ∈ RNj represents the vector of components
X

(j)
i (x(j)

k ), with 1 ≤ k ≤ Nj et 1 ≤ j ≤ d, so that (13) be rewritten as a sum
of ranked-one tensor product:

u '
N∑
i=1

x(1)
i ⊗ · · · ⊗ x(d)

i (14)

The whole point of the PGD is to build a tensor product approximation basis
in order to decouple the numerical integration of high dimensional model in
each dimension. Indeed, working with functions of one variable leads to that
the computational cost scales linearly with the number of dimensions of the
problem, and no more exponentially as for mesh-based methods like finite
elements, alleviating the so-called curse of dimensionality.

Functions X(j)
i (xj) in (13) are unknown a priori. The solution procedure

is based on a greedy algorithm and proceeds by successive enrichments. Let’s
assume that the solution at enrichment step n is known, solution at enrichment
step n+ 1 is given by:

un+1 = un +
d∏
j=1

X
(j)
n+1(xj) (15)

Let’s now consider a tensor product approximation of the hoop component a of
the magnetic potential vector (4) depending on coordinates (t, r, z, x1, . . . , xm) ∈
(Ωt ×Ωr ×Ωz ×Ω1 × . . .×Ωm), where (x1, . . . , xm) refer to m additional co-
ordinates, and Ω in equation (1) being decomposed so that Ω = Ωr ×Ωz, one
gets:

an+1 = an + T (t)R(r)Z(z)
m∏
i=1

Xi(xi) (16)

These m additional extra-coordinates refer to m additional parameters de-
fined within the problem in order to carry out a parametric analysis, they can
be related to initial or boundary conditions, geometrical, material or process
parameters, etc. The computation of unknown functions at enrichment step
n + 1 is performed by invoking a multidimensional weak form of the initial
boundary value problem; in the case of magnetodynamic, the weak form of
the problem (5)-(8) reads, accounting for m additional coordinates:



Given the current density j0 ∈ Ωcoil,

Find a ∈ Aad, in (Ωt ×Ωr ×Ωz ×Ω1 × . . .×Ωm) such that,
∀a∗ ∈ A0

ad∫
· · ·
∫
Ωi

∫
Ωt

∫
Ωz

∫
Ωr

(
σ
∂a

∂t
a∗ + 1

µ

(
∂a

∂r

∂a∗

∂r
+ aa∗

r2 + ∂a

∂z

∂a∗

∂z

)
− j0 a∗

)
rdrdzdtdx1 . . . dxm = 0

a(r, z, t = 0) = a0

(17)
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Notice that the term aa∗/r arising in (17) makes the weak form of the mag-
netodynamic problem different with respect to that of the classical transient
heat equation in the bidimensional axisymmetric case.

Test functions may be chosen as follows:

a∗ = T ∗R(r)Z(z)
m∏
i=1

Xi(xi) + . . .+ T (t)R(r)Z(z)
m−1∏
i=1

Xi(xi)X∗m(xm) (18)

With the trial and test functions given by (16) and (18) respectively, the weak
form (17) becomes a non-linear problem. From this viewpoint, the PGD is a
method that transforms a linear problem into a sequence of non-linear prob-
lems. Therefore, it must be solved by means of a suitable iterative scheme. The
simplest one is an alternated directions fixed-point algorithm, which was found
particularly robust in this context. Computation of functions T (t), R(r), Z(z)
and Xi(xi) (1 ≤ i ≤ m) is performed alternatively within the fixed-point loop.

Comment: due to the parabolic nature of the problem (5)-(8), the classical
PGD algorithm may not converge if σµ is too large. Therefore we use the
so-called residual minimization approach. It can be shown that this approach
leads to a monotonic convergence [26] and has proved to be robust, though
much computational effort is required with respect to Galerkin-based PGD.
The global stopping criterion for the computation of an+1 at enrichment step
n+ 1 is based on a residual relative L2 error:

‖R(an+1)‖2
‖f‖2

< ε (19)

where f denotes the loading term.

4 Parametric modeling of the electrical loading

4.1 Formulation

We are first interested in the electrical loading parameterization, the objective
being to allow for optimizing process parameters of the generator with respect
to the mechanical loading required to form the part. It is here assumed that the
generator is designed in such a way that the discharged current be expressed
as a damped sinusoid:

I(t) = I0e
−t/τ sin(ωt) (20)

The decay time τ and the angular frequency ω are embedded as two addi-
tional coordinates, the PGD approximation consists thus of five dimensions
and reads:

a(t, r, z, τ, ω) '
N∑
i=1

Ti(t)Ri(r)Zi(z)τi(τ)Ωi(ω) (21)
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PGD efficiency stems from the expression of all quantities in a separated form.
Therefore, we are led to seek an expression of the pulsed current density j0 of
the form:

j0(t, τ, ω) =
Nj0∑
i=1

Ti(t)τi(τ)Ωi(ω) (22)

One possibility among others [12] to express the current density with a sepa-
rated form (22) is to build a PGD computation as follows:

I

Nj0∑
i=1

Ti(t)τi(τ)Ωi(ω)

 = f(t, τ, ω) (23)

with f(t, τ, ω) =
Nt∑
j=1

f jt f
j
τ f

j
ω ;

f jt = (I0/S)δ(t− tj)
f jτ = exp(−tj/τ)
f jω = sin(ωtj)

(24)

where I denotes the identity operator. The right-hand-side (24) is assessed
by sampling the pulsed current density (11) on the time mesh. In other words,
an L2 projection is performed by invoking the PGD solver:∫

Ωω

∫
Ωτ

∫
Ωt

(j0(t, τ, ω)− f(t, τ, ω)) j∗0dtdτdω = 0 (25)

looking for the approximation (22) of j0 and accounting for a test function
j∗0 defined analogously to (18). Besides, we expect that Nj0 be much smaller
than Nt. Another strategy would have been to perform a High Order SVD
[24]. Afterwards, the resolution of the magnetodynamic problem (17) with the
electrical loading parameterization (22) is performed as described in section 3.

4.2 Results

Table 1 summarizes input data of the computation. The geometry of the device
is set so that the half-length of the workpiece is 10−2m, its wall thickness
2·10−3m and its mean radius 8·10−3m. The side length of windings is 2·10−3m,
the pitch is 4 · 10−3m and the mean radius of the coil is 11 · 10−3m.

The decomposition of the discharged current in separated representation
is performed with 26 enrichments reaching a residual relative L2 error ε of
10−3. The magnetodynamic analysis lasts one hour and need 200 enrichments
to reach an error of 10−2. Figure 3 shows the Lorentz body forces magnitude
applied on the workpiece (respectively on coil windings) at time t = 4 · 10−4s
as a function of the decaying time (fig. 3(a)) or the discharged current angular
frequency (fig. 3(c)) (respectively figures 3(b) and 3(d)). The post-treatment
uses here the plugin developed by [8] allowing the export towards pxdmf file
read with Paraview [2]. We observe as expected that the magnitude of Lorentz
forces increases with that of the first current peak as the decay time grows.
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Varying the angular frequency shifts the first peak, the maximum magnitude of
forces thus varies accordingly. PGD enables to build a multidimensional solu-
tion, leading to reduce the optimization procedure to a simple post-treatment
of this solution.

The solution obtained with PGD solver has been validated against a solu-
tion obtained with the AC/DC module of Comsol [1]. A comparison performed
on the magnitude of the Lorentz body forces for the following set of coordi-
nates values (t = 1.07 ·10−4s, τ = 2 ·10−4s, ω = 2 ·104rad.s−1) shows a relative
difference of about fifteen percents within the workpiece. Given the different
meshes and numerical methods used for this comparison, this difference is
found acceptable.

Coordinates Number of
nodes Domain Electrical

conductivity
t ∈ [0, 450]µs 225 workpiece (alu.) σwp = 37.7 · 106 S.m−1

r ∈ [0, 20 · 10−3] m 200 coil (copper) σcoil = 59.6 · 106 S.m−1

z ∈ [0, 20 · 10−3] m 200 Other data Values
τ ∈ [50, 450]µs 50 I0 30000 A
ω ∈ [1 · 104, 6 · 104] rad.s−1 60

Table 1 Input data

(a) ‖f(τ)‖ on workpiece (b) ‖f(τ)‖ on coil

(c) ‖f(ω)‖ on workpiece (d) ‖f(ω)‖ on coil

Fig. 3 Lorentz body forces magnitude (N.m−3) applied on the workpiece (resp. the coil)
as a function of the decay time τ in fig. 3(a) or the angular frequency ω in fig. 3(c) (resp. in
fig. 3(b) and 3(d))
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5 Parametric modeling of the geometry

5.1 Formulation

We are now interested in the parameterization of the geometry of the elec-
tromagnetic compression device, the objective being to allow for optimizing
geometrical parameters of the workpiece and the coil with respect to the me-
chanical loading required to form the part. We consider the electromagnetic
computational domain as a multi-layered structure, the thicknesses of all layers
are introduced as additional parameters of the problem. Therefore five radial
lengths denoted li, 1 ≤ i ≤ 5 are introduced within the numerical problem,
which has now eight dimensions. This parameterization is shown in figure 4.

z

Ωair

a = 0

∂a
∂n

= 0

a
=

0

a
=

0

Ωwp
Ωcoil

l1 l2 l3 l4 l5

Fig. 4 Radial parameterization of the electromagnetic compression device

The domain associated to the radial coordinate Ωr is thus mapped on a
fixed parent domain for each layer, to which the coordinate sj is associated,
so that:

Ωr =
m⋃
j=1

Ωsj =

0,
m∑
j=1

sj

 (26)

The following change of variable is thus defined in each layer of the structure:

r(s, l1, . . . , lm) =
∑
p<j

lp + lj(s− (j − 1)); j − 1 ≤ s ≤ j (27)
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The PGD approximation is performed on the parent domain, accounting for
extra-coordinates; the test function is defined analogously to (18):

an+1 = an + T (t)S(s)Z(z)
m∏
i=1

Li(li) (28)

a∗ = T ∗(t)S(s)Z(z)
m∏
i=1

Li(li) + . . .+ T (t)S(s)Z(z)
m−1∏
i=1

Li(li)L∗m(lm) (29)

The change of variable (27) implies that integral quantities involved within
the weak form (17) are expressed as follows:∫

Ωt

∫
· · ·
∫
Ωli

∫
Ωz

∫
Ωr

(· · · )rdrdzdl1 . . . dlmdt =

∫
Ωt

∫
· · ·
∫
Ωli

∫
Ωz

 m∑
j=1

∫
Ωsj

(· · · )

∑
p<j

lp + lj(s− (j − 1))

 ljds

 dzdl1 . . . dlmdt

(30)

The jacobian associated to cylindrical coordinates makes appear explicitly
the change of variable within the integrand. In expression (30), the jacobian
associated to the mapping on the parent domain has been easily computed as:

∂r

∂s
(s, l1, . . . , lm) = lj ; j − 1 ≤ s ≤ j (31)

Let’s now consider for instance the term (1/µ)(∂a/∂r)(∂a∗/∂r)r within the
weak form (17), involving the derivative with respect to the radial coordinate.
Introducing the change of variable (27), the PGD approximation (28) and the
test function (29) in this term, and noting 〈·, ·〉Ωxi the inner L2(Ωxi) product,
one gets:∫

Ωt

∫
· · ·
∫
Ωli

∫
Ωz

∫
Ωr

1
µ

∂a

∂r

∂a∗

∂r
rdrdzdl1 . . . dlmdt = · · ·

=
m∑
j=1

∑
p<j

〈T, T ∗〉Ωt〈(1/µ)S′, S′〉Ωsj 〈Z,Z〉Ωz
m∏
i=1

〈
H(lp)H

(
l−1
j

)
Li, Li

〉
Ωli

+
m∑
j=1
〈T, T ∗〉Ωt〈(s− (j − 1))S, S〉Ωsj 〈Z,Z〉Ωz

m∏
i=1
〈Li, Li〉Ωli + . . .

+
m∑
j=1

∑
p<j

〈T, T 〉Ωt〈(1/µ)S′, S′〉Ωsj 〈Z,Z〉Ωz
m−1∏
i=1

〈
H(lp)H

(
l−1
j

)
Li, Li

〉
Ωli

×
〈
H(lp)H

(
l−1
j

)
Lm, L

∗
m

〉
Ωlm

+
m∑
j=1
〈T, T 〉Ωt〈(s− (j − 1))S, S〉Ωsj 〈Z,Z〉Ωz

m−1∏
i=1
〈Li, Li〉Ωli 〈Lm, L

∗
m〉Ωlm

(32)
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where H(lp) denotes a presence function that is equal to lp if p = i, 1 other-
wise. We observe that the number of terms grows asympotically as O(m2) for a
multi-layered domain constituted of m layers in the bidimensional axisymmet-
ric case, as indicated by the double sum on j and p. Indeed, this decomposition
is caused by the presence of the jacobian of the cylindrical coordinates in the
integrand of the weak form. Thus, much more computational effort is required
with respect to the unidimensional case [25]. Analogous developments are car-
ried out for other terms of the weak form (17).

Comment: a particular attention should be payed to the term aa∗/r embedded
within the weak form (17). Indeed, this term cannot be explicitly separated
by introducing the change of variable (27). A first solution consists in mul-
tiplying the whole weak equation by the radius r. However, it squares the
radius involved in the integrand (30) and so does the change of variable (27)
for all terms in the weak form (except the term aa∗/r), leading to a huge
amount of operator splitting and thus to a large increase of computational
effort. A second solution is to decompose it numerically in a separated form.
Many solutions are available to perform such a decomposition: we can either
perform a PGD to get the inverse of the radius in a separated form or use
already implemented algorithms as PARAFAC (PARAllel FACtor analysis)
[21,9] that decomposes an array of dimension N (N ≥ 3) into the summa-
tion over the outer product of N vectors (a low-rank model). In other words,
it decomposes an N-way array into a canonical tensor product approximation
(14). Though the second solution using PARAFAC algorithm requires to build
explicitly the N-way array of the inverse of the radius, it still appears much
more computationally efficient than the first solution, and is hence used in this
work.

5.2 Results

Table 2 summarizes the changing input data with respect to section 4.2. The
computation lasts about two hours and needs 40 enrichments to reach an
error ε of 10−2. Figures 5(a) and 5(b) show the Lorentz body forces isovalues
generated on the device components at its first peak in time, for the two
extremal cases of the gap value (l3) between the workpiece and the coil. The
results suggest as expected that their magnitude is greater when the gap is
smaller.

Then, it is interesting to investigate the evolution of the Lorentz forces
magnitude applied either on the workpiece or on the coil while varying lengths
of the structure layers. Figure 6 focuses on the workpiece and shows the evo-
lution of these forces at their first extremum (associated to the first current
peak) varying its thickness l2 (fig. 6(a)) and the gap magnitude l3 (fig. 6(b)). A
best geometrical configuration appears for the length l3 if we want to maximize
the magnitude of Lorentz body forces applied on the workpiece; as previously
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Coordinates Number of
nodes

t ∈ [0, 300]µs 100
sj ∈ [j − 1, j], ∀j = 1, 5 50
z ∈ [0, 20 · 10−3] m 61
li ∈ [2 · 10−3, 7 · 10−3] m, ∀i = 1, 5 5
τ 140 µs
ω 5 · 104rad.s−1

Table 2 Input data

(a) l3 = 2 · 10−3m (b) l3 = 7 · 10−3m

Fig. 5 Lorentz body forces (N.m−3) as a function of the gap (l3) between the workpiece
and the coil.

stated, the smaller is l3, the greater is the magnitude of body forces reached.
The workpiece thickness l2 does not seem at a first glance to have any signfica-
tive influence on body forces generated, because induced eddy currents only
flow within a skin depth.

(a) l2 (b) l3

Fig. 6 Lorentz body forces (N.m−3) applied on the workpiece as a function of lengths l2
and l3.

During the forming operation, coil windings are generally destroyed by the
forces generated (unless a rigid coil is used). Therefore, we want to minimize
the forces undergone by the coil so that it resists at least until the first current
peak has passed. Indeed, a sufficient level of forces applied on the workpiece
is required to achieve the proper geometry of the part to be formed. Figure 7
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shows body forces applied on coil windings at their first peak varying the gap
magnitude l3 (fig. 7(a)) and its thickness l4 (fig. 7(b)). A best geometrical con-
figuration appears for both parameters if we want to minimize the magnitude
of these forces; the greater are lengths l3 and l4, the smaller is the magnitude
of forces applied on the coil. Their decrease with the gap l3 is moderate and
result from the remoteness with the workpiece; while for the second parameter,
increasing l4 leads to increase the winding cross-section, and thus decreases the
current density flowing within the cross-section (even though it flows within
the skin thickness of the conductor) for a given intensity provided by the gen-
erator. Consequently, lower induced eddy currents lead to lower Lorentz body
forces.

(a) l3 (b) l4

Fig. 7 Lorentz body forces (N.m−3) applied on the coil as a function of lengths l3 and l4.

6 Optimization procedure of the electromagnetic compression
device

Sections 4 and 5 have illustrated the construction of a multidimensional so-
lution with PGD, and possibilities offered for optimization purpose once this
solution is available. To go further, an example of optimization procedure is
carried out in this section. This optimization focuses on geometrical parame-
ters; we seek the geometrical configuration of the electromagnetic compression
device maximizing the radial component of the resultant compression force ap-
plied on the part. The design space considered is formed with design variables
gathered in the following vector:

xT = {t, l1, l2, l3, l4} (33)

The domain of feasability consists thus of five real dimensions (i.e. x ∈ R5).
The thickness of the fifth layer l5 has been removed of the design problem
since it does not fit into account within the geometrical optimization of the
device, but need just to be as large as possible to limit influence of the Dirich-
let boundary condition on the region of interest. Each dimension is bounded
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so that it leads to a constrained optimization problem with inequality-type
constraints:

tmin ≤ t ≤ tmax

lmin ≤ li ≤ lmax, 1 ≤ i ≤ 4
(34)

The optimization problem is thus written as follows:

min
x

F · er ; F = 2πh
∫
Ωwp

frdr constrained with (34) (35)

where h denotes the half-length of the workpiece. Minimizing the radial com-
ponent of the resultant force or maximizing its absolute value with respect to
geometrical parameters is not necessarily the best criterion that will enable the
best forming of the workpiece, because a numerical analysis of the mechanical
stage of the process should be embedded into the optimization procedure to
check it. However, this criterion appears to be a good indicator to characterize
from the process viewpoint the performance of the chain generator-coil and
thus that of the electromagnetic compression device.

Many optimization algorithms are available to solve the problem (35) [4].
A first class of algorithms are descent methods, well-suited for convex prob-
lems, but it requires the computation of the gradient of the cost function. For
non-convex optimization problems, zero-degree meta-heuristic methods allow
to explore the domain of feasability without the need to compute gradients.
Choosing the best suited algorithm to minimize (35) is not part of the scope
of this work, which just aims at illustrating the possibilities made available by
the multidimensional solution built with PGD. For illustration purpose and
the computational cost of the evaluation of the cost function being very small
here, a brute approach is chosen in order to build and plot the cost function
on its design space. The cost function is thus evaluated without any intelli-
gence at each node of the hypermesh of the design space, built with dimension
meshes used for the PGD solver detailed in section 5.2. The time interval has
been reduced to focus on the subrange t ∈ [20, 60]µs, containing the minimum
sought. Other numerical values remain unchanged, and the length l5 of the
fifth layer is set to 7 · 10−3m.

The cost function is evaluated 12500 times, and the procedure lasts about
one hour. Figure 8 shows isovalues smoothed by Paraview [2] of the radial
component of the resultant force plotted on a part of the design space. We
can observe that a minimum of the cost function (35) actually exists and is
unique within the range defined. These isovalues show that this minimum is
obtained for the smallest values of the gap l3 and wire width l4, as we could
expect as explained in section 5.2, and for the largest values of the inner radius
of the workpiece l1 and of its thickness l2. The largest value required for l1
may be explained with the parameterization retained in figure 4: increasing
l1 also increases the coil windings radius, so does the magnetic flux generated
and hence body forces. The largest value required for the thickness value l2
can be explained from the form of the cost function (35). Indeed, though body
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Fig. 8 Isovalues of the radial component
of the resultant force applied on the work-
piece in the sub-design space (l1, l2, l3) re-
spectively in axes (X,Y, Z) at time t =
5.3 · 10−5s and length l4 = 2 · 10−3m.
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Fig. 9 Plot of the radial component of
the resultant force over a sub-range of
the time interval for the set of param-
eters l1 = 7 · 10−3m, l2 = 7 · 10−3m,
l3 = 2 · 10−3m, l4 = 2 · 10−3m.

forces magnitude applied on the workpiece varies little with its thickness (see
figure 6(a)), the integrand of (35) consists of the radial component of these
body forces weighted with the radius, arising from cylindrical coordinates.
This leads to increase the value of the integral when its upper limit increases
as l2 increases. Notice that increasing the workpiece thickness l2 will make the
forming more difficult, thus minimizing (35) is actually not the best criterion
to perform the best forming of the workpiece. A better criterion would be
to maximize the efficiency between input electrical energy and strain work
undergone by the workpiece, but requires a mechanical analysis.

Figure 9 depicts the evolution of the radial component of the resultant
force over a sub-range of the time interval, plotted for the best values of the
remaining set of parameters (i.e. li, 1 ≤ i ≤ 4). Points refer to the locations of
the evaluation of the cost function, an extrapolation with a cubic spline is per-
formed afterwards. The discharged current is superposed on the same graph,
and we can observe a shift of about 20 microseconds between the maximum
(actually the first peak) of the current and the minimum reached by the radial
component of the resultant force. This delay arises from electromagnetic in-
duction phenomenon which is not instantaneous, and depends on the magnetic
diffusivity 1/√µσ.

Once the cost function is known on the parameter space, its sensitivities
with respect to design parameters can be easily computed by partial differen-
tiation. Figures 10 and 11 show partial derivatives of the cost function with
respect to lengths l1 and l3 respectively. Sensitivities are quantities of great
interest for optimization, and enable to decouple sets of parameters of primary
importance to parameters neglectable with respect to a given cost function.



20 Thomas Heuzé et al.

Fig. 10 Partial derivative of the radial
component of the resultant force with re-
spect to length l1.

Fig. 11 Partial derivative of the radial
component of the resultant force with re-
spect to length l3.

7 Conclusion

In this work, a numerical tool dedicated to the optimization of the design of an
electromagnetic compression device has been developed based on PGD. Atten-
tion has been focused on Lorentz body forces generated during the process by
solving the set of electromagnetic equations in quasistatics, therefore following
a decoupled approach for the resolution of the coupled multiphysical problem.
The purpose of this numerical tool is to optimize process parameters related
to the chain generator-coil and geometrical parameters of the electromagnetic
compression device with respect to the mechanical loading required to form
the part.

A first analysis has been performed with the parameterization of the electri-
cal discharged current through its decay time and angular frequency, defining a
five-dimensional numerical solution, in order to optimize the chain generator-
coil for a given geometry of the device. Then, a parameterization of the ge-
ometry of the electromagnetic compression device has been carried out by
considering the computational domain as a multi-layered structure, the thick-
nesses of all layers being accounted as optimization parameters and introduced
as extra-coordinates. It has been shown that the parameterization of the radial
coordinate in the bidimensional axisymmetric case leads to a decomposition
into more operators than for space coordinate in a cartesian frame. More gen-
erally, the keypoint to perform parametric analyses with PGD lies in the fact to
find appropriate changes of variables so that a separated form of the solution be
kept, allowing to preserve the efficiency of the PGD solver. Finally, possibilities
offered by the multidimensional solution have been shown on an example of
optimization procedure, seeking the geometrical configuration maximizing the
radial component of the resultant compression force applied on the workpiece.
This illustrates a first step towards the optimization of an electromagnetic
compression device.

PGD turns out to be a particularly attractive method for parametric anal-
yses. Based on the separated representation of the solution, optimization pa-
rameters are added as extra-coordinates, and the high-dimensionality of com-
plex problems can therefore be handled more easily than with mesh-based
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methods. The definition of the solution on a parameter space allows to build
numerical charts, from which the solution for a particular set of parameters
can be extracted at a very low cost. Thus several optimization procedures can
be performed once this database has been built, and their computational cost
are severly decreased with respect to traditional optimization approaches.
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