
HAL Id: hal-01790295
https://hal.science/hal-01790295v1

Submitted on 11 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the number of MPLS LSP using Multicast Tree
Aggregation

Joanna Moulierac, Alexandre Guitton, Miklos Molnar

To cite this version:
Joanna Moulierac, Alexandre Guitton, Miklos Molnar. On the number of MPLS LSP using Multicast
Tree Aggregation. Globecom (IEEE Global Communications Conference), 2006, San Francisco, United
States. �hal-01790295�

https://hal.science/hal-01790295v1
https://hal.archives-ouvertes.fr

1

On the number of MPLS LSP using Multicast Tree
Aggregation

Joanna Moulierac∗, Alexandre Guitton† and Miklós Molnár∗
∗ INRIA, University of Rennes I

† Birkbeck College, University of London
Phone number: +33 2.99.84.71.94

Email: joanna.moulierac@irisa.fr, alexandre@dcs.bbk.ac.uk and
miklos.molnar@irisa.fr

Abstract— Multicast tree aggregation is an efficient proposition
that can solve the multicast forwarding state scalability problem.
Existing works on tree aggregation have focused on developing
and simulating protocols that build trees dynamically. However,
the underlying problem of the impact of the tree construction al-
gorithm on the performance of the protocols remains untouched.
In this paper, we propose a study on the number of trees that need
to be configured in a domain depending on the tree construction
algorithm. We ran extensive simulations on several real domains
and with different tree construction algorithms. Our results show
that for a given set of multicast groups, even when this set
includes all the possible groups, the number of trees needed to
be configured is small. This allows a network administrator to
configure off-line all these trees in order to maintain a stable
set of trees and to have knowledge of the routes used by the
multicast packets. Knowing the set of all the possible trees is
also useful to determine the best of its subset to configure and
to give an upper bound of the number of different trees.

Keywords— Multicasting, tree aggregation, MPLS, control and
management of network.

I. INTRODUCTION

The research in multicast has highly interested the re-
searchers during the last decade but unfortunately, multicast is
not well deployed yet over internet. However, as the number of
multimedia applications including video on demand, television
on internet and on line video games increases tremendously,
multicast is becoming a necessity for network operators, in
order to spare the network resources.

The multicast tree aggregation is an efficient proposition that
allows the deployment of group communications. The main
goal of tree aggregation is to keep only a small number of
multicast forwarding states in the routers in order to spare
the memory of the routers, to speed up the IP look-ups and to
reduce the amount of control messages needed to maintain the
forwarding states. Indeed, in multicast, aggregation of routing
entries is more difficult than in unicast as the multicast IP
addresses do not reflect the location of the members.

To reduce the number of entries, the multicast tree aggre-
gation technique allows several multicast groups to share the
same delivery tree. In other words, the packets for the groups
can be multiplexed at entrance of the domain onto the same
tree. This can be achieved using IP encapsulation or MPLS
labels. In this case, the MPLS labels can be distributed among
the routers using LDP.

Because of these two different ways of deploying multicast
tree aggregation, we will talk in this paper indifferently about
trees and about MPLS LSP.

Existing works on tree aggregation have focused on devel-
oping and simulating protocols that build trees dynamically.
In this paper, our key concern is to study the impact of
different tree construction algorithms on the performance of
the protocol, which is still a research issue. The performance
of a tree aggregation protocol is defined by the number of
trees to be maintained and by the resource usage for each
group. We first show that the way trees are built leads to
major scalability issues. Then, we study several commonly
used tree construction algorithms, along with the number of
trees to be maintained in order to cover a set of multicast
groups. We show with our simulations that it is possible to
build a set of trees covering all the possible multicast groups
in a given domain as this number is usually very small and few
forwarding entries are needed in routers. This allows a network
administrator to configure this stable set of trees in order to
plan the routing for the future multicast groups, to be aware
of the routes used by the multicast packets and to maintain
a stable set of forwarding entries. Moreover, minimizing the
number of MPLS LSP in a domain is of paramount importance
for scalability issues.

The rest of the paper is organized as follows. Section II
presents the main protocols achieving tree aggregation. In
Section III, we present the main idea of our proposition and
give an algorithm that computes the number of MPLS LSP
required, i.e., the number of multicast trees. The results of the
simulations are detailed in Section IV. Finally, the perspectives
of our work are given in Section V.

II. MULTICAST TREE AGGREGATION

Tree aggregation reduces the number of multicast forward-
ing states and the tree maintenance overhead. To achieve this
reduction, several multicast groups share the same delivery
tree within a domain. Consequently, less trees are built ans less
forwarding entries are stored than with traditional multicast.

A. Aggregation protocols

The protocol AM (Aggregated Multicast) was proposed
in [1], [2]. In AM, a centralized entity called the tree manager

2

is in charge of matching groups to labels and informing the
border routers of this matching.

Several recent protocols have addressed the scalability prob-
lems of AM. For instance, STA [3] performs faster aggrega-
tions than AM by sorting the trees in the multicast tree set,
addressing the time-scalability issue. In BEAM [4], the task of
the tree manager is distributed among several routers, called
core routers. The protocol AMBTS [5] splits the native tree
in sub-trees before aggregating, while the protocol TALD [6]
performs tree aggregation in large domains by splitting the
network in several sub-domains and by managing the sub-
domains independently. AMBTS and TALD can be applied in
large domains, where other approaches fail. The advantage of
TALD over AMBTS is that no entity has the total knowledge
of the domain.

In parallel, new protocols have been developed with addi-
tional constraints. The paper [7] studies ASSM protocols de-
signed for source-specific groups. AQoSM [8] and Q-STA [9]
perform tree aggregation under bandwidth constraints. In these
two protocols, the links have limited bandwidth capacities
and groups have bandwidth requirements depending on the
multimedia application. Indeed, previous approaches assume
links have infinite bandwidth capacity and therefore focus on
the aggregation ratio. The protocol TOMA [10] deals with
overlay multicast. Finally, the protocol AMFM [11] proposes
a fault tolerant architecture.

In all these protocols, the tree construction algorithm is
either unspecified or arbitrary. We believe that understanding
how the tree construction algorithm impacts tree aggregation
protocols can lead to further enhancement of the existing
mechanisms, or to protocols based on new concepts.

B. On the number of trees

Our work is based on the frameworks proposed in [12] and
in [13]. Among the research papers on tree aggregation, the
closest to our work is [14], which also considers the number of
trees in a domain. However, our work tackles the problem from
another angle. First, we consider that the branching routers
of the trees can lead to multicast members. Indeed, in real
networks, the non-leaf routers used by a tree can be multicast
capable and can be attached to members. Second, we propose
an analysis of the upper-bound of the number of trees needed
to span the set of all multicast groups considering different
tree algorithm construction. Some scalability problems arise
with this approach when the number of routers in the network
is large, as the set of all the multicast groups can not be
computed. However these problems can be solved (although
not optimally) by using a similar approach as TALD, i.e., by
splitting the domains into sub-domains and computing the set
of trees into each sub-domain separately.

As we have said earlier, the previous works do not focus on
the impact of the tree construction algorithms on the number of
MPLS LSP or trees to be maintained. However, we believe that
it is one of the most important parameter of tree aggregation
protocols. That is why we are interested in answering the
following questions:

• What is the impact of the tree construction algorithm on
the number of different trees?

• How does the number of different trees evolves as a
fraction of the bandwidth is allowed to be wasted?

III. ALGORITHM FOR CONFIGURING A SET OF TREES

In this section, we present an efficient way to reduce
the number of trees and then we present the algorithm that
computes a set of multicast trees for a given domain.

First of all, when we say that a router is a member of a
group, it means that this router leads to group members. The
real members of the group can be directly attached to the router
or can be connected to it through several domains. In this way,
we will define by group the set of the routers involved in the
group. With this definition, two groups can be identical even
if they do not have the same multicast address.

Second, since the main goal of the tree aggregation is to
reduce the number of trees, we will consider shared tree to be
built as usually made by tree aggregation protocols. However,
our approach still holds when considering source-based trees.
It can be noticed that for source-based trees, more trees are
configured as all (source,group) tuples are considered whereas
in case of shared trees, only the groups are considered. In the
literature, shared trees are build with CBT [15] or with PIM-
SM [16]. The trees are rooted at a core router or at a rendez-
vous point and cover the members of the groups using shortest-
path computed with Dijkstra algorithm. As the determination
of this source is still a research issue in the literature, we
will consider in this paper three different ways to chose this
source for the groups and this is described later in Section IV.
Shared trees can also be build with the objective of minimizing
the cost and then approximate Steiner trees can be used [17].
Then, even if such trees are not used in real networks, it gives
a lower bound of the bandwidth to be used for a set of groups.

A. On reducing the number of trees

Previous works on tree aggregation were based on the
following intuitive remark: two different multicast groups can
be the same when projected on a domain. In other words, if
we consider the routers that have members attached to them,
it is easy to see that different members can be attached to
the same set of edge routers. If n is the number of routers of
the domain, the upper bound on the number of trees is only
2n, instead of having as an upper bound the whole space of
multicast addresses.

However, we can go a step further. Let us consider the
example shown on Fig. 1. A tree, rooted at A and covering
the routers {A B C D E F} is represented on the figure. This
tree is the native tree for four different groups. Indeed, it can
cover the group with members attached to routers {A C D

F} but also the group {A C D E F}, the group {A B C D F}

and the group {A B C D E F}. All these aggregations can be
done without bandwidth wasted as the tree traverses the two
branching routers B and E in order to reach the leaves C and
F .

Therefore, the number of different trees is lower than the
previous bound 2n. We only noticed that packets for the groups
traverse several routers that can be multicast capable before
reaching the leaves.

3

PSfrag replacements

b1

b2

b3

b4

b5

b6

Fig. 1. The tree represented on the figure covers different multicast groups.

Note that in the previous description, no bandwidth is
allowed to be wasted. To further reduce the number of different
trees in a domain, it is realistic to consider that the network
administrators allow a given percentage of the multicast band-
width to be wasted in order to ease the aggregation process.
Let us consider once more the example shown on Fig. 1. A
group g having members attached to routers {B F D} can
share the same tree as the one depicted, but some bandwidth
will be wasted when packets for the group g reach router C

unnecessarily. If the bandwidth used by the group g is small
compared to the bandwidth available on the link (B, C), it
could be better to have only one tree instead of two.

B. Description of the Algorithm

Algorithm 1 computes the set T of different trees given the
bandwidth bound bw. No more than bw percent of bandwidth
are allowed to be wasted. Every possible group is considered
in turn. For each group gi ∈ G, the algorithm computes a
native tree ti. If there is already a tree in T that covers the
same edge routers as ti and that does not waste too much
bandwidth, then there is no need to add ti in the set T .

Input: a domain with n routers, a tree construction algorithm
A, a bandwidth threshold bw

Output: a set of trees T covering all the 2n groups
T ← ∅
for i = 1 to 2n do

gi is the i-th group of the 2n possible groups of G
compute a native tree ti covering gi with algorithm A
if there is a tree t ∈ T that covers the routers covered by
ti and if cost(t) ≤ (cost(ti) + cost(ti) ∗ bw) then

ti is ignored
else

add ti to T
return T

Algorithm 1: Computing the set of different trees

The algorithm running-time scales rather badly with the
number of edge routers of the domain. However, previous
works [6] have shown that a large domain can be separated
into several sub-domains having few edge routers, in such
a way that the tree aggregation can be done separately in
each sub-domain without suffering a significant drop of the

performance. Therefore, if the domain is too large, it can
be divided into several sub-domains, and then the algorithm
presented above can be applied in each of the sub-domain in
order to scale better.

The number of trees computed by Algorithm 1 applies for a
worst-case scenario where each group has an equal probability
of being requested. Previous studies have shown that real
groups show a high degree of correlation and then they can
be simulated using some affinity model. Our algorithm still
applies for this scenario, and in this case, the number of trees
needed to be configured is smaller. Moreover, our algorithm
can be applied for only a set of multicast groups to be covered.
This can be useful when a network administrator has traces
of real multicast groups and wants to configure only a set of
trees covering these groups.

IV. SIMULATION RESULTS

We made simulations of Algorithm 1 on different real
graphs: the VSNL network [18] (which is given by an
internet mapping tool called Rocketfuel [19]), the Abilene
network [20], the Nsfnet network [21] and the Geant net-
work [22]. We ran the simulations for two bandwidth thresh-
olds: when no bandwidth is wasted (bw = 0%) and when 20%
of bandwidth is allowed to be wasted. In order to evaluate
the number of trees by a comparison of the tree algorithm
construction, we consider different ways of choosing the core
or the rendez-vous point for CBT or PIM-SM. Recall that these
protocols build shortest path trees rooted at a given core. We
also consider MST trees. The compared algorithms are:

• CBT-Fixed: a core router is chosen arbitrarily among the
routers of the network initially and all the trees are rooted
at this core.

• CBT-First: a core router is chosen among the members:
first, the members are sorted according to a given order
of the routers, and then the core is the first member.

• CBT-Rand: the trees are rooted at a core randomly chosen
among the members.

• MST: a minimum spanning tree covering the routers-
members is built in the metrical closure graph. This tree
is a 2-approximate Steiner tree.

A. Number of trees to be configured

Table I shows the total number of different groups and the
number of trees needed to cover these groups. Note that for
a domain with n multicast capable routers, there are (2n −
n− 1) different groups. Indeed, we take into account neither
groups having one member nor groups having no member. The
number of different trees is very low compared to the number
of different groups. Therefore, it is possible to configure all
the different trees in a domain.

When using CBT-Fixed, trees are very similar. Indeed, they
are rooted at the same core and use frequently the same links
(since shortest paths trees are built). This means that CBT-
Fixed build few different trees. Oppositely, we can see that
more trees are built with MST than with CBT-Fixed. Indeed,
MST trees use less links and the link usage is distributed fairly
in the network. Thus, the different trees built by MST are very

4

different with each other, and less aggregation can be found.
However, with CBT-Fixed, the links around the core router
experience an important stress, since they are shared by most
of the trees.

With CBT-First, the trees have frequently the same core.
Then, there are few different cores and the link usage of trees
with CBT-First is fairer than with CBT-Fixed, but more trees
are required. Finally, CBT-Rand chooses randomly the core for
each group which implies that the trees are rooted at several
different sources. The link usage is balanced but more trees
are needed than with all others CBT algorithms. This shows
that the choice of the core router has a great impact on the
number of trees to be configured. With the MST algorithm, we
can get an upper bound of the number of trees needed when
the metric considered is the network usage minimization.

On the impact of the topology: The topology of the
network has also a great impact on the number of trees. Indeed,
although the Abilene and the VSNL networks share the same
number of nodes, the number of trees built in both is different.
VSNL contains fewer links and several routers have a degree
of 1. Because of this small number of branching routers, more
trees are configured for VSNL than for Abilene.

To explain this phenomenon, let us consider a network with
n routers where n− 1 routers are leaves and are connected to
the n-th router. This network is a star network. In this example,
the number of trees is independent of the tree construction
algorithm and is equal to 2n−1−1 (the number of permutations
of the n − 1 leaves minus the empty tree). In this example,
the router linked to all others routers has to keep 2n−1 −
1 forwarding entries. Another example to be considered is
a path of n routers. In this network, there are 2 leaves and
n − 2 routers with a degree of 2: the number of different

trees is
n(n− 1)

2
, which is much smaller than on the previous

example. These two examples show the impact of the network
topology on the number of trees.

B. Number of forwarding entries per router

The figures Fig. 2 and Fig. 3 plot the number of forwarding
entries per router for the Geant network and for Abilene. We
compare the minimum, the maximum and the mean number
of forwarding entries to be stored per router. The figures show
that when bandwidth wastage is allowed bw = 20%, the
number of forwarding entries is smaller than with bw = 0%.
The number of forwarding entries is strongly related to the
number of trees and then the impact of tree construction
algorithm for both metrics can be explained in the same way.
What can be noticed, is that the number of forwarding entries
is small enough to be realistic to envisage to stored them in
routers.

C. Mean cost of trees per group

The figures Fig. 4 and Fig. 5 plot the mean cost of trees
per group: ∑

g∈G
cost(t(g))

|G|
,

Minimum
Maximum

Mean

 0

 50

 100

 150

 200

 250

 300

N
um

be
r

of
 f

or
w

ar
di

ng
 e

nt
ri

es
 p

er
 r

ou
te

r

Abilene network

PSfrag replacements

0%

0%

0%

0%

20%

20%

20%

20%

CBT-Fixed CBT-First CBT-Rand MST

Fig. 2. Number of forwarding entries for Abilene network.

N
um

be
r

of
 f

or
w

ar
di

ng
 e

nt
ri

es
 p

er
 r

ou
te

r

Minimum
Maximum

Mean

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Geant network

PSfrag replacements

0%

0%

0%

0%

20%

20%

20%

20%

CBT-Fixed CBT-First CBT-Rand MST

Fig. 3. Number of forwarding entries for Geant network.

where t(g) is the tree of minimum cost in T that covers g,
cost(t(g)) is the cost of the tree t(g) in terms of number of
links and |G| is the number of different groups. This metric
reflect the number of links loaded and then gives an overview
of the bandwidth used per group. These two figures show the
compromise between the number of trees and the usage of the
network resources. Indeed, the less trees to be maintained and
the more the cost of trees per group and then the more links
are loaded. For Geant network, which has more than 260 000
different groups, a network administrator can configure less
than 2 000 trees with CBT-Fixed and with bw = 20%, but
some bandwidth is wasted for each group, the trees have 12
links in average for each group. For a minimum bandwidth
usage, MST with bw = 0% configures 75 000 trees and the
trees have a little bit more than 9 links per group. It is
interesting to notice that building MST trees with bw = 20%
leads to approximately the same results as building CBT-Rand
trees with bw = 0% for Geant network.

V. CONCLUSION AND FUTURE WORK

We proposed, in this paper, a study of the impact of tree
construction on the number of trees to be maintained in a
domain. During the simulations, we generated all the possible
groups for a given domain and we computed the set of
trees needed to cover all these groups while varying the tree
construction algorithms. Our study showed that very few trees
are needed to be configured in a domain and that it is possible
for a network administrator to compute this stable set of trees

5

bw Number of 6= groups |G| CBT-Fixed CBT-First CBT-Rand MST
VSNL Network [18] 0% 2036 173 239 279 293
(11 routers, 12 links) 20% 2036 103 156 179 191
Abilene Network [20] 0% 2036 59 131 292 370
(11 routers, 14 links) 20% 2036 39 104 183 230
Nsfnet Network [21] 0% 16369 395 958 3299 4785
(14 routers, 21 links) 20% 16369 210 549 1740 2486
Geant Network [22] 0% 262125 3824 8222 24542 48942
(18 routers, 30 links) 20% 262125 1748 4126 11924 23449

TABLE I

TOTAL NUMBER OF GROUPS AND TOTAL NUMBER OF TREES

CBT−Rand

CBT−Fixed

CBT−First

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0 50 100 150 200 250 300 350 400

M
ea

n
co

st
 o

f
tr

ee
 p

er
 g

ro
up

Number of trees

Abilene network − 20%
Abilene network − 0%

PSfrag replacements

0%

20%

CBT-Fixed

CBT-First

CBT-Rand

MST

Fig. 4. Mean cost of trees per group for Abilene network [20].

CBT−Fixed

CBT−First

CBT−Rand

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
ea

n
co

st
 o

f
tr

ee
 p

er
 g

ro
up

Number of trees

Geant network − 0%
Geant netwok − 20%

PSfrag replacements

0%

20%

CBT-Fixed

CBT-First

CBT-Rand

MST

Fig. 5. Mean cost of trees per group for Geant network [22].

off-line. This allows to manage more efficiently the domain
and to be aware of the configured trees. In this paper, we also
studied in this paper the compromise between the number of
trees configured and the mean cost of trees per group. When
the network administrator has real traces of multicast groups,
only a sub-set of all these trees can be computed. Indeed, we
proposed an algorithm that gives an upper bound on the the
number of trees needed depending on the tree construction
algorithm. When these trees are configured, usual group-tree
matching protocols can be achieved.

The number of trees is also dependent on the topology of the
network. When the network topology implies that the number
of trees is still too high, then several investigation has to be
done to further reduce this number. We plan to design, in this
case, a new tree construction algorithm that builds few trees.

REFERENCES

[1] M. Gerla, A. Fei, J.-H. Cui, and M. Faloutsos, “Aggregated Multicast
for Scalable QoS Multicast Provisioning,” in Tyrrhenian International
Workshop on Digital Communications, September 2001.

[2] J.-H. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla, “Aggre-
gated multicast — a comparative study,” in IFIP Networking, ser. LNCS,
no. 2345, May 2002, pp. 1032–1044.

[3] A. Guitton and J. Moulierac, “Scalable Tree Aggregation for Multicast,”
in 8th International Conference on Telecommunications (ConTEL), June
2005, best student paper award.

[4] J.-H. Cui, L. Lao, D. Maggiorini, and M. Gerla, “BEAM: A Distributed
Aggregated Multicast Protocol Using Bi-directional Trees,” in IEEE
International Conference on Communications (ICC), May 2003.

[5] Z.-F. Liu, W.-H. Dou, and Y.-J. Liu, “AMBTS: A Scheme of Aggregated
Multicast Based on Tree Splitting,” in IFIP Networking, ser. LNCS, no.
3042, May 2004, pp. 829–840.

[6] J. Moulierac, A. Guitton, and M. Molnár, “Multicast Tree Aggregation
in Large Domains,” in IFIP Networking, 2006.

[7] J.-H. Cui, D. Maggiorini, J. Kim, K. Boussetta, and M. Gerla, “A
Protocol to Improve the State Scalability of Source Specific Multicast,”
in IEEE Globecom, November 2002.

[8] J.-H. Cui, J. Kim, A. Fei, M. Faloutsos, and M. Gerla, “Scalable QoS
Multicast Provisioning in Diff-Serv-Supported MPLS Networks,” in
IEEE Globecom, November 2002.

[9] J. Moulierac and A. Guitton, “QoS Scalable Tree Aggregation,” in IFIP
Networking, ser. LNCS, no. 3462, May 2005, pp. 1405–1408.

[10] L. Lao, J.-H. Cui, and M. Gerla, “TOMA: A Viable Solution for Large-
Scale Multicast Service Support,” in IFIP Networking, ser. LNCS, no.
3462, May 2005.

[11] J.-H. Cui, M. Faloutsos, and M. Gerla, “An Architecture for Scalable,
Efficient and Fast Fault-Tolerant Multicast Provisioning,” IEEE Network
special issue on Protection, Restoration, and Disaster Recovery, vol. 18,
no. 2, pp. 26–34, March/April 2004.

[12] J. Moulierac, “On the number of multicast aggregated trees in a domain,”
in 2nd Student Workshop of IEEE Infocom, April 2006.

[13] J. Moulierac and A. Guitton, “Distributed Multicast Tree Aggregation,”
INRIA, Research Report 5636, July 2005.

[14] L. Lao, J.-H. Cui, and M. Gerla, “Tackling Group-Tree Matching in
Large Scale Group Communications,” UCLA CSD, Technical Report
040022, June 2004.

[15] A. Ballardie, “Core Based Trees (CBT) Multicast Routing Architecture,”
IETF, RFC 2201, September 1997.

[16] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. E. Deering, M. Handley,
V. Jacobson, C. Liu, P. Sharma, and L. Wei, “Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol Specification,” IETF, RFC
2362, June 1998.

[17] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner
trees in graphs,” Acta Informatica, vol. 15, pp. 141–145, 1981.

[18] VSNL network, “http://www.cs.washington.edu/research/networking/-
rocketfuel/interactive/.”

[19] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in ACM SIGCOMM, August 2002.

[20] Abilene network, “http://abilene.internet2.edu.”
[21] Nsfnet network, “http://www.cybergeography.org/atlas/nsfnet t1.gif.”
[22] Geant network, “http://www.cybergeography.org/atlas/geant large.gif.”

