
HAL Id: hal-01790287
https://hal.science/hal-01790287v1

Submitted on 11 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimization of the Diffusion Delay of a Tree-Based
Wireless Sensor Network

François Delobel, Alexandre Guitton, Michel Misson, Waltenegus Dargie

To cite this version:
François Delobel, Alexandre Guitton, Michel Misson, Waltenegus Dargie. Minimization of the Dif-
fusion Delay of a Tree-Based Wireless Sensor Network. Globecom (IEEE Global Communications
Conference), 2011, Houston, Texas, United States. �hal-01790287�

https://hal.science/hal-01790287v1
https://hal.archives-ouvertes.fr

Minimization of the Diffusion Delay of a

Tree-Based Wireless Sensor Network

François Delobel, Alexandre Guitton, Michel Misson

Clermont-Ferrand University, LIMOS CNRS

Complexe scientifique des Cézeaux

63177 Aubière cédex, France

Email: {delobel,guitton,misson}@sancy.univ-bpclermont.fr

Waltenegus Dargie

Chair for Computer Networks, Faculty of Computer Science

Technical University of Dresden

01062 Dresden, Germany

Email: {waltenegus.dargie}@tu-dresden.de

Abstract—In wireless sensor networks, saving energy is crucial
in order to increase the network lifetime. Energy is often saved
by synchronizing the nodes activity, and having long periods of
inactivity, or by having nodes exchange a global activity schedule.
The synchronization and the exchange of a global schedule are

two examples where information is broadcast from a specific
node to the whole network. In this paper, we focus on the
delay required to broadcast information in the whole network
using a tree topology. We first show that the diffusion delay
can be significantly reduced by utilizing the parallelization of
node processing. We provide an exact algorithm in order to find
optimal solutions. Then, we propose a linear algorithm that is
able to find good solutions. We compare the exact solution to
the heuristic solution on a workstation and conclude that our
heuristic is very competitive and can be used to reduce the
diffusion delay of a broadcast frame in a tree.

Keywords: wireless sensor network, synchronization delay,

diffusion delay, tree topology, transmission scheduling.

I. INTRODUCTION

Wireless sensor networks (WSNs) are considered for a

large variety of applications, including the monitoring of

vast areas and military surveillance [1]. These networks are

composed of small battery powered nodes which integrate a

set of sensors, limited computational capabilities, a short-range

communication module, and small-sized memory.

The main objective of a WSN is to monitor an external

phenomenon for a long period of time. A critical issue is

to reduce the energy used by the network protocols while

being able to follow the evolution of the phenomenon. This is

especially challenging as nodes spend about as much energy

when listening (or receiving) than when transmitting [2], [3],

[4]. Nodes have additional specificities compared to traditional

computers. They often use a processor with limited computing

capabilities, which yields to large processing times. Addition-

ally, they are often based on a dual architecture (radio and

processor) communicating through a SPI interface bus, which

further increases the processing time.

In most WSNs, a global synchronization mechanism is often

used to address the energy consumption issue, where nodes

share a common temporal basis. Once nodes are synchronized,

they can coordinate their activities, which helps reducing the

energy used in several ways: (i) nodes can schedule their

inactivity period so that they are all sleeping as much as

possible, (ii) nodes can minimize overhearing by listening

only when a sender is transmitting, (iii) nodes can refrain

from transmitting simultaneously, which reduces collisions.

One way to achieve global synchronization is by broadcasting

a beacon message on a tree structure. The beacon may contain

global information about the schedules of the nodes.

In this paper, we minimize the time required to broadcast

a message to all the nodes of a WSN. We show that the

processing time has an important impact on the diffusion delay,

and we propose algorithms to reduce it. Our solution is generic

and can be applied in order to broadcast an information, or

to minimize the synchronization time. Reducing the synchro-

nization time is crucial as it is an overhead for the nodes: the

shorter the synchronization, the less energy is spent.

The remaining of the paper is structured as follows. In

Sect. II, we characterize the diffusion delay on nodes and

we formally describe the problem of minimizing the diffusion

delay. In Sect. III, we present two exact solutions for the

problem: with an integer linear program and with a Branch-

and-Bound method. In Sect. IV, we propose an approximation

which runs in a linear time with respect to the number of

nodes in the network. This algorithm is implemented on a

real platform. We conclude our work in Sect. V.

II. PROBLEM DESCRIPTION

Several protocols in WSNs are based on a tree topology,

since it is easy to maintain when nodes mobility is low. Several

synchronization protocols for WSN are described in [5].

The RBS protocol (Reference Broadcast Synchroniza-

tion [6]) is a tree-based, receiver-to-receiver synchronization

protocol. The authors of RBS show that the time between the

transmission of a message and the reception of the message is

subject to a random delay, due to random access mechanisms

or an unpredictable processing time. The synchronization in

RBS is only performed among receivers, and not with the

sender of a message. This approach eliminates uncertainties

due to random delays at the sender compared with traditional

sender-to-receiver synchronization protocols.

The TPSN protocol (Timing-sync Protocol for Sensor Net-

works [7]) is a tree-based, sender-to-receiver synchronization

protocol. Nodes in TPSN are activated sequentially, depending

on their depth on the tree. Nodes in TPSN estimate the clock

drift using a handshake procedure with their parent. The main

advantage of TPSN over RBS is that it consumes less energy,

at the cost of a reduced accuracy.

The IEEE 802.15.4 standard [8] defines the lower layers of

a low power wireless personal area network (LP-WPAN). The

ZigBee standard [9] defines the upper layer of a LP-WPAN,

and assumes that the lower layers operate IEEE 802.15.4.

In ZigBee, nodes are either coordinators or end-devices. The

nodes form a tree topology called the cluster-tree, where end-

devices are leaves, coordinators are internal nodes, and the

root is a special coordinator called the PAN (personal area

network) coordinator. In the subsequent parts, we use the

ZigBee definitions of coordinators and end-devices.

In this paper, we make the following assumptions: the PAN

coordinators knows the tree topology, the diffusion is based

on a master-slave multi-hop approach. The first assumption

is common in ZigBee or in Wireless HART for instance: the

network manager has the knowledge of the logical structure

of the topology. The second assumption is the same as in [7],

[10]: the synchronization is scheduled by the PAN coordinator.

A. Diffusion delay of a broadcast frame

Synchronization protocols (or, more generally, diffusion

protocols) are often based on a sequence of broadcasting.

The interval between two broadcasts depends mostly on the

processing time and on the architecture of the node. Indeed,

most existing nodes are built according to a dual architecture:

a radio module (e.g. a CC2420 component [2]) and a processor

(usually operating at 4 MHz or 8 MHz), interconnected

through a SPI interface at 500 kbps. As the commonly used

physical layer of IEEE 802.15.4 is operated at 250 kbps, the

time required to transmit a frame through the SPI interface is

half the time required to transmit the frame in the medium. The

processing time, the possible SPI communication time, and

the transmission time have significant impacts on the overall

diffusion delay of a broadcast frame.

To compute the diffusion delay of a broadcast frame, we

assume that the frame is broadcast in a multi-hop manner by

all the coordinators of the network. As end-devices can only

receive from their designated parent, all the coordinators of

the network have to transmit. For simplicity reasons, we do

not show in the rest of this paper the end-devices.

We assume that nodes transmit the broadcast frames se-

quentially. This guarantees that there is no collision between

frames, which would dramatically increase the delay. Allow-

ing distant nodes to transmit simultaneously is an issue in

WSNs [11], as the location of nodes is often unknown and

propagation conditions may vary due to the mobility of nodes.

The PAN coordinator computes a sequence containing all

the coordinators of the network, and includes it in the diffusion

frame. Then, it broadcasts the frame. When a coordinator n

receives the diffusion frame from a node s, it determines the

current relative time from the location of s in the sequence.

Then, it computes its own transmission time based on the

number of nodes between s and n in the sequence1.

Figure 1 shows an example topology of five nodes: node

A is the PAN coordinator, and the other four nodes are

coordinators. These coordinators have end-devices attached to

them. Figure 2 describes how time is spent by nodes during

the diffusion of a frame, when the sequence is (A, B, C, D, E)
and the topology is the one given in Fig. 1. First, A builds

the frame in the main processing module and sends it to its

radio module through the SPI interface, which is depicted as

a box with an arrow. Then, A transmits the frame. The frame

is simultaneously received by B, C and D (the time of flight

being negligible in WSNs). The radio modules of each of these

coordinators send the frame to the processing module (which is

depicted as a box with an arrow) and they all process it (which

is depicted as a box with PR). Coordinator B detects that it

directly follows A in the sequence, and transmits the frame

to its radio module. During this time, coordinators C and D

are waiting (or sleeping if there is enough time). Coordinator

C wakes up after B has completed the transmission2. The

process goes on until all the coordinators have sent the frame.

Note that in the figure, we set the transmission time on the SPI

interface to half the time of the transmission on the channel.

We also assumed a small processing time PR, which might

not be the case in practice.

A

B C D

E

Figure 1. An example topology for the diffusion.

PR

PR

PR

PR

A
B
C
D
E

time

Figure 2. Non-optimized diffusion delay for a given sequence.

PR

PR

PR

PR

A
B
C
D
E gain

Figure 3. Optimized diffusion delay for a given sequence.

Because the time required to send a frame from the process-

ing module to the radio module is known (it depends only on

1The transmission duration is not the same for each node. In this paper,
we assume that n can be determined from the sequence itself.

2Again, we assume here that C knows the time B is going to spend
transmitting. We do not assume that C is listening to B.

the bandwidth of the SPI interface and on the length of the

frame), coordinators can send the frame in advance. In the

previous example, coordinator C can wake up a short time

before B completes the transmission, and C can start sending

the frame to the radio module. Figure 3 shows an optimized

version of the diffusion, with a gain at coordinators C and D.

Let us give a numerical estimation of the different times

involved. The transmission of a medium-sized frame of 50

bytes on the wireless channel is performed at 250 kbps. Thus,

it takes about 1.6 ms. The transmission of the frame on the SPI

interface takes about 0.8 ms. The processing time of a frame

takes about 1 ms when only basic operations are performed.

B. Optimization of the diffusion delay

It can be understood from the previous example that the

medium is unused during a short time between the trans-

mission of coordinators D and E. When E receives the

frame from D, it has to process it. Then, it detects that it

directly follows D in the order and send the frame as soon as

possible. If a coordinator X had been between D and E in the

order, the processing time of E would not have increased the

diffusion delay, as E would have processed the frame during

the transmission time of X .

Figure 4 shows the diffusion delay of the topology of

Fig. 1, using the sequence (A, D, B, C, E). Notice that, in

this sequence, E does not directly follow D. The reduction of

the diffusion delay is very important compared to the initial

sequence, due to the parallelization of the activities. While

E processes the message, other coordinators are using the

channel. The proposed sequence is optimal.

PR

PR

PR

PR

A

B

C

D

E
gain

Figure 4. Optimized diffusion delay for an optimal sequence.

C. Model and definitions

In this paper, we study how to build an optimal sequence

for the diffusion of a frame, given a tree.

Let T be a tree representing a WSN, where N is a set of

|N | = n nodes. Let ~o(T) be a sequence on T , representing

the order of emission of the node. In the remaining part of

the paper, we call ~o(T) an order. As each node needs to wait

for a beacon before being able to transmit, ~o(T) has to be a

topological order. We use the following notations. father(n)
is the node n′ such that n′ is the father of n in (T), pred(x)
(resp. succ(d)) is the node before (resp. after) x in an order

~o(T), and first(d) (resp. last(d)) is the first (resp. last) node
of depth d that appears in ~o(T).
Previously, we showed that the occurrence of a child directly

after its father in an order has a negative impact on the delay.

We call this situation a conflict. For a topological order ~o(T)

and a node x, we define the predicate conflict(x) which is

true if and only if pred(x) = father(x). A conflict in an

order ~o(T) for a node x is represented by underlining x.

The diffusion delay depends on the number of nodes in

the network, and on the number of conflicts. As the number

of nodes in the network is fixed, we define the duration of

an order ~o(T) as the number of nodes x in T for which

conflict(x) is true. We use the notation d(~o(T)) to denote

the number of conflicts in an order ~o(T).
Note that a depth-first order of T yields a longer duration

than a breadth-first order of T . In the following, we consider

that a breadth-first order is a good solution.

III. EXACT SOLUTION

We propose in this section two algorithms in order to obtain

exact solutions. The first uses integer linear programming. The

second is a Branch-and-Bound algorithm.

A. Integer linear programming

A way to compute an optimal order ~o(T) for a tree T is

to define an integer linear program. The algorithm uses a set

of m nodes denoted by N . A set P is used to represent the

positions of the nodes in an order.

We also define the following relations. pos(n) represents the
position of a node n in an order. permut(n, p) is a boolean

matrix which describes the position p of a node n in an

order. δ(n1, n2) is m plus the difference in the position of

nodes n1 and n2 in an order. The addition of m ensures that

δ(n1, n2) ≥ 0, which is required later on (see Subsect. III-A2).
conflict(n) indicates whether node n directly follows its father

in the order, which induces a conflict, or not. Finally, the

real variables λi and the binary variables xi are used in

order to model conflicts (see Subsect. III-A2). Note that our

modelization uses mixed integer linear programming due to

the requirement of the variables λi to be real.

1) Modelling of the constraints: We use the following

variables in our mixed integer linear program. pos(n) is

the position of n in the order (in {1, . . . , P}). permut(n, p)
indicates whether n is at position p or not (in {0, 1}). δ(n1, n2)
is the difference of positions of nodes n1 and n2 in the

order, plus m (in {0, . . . , 2m}). conflict(n) indicates whether

n directly follows its father in the order or not ({0, 1}). λi(n)
is in IR+ and xi(n) is in {0, 1}.
Constraints 1 and 2 in Table I ensure that the order is

a permutation of nodes (through the use of permut(n, p)).
Constraint 3 maps each node n to its position pos(n) in the

order, while Constraint 4 ensures that the order is topological.

Finally, Constraint 5 attributes the correct value to δ(n1, n2).

2) Modelling of the conflict(n) constraint: Constraints 6 to

12 are used to model conflicts. Recall that a conflict occurs for

a node n if and only if n directly follows its father in the order.

This means that the difference between pos(father(n)) and

pos(n) is equal to 1. Thus, if we denote by d(n) the difference
of positions between n and father(n) in the order, we can

define conflict(n) in the following way: conflict(n) = 1 if

Minimize
P

n∈N conflict(n) such that:
(1) ∀n ∈ N ,

P

p∈P permut(n, p) = 1
(2) ∀p ∈ P ,

P

n∈N permut(n, p) = 1
(3) ∀n ∈ N , pos(n) =

P

p∈P (p · permut(n, p))
(4) ∀n ∈ N , pos(n) ≥ pos(father(n))
(5) ∀n1, n2 ∈ N2, δ(n1, n2) = pos(n1) − pos(n2) + m
(6) ∀n ∈ N , conflict(n) = λ3(n)
(7) ∀n ∈ N , δ(n, father(n)) = mλ2(n)+(m+1)λ3(n)+(m+2)λ4 (n)+
2mλ5(n)
(8) ∀n ∈ N , λ1(n) ≤ x1(n)
(9) ∀n ∈ N , ∀i ∈ {2, 3, 4}, λi(n) ≤ xi−1(n) + xi(n)
(10) ∀n ∈ N , λ5(n) ≤ x4(n)
(11) ∀n ∈ N ,

P

i∈{1,2,3,4} xi(n) = 1
(12) ∀n ∈ N ,

P

i∈{1,2,3,4,5} λi(n) = 1

Table I
CONSTRAINTS OF THE MIXED INTEGER LINEAR PROGRAM.

d(n) = 1, and 0 otherwise. Unfortunately, conflict(n) is not a

convex function of d(n).

conflict(n) can be defined as a step function of a positive

variable δ(n), with δ(n) = d(n)+m. Formally, conflict(n) can
be defined in the following way. Let a1 = 0, a2 = m, a3 =
m + 1, a4 = m + 2 and a5 = 2m, and conflict(n)(a1) = 0,
conflict(n)(a2) = 0, conflict(n)(a3) = 1, conflict(n)(a4) = 0
and conflict(n)(a5) = 0. Such a formulation can be used to

model conflict(n) using mixed integer linear programming,

as described in Ineq. 4.18 of [12] (notice that a1 has to be

greater than or equal to 0, and thus our addition of m in

δ(n)). Constraints 6 to 12 follow from this formulation.

The integer linear program described in the previous subsec-

tion is computationally expensive. Some instances of twenty

nodes are solved in several hours by a workstation using GLPK

(GNU Linear Programming Kit). Indeed, the modelization of

the conflicts and the number of integer variables make the

problem hard to solve. Thus, we decided to implement a

Branch-and-Bound algorithm to find exact solutions quickly.

B. Branch-and-Bound algorithm

A Branch-and-Bound algorithm [13] finds an optimal solu-

tion by exploring a tree T of all possible solutions. The quality

of each solution is computed while exploring the tree. If the

algorithm determines that all the solutions in a sub-tree have

a lower quality than an existing solution, the algorithm stops

the evaluation of the sub-tree, thus saving processing time.

Therefore, the efficiency of a Branch-and-Bound algorithm

comes from two criteria: (i) the quality of the initial solution,

and (ii) the relationship between the quality of a solution

s ∈ T and the quality of the solutions in the sub-tree of s.

The tree T explored by the Branch-and-Bound algorithm is

an n-ary tree. T is built in the following way. Each node of

the tree is an order. The root is the empty order. If a node

of T is an order o of k nodes, it has n − k children in T .

The i-th child is the order o · ni, where ni is the i-th node of

N not present in on. Tree T has n! leaves, which are all the

possible orders of the n nodes. Not all the possible orders are

valid (as some of them are not topological), but the optimal

order is one of the leaf of T .

The topological rule ensures that orders that are not topo-

logical are not examined, as they cannot correspond to a valid

solution. The branching rule assumes that the best current

solution (possibly not optimal) is known and cuts subtrees of

T whose duration is larger than the current best. The key here

is that the duration of an order on is always smaller than or

equal to the duration of any topological order on · ni.

The choice of the initial reference solution is crucial. We

used our heuristic described in Sect. IV as an initial solution.

Breadth-First algorithm (BF) is compared to the optimal so-

lution (computed with Branch-and-Bound) using two topolo-

gies: random trees and interconnection of random hot-spots.

1) Random trees: Random trees are designed to model

interconnections between nodes in a dense WSN. Nodes are

added to the tree one by one. They are attached to any existing

node of the tree, except to those having already more than

Rm children. Note that this limitation is consistent with the

cluster-tree topology formation of ZigBee [9]. The location of

nodes are not generated by this algorithm, because only tree

structures have an impact on the order duration. With this tree

generation algorithm, trees tend to become complete rather

than grow deeper.

In our simulations, we used Rm = 5. We varied the number

of nodes from 50 to 2000. For each number of nodes, we

generated 1000 trees. Generating all the trees and finding the

optimal solution using the Branch-and-Bound algorithm takes

about half an hour on an i7 930 workstation.

The percentage of trees where the breadth-first order was not

optimal, varies between 15% and 21.1% (on average 17.9%

with a standard deviation of 1.35). It does not depend on the

number of nodes (from node numbers varying from 50 to

2000). The average duration of breadth-first orders, when they

are not optimal, is on average about 2.17 (while the optimal

duration is on average 1) with a standard deviation of 0.03.

These results do not change as the number of nodes vary.

Consequently, breadth-first orders are good approximations of

the optimal order when random trees are generated.

2) Interconnection of random hot-spots: When the network

is dense, it is possible to find optimal solutions having a very

low duration. We consider here a network constituted of two

hot-spots, interconnected by a chain of nodes. The root of the

tree is located in one of the hot-spot3. The generator first places

x nodes with sensors within the hot-spots, then adds as many

nodes as required in order to build a tree in each hot-spot, and

interconnects the two hot-spots by deploying a chain of nodes.

The generated tree includes only the non sensor nodes.

The topologies were generated using the following parame-

ters. The communication range of nodes is about 15 m. Each

hot-spot has a diameter of 40+ x
2
m, and consists of x sensors.

The distance between the two hot-spots is about 8 ∗ x m. The

coordinator is added to the center of one hot-spot. We varied

x from 5 to 20, and we generated 100 trees for each x. Note

3Such a topology is a worst-case scenario for the duration of the order.
Indeed, when a tree possesses a single, sufficiently long chain of nodes, all
topological orders contain the nodes of the chain in sequence, and the optimal
duration increases significantly.

that the number of nodes n depends on x. Note that with the

trees generated, the breadth-first order duration is usually far

away from the optimal duration, which causes the Branch-

and-Bound algorithm to take hours to solve instances of 60

nodes.

Figure 5 shows the average duration of Breadth-First and

optimal orders, as x varies. It can be seen that the duration

of the breadth-first order grows proportional to x, as hot-spots

are separated by a distance proportional to x. Variations in

the breadth-first duration are due to different tree topologies.

The optimal order yields a duration of 1 conflict on average,

which means that the nodes of the first hot-spot are used by

the optimal order to break the chain of nodes. If the two hot-

spots were separated by a larger distance (for instance, if the

distance between the hot-spots would exceed 15x), the optimal

duration could not be equal to 1.

 1

 2

 3

 4

 5

 6

 7

 8

 20 25 30 35 40 45 50 55 60

A
v
e
ra

g
e
 d

u
ra

ti
o
n

Number of nodes

Breadth-First average
Optimal (branch and Bound)

Line Fit of BF

Figure 5. Average duration of breadth-first and optimal orders, for intercon-
nections of hot-spots.

IV. HEURISTIC METHOD

In this section, we present an algorithm that approximates

the optimal order in linear time. The general idea for this

algorithm is to improve a breadth-first order by permuting and

moving nodes in the order without changing the tree topology.

A. Permuted order

Let us consider a breadth-first order. Such an order can

cause at most one conflict per depth d. If there is a conflict

at depth d, we apply one of the three permutation rules.

Permutation P1 is applied if and only if there are at least

three nodes on depth d. Permutation P1 consists in swapping

succ(first(d)) and last(d) in the current order. Figure 6

shows Permutation P1 applied on an example. Permutation

P2 is applied if and only if (i) there are exactly two nodes on

depth d and (ii) first(d) and last(d) have the same father.

Permutation P2 consists in swapping first(d) and last(d) in

the current order. Permutation P3 is applied if and only if

(i) there are exactly two nodes on depth d and (i) first(d)
and last(d) have a different father. Permutation P3 consists

in swapping first(i) and last(i) for each depth i such that

(i) j < i ≤ p, (ii) there are exactly two nodes on depth i that

have a different father and (iii) at depth j, there is either one

node, two nodes with the same father or three or more nodes.

If there are two nodes at depth j, they are swapped. If there

are three or more nodes at depth j, a node nx
j that is neither

the father of first(j + 1) nor of last(j + 1) is swapped with

node last(j). Figure 7 shows Permutation P3 applied on an

example. A permuted order P (T) can be computed by first

considering permutations P1 and P2 from depth 1 to h, and

then considering permutations P3 from depths 1 to h.

A A

B BCC D D

E E

⇒

ABCDE ⇒ ADCBE

Figure 6. Permutation P1 reduces by one the duration of the order.

AA

CC BB DD

EE FF

GG HH

II

⇒

ABCDEFGHI ⇒ ADCBFEHGI

Figure 7. Permutation P3 reduces by one the duration of the order.

B. Displaced order

The displaced order enhances the permuted order by remov-

ing the constraint of having nodes sorted by depths. Let ~o(T)
be a topological order. If last(d) is the father of first(d+1)
in ~o(T), and if depth d contains only one node last(d), the
displaced order moves an available node for last(d) between

last(d) and first(d+1). A node nx is said to be available for

a node last(d) if it satisfies the following conditions: (i) nx is

directly preceded by node na and directly followed by node

nb, (ii) nx has no child in the tree T (so that the order remains

topological), (iii) nx is before last(d) in the order ~o(T), and
(iv) either na is the father of nx and of nb, or na is the father

of neither nx nor of nb. Figure 8 shows an example of a

displaced order, where the available node is B. A displaced

order D(T) is computed by considering displacements from

depths 1 to h. Our heuristic consists in building D(T).

AA

B

B

C C

DD

⇒

E E

A0B1
AC1

AD2
CE3

D ⇒ A0C1
AD2

CB1
AE3

D

Figure 8. Displacement rule D reduces by one the duration of the order.

The computation of D(T) is realistic for real nodes, as

it only requires a time which is a linear function of n, as

follows. The breadth-first order B(T) can be computed in

O(n + m), where n is the number of nodes of T and m

is the number of edges of T . As T is a tree, m = n−1. Thus,
B(T) can be computed in O(n). The (potential) application

of permutations P1 and P2 at each depth requires O(h).
The (potential) application of permutations P3 at each depth

also requires O(h): although P3 considers swapping nodes

at previous depths, it is not possible for the same node to

be considered twice. The overall complexity for P (T) is

O(n + h) = O(n).
The set D of all the available nodes, with respect to the last

node of P (T), can be computed in O(n). When the algorithm

searches for an available node for last(d), only the first node

of D, denoted nx, needs to be considered. If nx is not available

for last(d), this means that no further nodes in D are available

for last(d). If nx is available, D has to be updated. As nx has

no children in T (due to the second constraint of the available

nodes), the changes in D are limited to na and nb, which

are the neighbor nodes of nx. In other words, once set D is

computed (in linear time), it only decreases (in constant time).

Thus, computing D(T) requires O(n).

C. Simulation results

In this section, we study the performance of our heuristic

with respect to breadth-first and and optimal approaches.

With the same random trees as previously, less than 0.8%

of heuristic solutions are not optimal (on average 0.25% with

standard deviation 0.16%). Note that heuristic solutions are at

least as good as breadth-first solutions.

Figure 9 depicts the average duration of breadth-first, heuris-

tic and optimal orders on small interconnected hot-spots. The

figure shows that the heuristic improves greatly the duration of

the breadth-first order, keeping the duration constant and close

to the duration of the optimal solution. Figure 10 depicts the

average duration of breadth-first and heuristic orders on large

interconnected hot-spots, where the number of sensors varies

from 0 to 2000, and 1000 instances are generated per size. We

were not able to run the Branch-and-Bound algorithm on such

topologies. The duration of the heuristic order remains nearly

constant (most of the conflicts of the breadth-first orders can

be repaired), whereas the duration of the breadth-first order

grows proportionally with the number of nodes.

 1

 2

 3

 4

 5

 6

 7

 8

 20 25 30 35 40 45 50 55 60

A
v
e
ra

g
e
 d

u
ra

ti
o
n

Number of nodes

Breadth-First average
Heuristic average

Optimal (branch and Bound)
Line Fit of BF

Figure 9. Average duration of
breadth-first, heuristic and optimal
orders, on small interconnected hot-
spot trees.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
v
e
ra

g
e
 d

u
ra

ti
o
n

Number of nodes

Breadth-First average
Heuristic

Figure 10. Average duration of
breadth-first and heuristic orders, on
large interconnected hot-spot trees.

V. CONCLUSION

Several protocols developed for WSNs require the diffusion

of information in the whole network in a guaranteed manner.

In this paper, we study the delay required to propagate the

information to all nodes. We show that the order in which

nodes transmit the data has a critical impact on the overall

delay. Consequently, we propose two exact algorithms and

a heuristic one in order to reduce the diffusion delay. Sim-

ulations are performed on randomly generated trees and on

randomly generated interconnection of hot-spots. We show that

our heuristic is applicable in real scenarios and that it leads

to near-optimal diffusion delays.

In a future work, we plan to adapt our study to graphs. We

aim at finding the optimal diffusion order when the complete

communication graph is given, rather than when a tree is given.

We also plan to implement our heuristic on TelosB nodes in

order to check the computation cost and memory requirements

for relatively large networks.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, vol. 38, no. 4, 2001.

[2] “CC2420 - 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,”
Chipcon, preliminary datasheet, 2004.

[3] J. Elson and K. Römer, “Wireless sensor networks: A new regime for
time synchronization,” in Hot Topics in Networks, 2002.

[4] J. Rahmé, N. Fourty, K. Al Agha, and A. Van Den Bossche, “A recursive
battery model for nodes lifetime estimation in wireless sensor networks,”
in IEEE Wireless Communications and Networking Conference, 2010.

[5] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization in wireless sensor networks: A survey,” Ad-Hoc Networks,
vol. 3, no. 3, pp. 281–323, 2005.

[6] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” in OSDI, December 2002.

[7] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in ACM SenSys, 2003, pp. 138–149.

[8] IEEE 802.15, “Part 15.4: Wireless medium access control (MAC) and
physical layer (PHY) specifications for low-rate wireless personal area
networks (WPANs),” ANSI/IEEE, Standard 802.15.4 R2006, 2006.

[9] ZigBee, “ZigBee Specification,” ZigBee Standards Organization, Stan-
dard ZigBee 053474r17, January 2008.

[10] M. Mock, R. Frings, E. Nett, and S. Trikaliotis, “Continuous clock
synchronization in wireless real-time applications,” in IEEE SRDS, 2000,
pp. 125–133.

[11] X. Wang, “Spatial channel reuse in wireless sensor networks,” Wireless

Networks, vol. 14, no. 2, pp. 133–146, 2008.
[12] A. Billionnet, Optimisation discrète. Dunod, 2007.
[13] A. H. Land and A. G. D. Doig, “An automatic method of solving discrete

programming problems,” Econometrica, vol. 28, no. 3, pp. 497–520,
1960.

