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Abstract—Wireless sensor networks are envisioned to
support an increasing number of applications having various
quality of service (QoS) requirements. A possibility to
provide a large variety of QoS is to deal with multi-stack
WSN where several routing and MAC protocols coexist in
the same network. However, routing loops can occur when
several routing protocols are used alternatively. Such loops
can yield to large delays and high packet loss, and should
therefore be avoided. In this paper, we propose a three-step
solution to solve the loop problem. The first step describes
a sufficient condition to determine when two arbitrary
routing protocols can be used without producing loops. The
second step states that loops can be avoided if some nodes
refrain temporarily from sending a packet. The third step
proposes a mechanism that guarantees that no loops are
produced for any pair of routing protocols. Our solution is
proved through theoretical analysis, and its performance is
evaluated through extensive simulations. It requires a limited
energy overhead and limited computation capabilities for the
network devices.

Index Terms—Routing protocols, multi-purpose wireless
sensor networks, routing loops.

I. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly used

in order to monitor the environment or to detect critical

events. A WSN is often designed to meet the require-

ments of a specific application. However, this approach

is showing its limits when the traffic types generated by

the application has very different profiles (e.g., periodic

traffic, daily log transfer, alarm events), or when the

number of application increases. A recent trend is to

deploy a general-purpose WSN that is used by several

applications simultaneously [1].

Existing WSNs are traditionally operated using a single

routing protocol and a single MAC protocol. However,

this pair of protocols cannot provide the best network

performance for all QoS [2], [3]. Indeed, a given pair

is designed for a specific type of traffic: some protocols

might provide a high reactivity to alarm events, while

others might be able to extend the network lifetime.

Another issue with application-specific WSNs is that each

application has to support the full cost of deployment.

Some researchers have proposed multi-purpose WSNs,
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where a single deployment can serve several applica-

tions [4], [5]. Although using several protocols in a mote

increases the code size, a modular approach can reduce

the code size by merging redundant code [6].

A way to provide several QoS is to have two (or possi-

bly more) pairs of MAC and routing protocols operating

in the same WSN. For instance, such a mechanism is used

in the following protocols:

• In the IEEE 802.15.4 standard [7], where a slotted

carrier-sense multiple access algorithm (CSMA) with

collision avoidance is used during the contention

access period, and a direct access algorithm is used

during the contention-free period.

• In Z-MAC [8], where a CSMA protocol is used

in low traffic conditions and a time-division-based

MAC protocol is used in high traffic conditions.

• In Funneling MAC [9], where an hybrid CSMA and

time-division MAC protocol is used in the congested

region near the sink, and a pure CSMA protocol is

used far away from the sink.

• In MaCARI [10] where a time-division-based MAC

protocol with a hierarchical routing is used during

a time period, and a collision-based MAC protocol

with EOLSR [11] is used during another.

Multi-stack architectures can be implemented by

scheduling the activity of all the nodes in the network,

and by ensuring that at any given time, only one pair of

routing and MAC protocols is active for all the nodes.

More specifically, time is divided into periods and during

each period pi, a routing protocolRi and a MAC protocol

Mi are activated, as shown on Figure 1. It can be noticed

that a synchronization mechanism precedes the first pe-

riod: it ensures that all the nodes of the network have

a common time reference, and also informs nodes about

the length of each period pi. The multi-stack architecture

approach was formalized in [12].
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Figure 1. In this schedule shared by all the nodes, the pairs [R1,M1]
and [R2,M2] are activated sequentially and periodically.

Scheduling several pairs of routing and MAC protocols

leads to two main issues. The first issue comes from the



fact that packets have to be marked at the application

layer so that they can be dispatched to the correct routing

protocol. A packet marked with i can only be sent during

period pi. This ensures that all the nodes apply the same

routing protocol to the same packet, and thus ensures

that consistent routing decisions are taken. If the current

period is not pi, a packet marked with i has to wait

for the next pi to be sent, which increases the delay.

The second issue is the dimensioning of the periods. A

static dimensioning is not suitable for bursty traffic. If the

period is too short for the traffic, some packets have to

wait for the next occurrence of the period to be sent. If

the period is too large for the traffic, time is wasted. A

dynamic dimensioning requires complex algorithms and a

significant control overhead in order to adapt the periods

to the traffic generation.

In this paper, we study a multi-stack architecture where

packet exchange is allowed between the pairs of routing

and MAC protocols. We focus on the occurrence of

loops in the network, which are caused solely by the

routing protocols. More specifically, we study when and

how to allow packets to be routed by different routing

protocols. In other words, our approach can be used to

route packets marked with i according to Rj (with i 6= j),

without causing the packets to enter a routing loop. Our

approach reduces the impact of the two issues mentioned

previously, as packets can now be sent during several

periods.

The remainder of this paper is organized as follows.

Section II describes briefly the routing protocols we used

as examples in our simulations. Section III highlights the

risks of having loops when using several routing protocols

to route the same packet. Section IV describes our three-

step solution to avoid loops. The first step shows when

routing protocols are compatible, which means that they

cannot produce loops. The second step describes how to

design a holding function, which is used by nodes to

refrain from sending packets when these packets might

enter a loop. The third step describes how to apply a

generic holding function to any arbitrary schedule. Each

step is proved theoretically. In Section V, we make

extensive simulations to quantify the routing loop and the

benefits of our approach. Finally, in Section VI, we give

conclusions and perspectives.

II. STATE OF THE ART

This section briefly describes some routing protocols

and divides them into two categories: the routing proto-

cols that might generate loops, and the loop-free routing

protocols. In the remainder of this work, we focus on

routing protocols that do not yield to routing loops by

themselves.

A. Routing Protocols Generating Loops

The main task of a routing protocol is to forward

a packet to a given destination, without generating too

much overhead or routing loops. Some protocols, how-

ever, might cause routing loops in some conditions. The

collection tree protocol (CTP) [13] is an example of such

protocols.

CTP is a tree-based collection protocol. Some nodes

in the network advertise themselves as tree roots, and

nodes form a set of routing trees from these roots using

an additive metric based on the expected number of

transmissions. This metric assumes that nodes use link-

level retransmissions. Given a choice of valid routes, CTP

chooses the one with the lowest number of expected

transmissions.

Routing loops can appear in a CTP network, when a

node chooses a new route that has a significantly higher

cost than the previous one. To reduce this problem, a

specific frame is broadcasted when such a new route is

chosen. Also, if some nodes are disconnected from the

network, the cost for the unreachable nodes increases

to infinity. That is why CTP assumes that a node is

unreachable when the value exceeds a given threshold.

B. Loop-Free Routing Protocols

In this part, we describe the behavior of routing pro-

tocols that do not yield to routing loops by themselves.

We use these examples of routing protocols later in the

paper.

1) Hierarchical Tree Routing Protocol: The hierarchi-

cal tree routing protocol of ZigBee [14] is referred to as

the tree protocol in the following of this paper. Using this

protocol, communications follow the links of a tree. When

a router at depth d receives a packet, the router checks

whether the destination is within its own address space

or not. If it is the case, the destination is a descendant of

the router: the router computes for which child the packet

has to be sent. Otherwise, the router sends the packet to

its parent.

The tree protocol allows high energy savings [15].

Indeed, the routing decision can be made without ex-

changing routing tables between routers. Thus, the control

overhead is limited to the tree maintenance. Moreover,

the energy overhead is limited: when a router r is active,

only its parent and children have to be active, while the

other potential neighbors can be inactive. However, the

tree protocol produces non-optimal routes in terms of hop-

count.

2) Shortcut Tree Routing Protocol: The shortcut tree

routing protocol [16], referred to as the shortcut protocol

in the following, enhances the tree protocol by using the

knowledge of one-hop neighbors. To route a packet using

the shortcut protocol, a router r forwards it to the neighbor

providing the smallest expected number of hops according

to the distance on the tree.

The shortcut protocol is able to reach the destination

by using less hops than the tree protocol. However, all the

neighbors of a router have to be active when the router

has to transmit a packet, as they are potential next hops,

which increases the energy consumption.

3) Shortest Path Routing Protocols: Shortest path rout-

ing protocols are based on optimal paths in terms of

number of hops. They are usually not energy efficient: an



high control overhead is required in order to determine

the optimal path. Moreover, all the neighbors of a router

have to be active when the router sends a frame, which

consumes energy. Such protocols include AODV [17] and

OLSR [18]. In this work, we use OLSR as an example

of shortest path routing protocol.

Optimized Link-State Routing (OLSR) protocol [18] is

a routing protocol designed for mobile ad-hoc networks.

It is a link-state routing protocol, based on the concept of

multipoint relays (MPRs). MPRs form a subset of one-

hop neighbors of a node r that are in range of all two-

hop neighbors of r. When r has to send a packet, it

sends it to one of its MPR, which can in turn forward

the packet to the correct destination. Instead of requiring

all the neighbors of r to be active when r transmits a

packet, only the MPRs of r have to be active.

III. PROBLEM: LOOP OCCURRENCE

The problem of operating several routing protocols

alternatively is that routing loops might occur in the

network, when different routing protocols are involved

to forward the same packets. Subsection III-A gives

technical details about multi-stack architectures, which

can support several routing protocols. Subsection III-B

shows why and how several routing protocols can be used

in order to forward the same packet. Subsection III-C

describes the problem of loop occurrence through an

example.

A. How to Make Several Pairs of Routing and MAC

Protocols Coexist?

Multi-stack architectures help providing several QoS

for the applications. The routing and MAC protocols

used in such architectures can be activated alternatively,

according to a schedule similar to the one shown on

Figure 1. In the basic model, applications mark packets

with a number i, which corresponds to the routing and

MAC protocols (Ri,Mi) they require. Each routing

protocol Ri adds the packets in a queue Qi. A common

MAC layer determines what is the current time period

pi, deduces which MAC protocol Mi is active, extracts

a packet from the corresponding queue Qi, and sends the

packet. The process is similar for the reception. A packet

marked at the source with i is forwarded during period pi
by all the nodes, and is always processed using the same

Ri, which guarantees that no routing loop occurs1.

This architecture has two main drawbacks. First, a

packet marked with i cannot be sent during a period pj ,

with i 6= j. Thus, packets have to wait for the suitable

period in order to be transmitted, which increases the

delay. Second, the dimensioning and adaptation of the

duration of each period pi to the traffic requires a high

overhead, especially when the traffic production is bursty.

1Provided that Ri is loop-free.

B. Queue-Exchange Mechanism

In [19], we allowed the exchange of packets from one

queue to another. When a MAC protocol Mi has sent all

the packets stored in its queue Qi, Mi can extract the

packets from another queue Qj (with i 6= j) in order to

use the remaining time of period pi. However, in this case,

the next hop computed according to Rj can be inactive

in period pi. Thus, the next hop of packet marked with j

has to be recomputed according to Ri and sent according

to Mi.

This queue-exchange mechanism can solve the two

main drawbacks of multi-stack architectures. First, pack-

ets do not need to wait for a specific period pi: they can be

processed and sent during any period. Second, an accurate

dimensioning of the schedule is not crucial anymore: if a

period is too short for the packets dedicated to it, another

routing protocol can forward the additional packets, and if

a period is too large, time is not wasted since this period

can be used to send packets dedicated to other periods.

C. Example of Loop Occurrence

When a packet can be forwarded according to several

routing protocols, routing loops can occur. In this paper,

we focus on removing these loops, rather than on simply

observing their impact on the network performance (as

was done in [19]).

In the following, we focus on the routing protocols,

since they are the only cause of routing loops in the

network. We consider that a routing loop is generated in

the network when a node forwards the same packet more

than once.

Figure 2 depicts an example where a packet enters a

routing loop because of the use of two different routing

protocols. We assume that node A has a packet to send

to node E, R1 (represented using solid arrows) and R2

(represented using dashed arrows) alternate every two

hops. Our scenario starts at the beginning of period p1.

A sends the packet to B, which sends it to D. Then

the period changes to p2, and thus the routing protocol

changes to R2. D sends the packet to B, which sends

it to C. Then, R1 is reactivated. C sends the packet to

D, which sends it to E. The path followed by the packet

is (A,B,D,B,C,D,E), which corresponds to six hops.

Using the multi-stack architecture with queue exchange

increases the distance to the destination, because of a

routing loop.

A

B

C

D

E

Figure 2. A routing loop occurs when A sends a packet to E, if the
protocols alternate every two hops and if the first protocol used is the
one with solid lines.



IV. SOLUTION: THREE-STEP APPROACH TO AVOID

ROUTING LOOPS

The main purpose of this paper is to propose a solution

to routing loops, which occur when packet exchanges are

allowed in a multi-stack architecture.

In this section, we describe our three-step approach.

First, we study compatible routing protocols, i.e. protocols

that can coexist without producing loops. Second, we in-

troduce delayable routing protocols, which use a holding

function in order to become compatible. However, this

holding function might be difficult to compute for arbi-

trary protocols. Third, we propose a combined solution

providing a simple holding function for any schedule of

arbitrary protocols.

A. Step 1: Compatible Routing Protocols

Let R be a routing protocol, and V be a set of nodes.

For each destination d ∈ V and for any node n ∈ V \{d},
the next hop of n for destination d by R is denoted by

R(n, d). We consider that R(d, d) is not defined.

Let R1 and R2 be two routing protocols. We define

by routing loop the fact that a node forwards the same

packet more than once.

Definition 1 (Compatible routing protocols). Two routing

protocols R1 and R2 are compatible if any node can

decide arbitrarily to forward a packet according to R1

or to R2, without generating a loop, in order to reach

the destination.

Theorem 1. Let R1 and R2 be two routing protocols, V

be a set of nodes and d ∈ V a destination. If there exists

a function fd : V \{d} → IN such that ∀n ∈ V \{d},
max{fd(R1(n, d)), fd(R2(n, d))} < fd(n), then R1 and

R2 are compatible.

Proof: Let d ∈ V be a destination. We consider

that there exists a function fd that satisfies the property

fd(d) = 0 and ∀n ∈ V \{d}, max{fd(R1(n, d)), fd(R2

(n, d))} < fd(n). We aim to show that every path starting

from an arbitrary node n reaches d in a finite number of

hops without generating routing loops. In other words,

we aim to show that for every sequence (ri) of routing

decisions (with ri ∈ {1, 2} for every i), if (ri) is long

enough to reach d (possibly infinite if d can never be

reached), the unique path starting from n and following

the routing decisions (ri) reaches d in a finite number of

hops without generating routing loops.

Let (ri) be a sequence of routing decisions. Let us

define the path according to (ri) by p = (n0, n1, n2, . . . ),
with n0 = n and ni+1 = Rri(ni, d) for every node ni ∈
V \{d}. By construction, p is unique (as (ri) is fixed).
First, let us show that: (1) if p is infinite, all the nodes

of p belong to V \{d}, (2) if p is finite, all the nodes of

p, except the last one, belong to V \{d}.
If p is infinite, at every node ni of p corresponds a node

ni+1 in p, which is possible only if ni ∈ V \{d}. Thus,
all the nodes of p are in V \{d}. If p is finite, it can be

written as (n0, n1, n2, . . . , nk). By construction, for every

i ∈ [0; k−1], ni+1 exists, which means that ni ∈ V \{d}.
nk does not belong to V \{d} as nk+1 is not defined

(notice that the sequence (ri) is chosen long enough).

Now, let us show that p is finite. Let us proceed by con-

tradiction by supposing that p is infinite. As p is infinite,

all the nodes of p are in V \{d}. Using p, we can build

the infinite sequence s = (fd(n0), fd(n1), fd(n2), . . .)
by applying the function fd at each node of p. Notice

that for each node ni ∈ V \{d}, we have fd(ni+1) =
fd(Rri(ni, d)) < fd(ni) by definition of fd. The se-

quence s is thus strictly decreasing. However, s is defined

in IN . It is not possible to have an infinite sequence

strictly decreasing in IN : the assumption that p is infinite

is false, therefore p is a finite sequence.

As we have shown that p is finite, let us show that p

reaches d. As p is finite, all the nodes of p, except the

last one nk, belong to V \{d}. The node nk is defined as

nk ∈ V and nk does not belong to V \{d}, nk is then

equal to d. In other words, if nk belongs to V \{d}, nk+1

would exist in p, and nk would not be the last node in p.

Now, as we know that p is finite and that p reaches

d, let us show that p is free of routing loop. By

contradiction, we suppose that p passes twice by the

same node. There exists thus x and y such that nx =
ny, with x < y. Let us build the sequence s =
(fd(n0), fd(n1), fd(n2), . . . , fd(nx), . . . , fd(ny)). Let us
consider two cases:

• y is equal to k. This means that ny = nk. Since nx =
ny and nk = d, nx = d. We have a contradiction

because nx+1 exists in p (as there exists ny with

y > x) but is not defined because nx = d.

• y is not equal to k. Thus, ny is not the last

node in p. Consequently, all the nodes of p from

n0 to ny belong to V \{d}. So, for every ni ∈
(n0, n1, n2, . . . , nx, . . . , ny), we have fd(ni+1) =
fd(Rri(ni, d)) < fd(ni). The sequence s is thus

strictly decreasing which requires that fd(nx) <

fd(ny) as x < y. However, as nx = ny, we have

fd(nx) = fd(ny). We have a contradiction.

In both cases, we have a contradiction. Considering that

p passes twice by a same node is thus not valid.

We have shown that the unique path p reaches d with

a finite number of hops, without generating any routing

loop. R1 and R2 are thus compatible.

More intuitively, the function fd could be defined as the

distance to the destination. For any routing protocol R1

or R2, the next hop ni+1 corresponds to a value fd(ni+1)
lower than the value fd(ni) of node ni: in all cases, the

path p converges to the destination. For all the nodes,

except the destination d, there always exists a next hop

according to R1 and R2: the construction of the path is

stopped only when d is reached. The path convergence to

d results from the necessary decreasing of the value of fd
in each node (except in d).

In order to prove that two routing protocols are com-

patible, the difficulty lies in finding the function fd.

Property 1. The tree protocol and the shortcut protocol

are compatible.



Proof: Let us consider that R1 is the tree protocol

andR2 is the shortcut protocol. Let us build fd as follows:

for each node n ∈ V , fd(n) is the number of hops

remaining on the tree in order to reach d.

Let us show that fd satisfies the conditions of Theo-

rem 1. First of all, fd is a function defined from V to IN

and fd(d) = 0. For all nodes n ∈ V \{d}:

• fd(n) > 0 because n 6= d and fd is a distance.

• fd(n) > fd(R1(n, d)). Indeed, as R1 is the tree

protocol and fd is the distance on the tree, the

next hop of n according to R1 is one hop closer

to the destination than n. Thus, we have fd(n) =
fd(R1(n, d)) + 1.

• fd(n) > fd(R2(n, d)). Indeed, R2 is the shortcut

protocol. Let x = R2(n, d). x is the node among the

neighbors of n that minimizes the remaining distance

to d, i.e. for every neighbor v of n, fd(v) ≥ fd(x).
However, the next hop of n on the tree, R1(n, d) is a
neighbor of n. We have thus fd(R1(n, d)) ≥ fd(x).
Noticing that fd(n) > fd(R1(n, d)) (as shown

above) and that fd(x) = R2(n, d), we have fd(n) >
fd(R2(n, d)).

Thus, fd(n) > max{fd(R1(n, d)), fd(R2(n, d))}.

Property 2. Any two shortest path routing protocols are

compatible.

Proof: This property can be proved by computing fd
as follows: for each node n ∈ V , fd(n) is the smallest

number of hops to reach the destination d.

B. Step 2: Delayable Routing Protocols

Some pairs of routing protocols are not compatible.

For instance, the tree protocol (respectively, the shortcut

protocol) is not compatible with a shortest path routing

protocol (as shown later in Figure 3).

When two routing protocols are not compatible, a node

can decide to hold a packet temporarily rather than to risk

sending it into a routing loop. The forwarding of such

a packet is delayed until the other protocol routes the

packet.

Definition 2 (Delayable routing protocols). Two routing

protocols R1 and R2 are delayable using a holding

function hd if every packet for destination d reaches d

without generating a routing loop and without being held

by a node for an infinite time. Packets are held based on

the following computation:

• if hd(n) ≤ hd(Rri(n, d)), node n holds the packet,

• otherwise, node n forwards the packet according to

Rri , where ri ∈ {1, 2} is computed locally by n.

Theorem 2. Let R1 and R2 be two routing protocols

that alternate in finite time, V be a set of nodes and

d ∈ V a destination. If there exists a function hd :
V → IN such that hd(d) = 0 and ∀n ∈ V \{d},
hd(n) > min{hd(R1(n, d)), hd(R2 (n, d))}, and if the

routing protocols alternate after a finite time, then R1

and R2 are delayable using function hd.

Proof: Notice that this proof is similar to the proof

of Theorem 1, but takes into account the fact that a node

can hold a packet.

Let d ∈ V be a destination. Let us suppose that there

exists a function hd satisfying the property hd(d) = 0
and ∀n ∈ V \{d}, hd(n) > min{hd(R1(n, d)), hd

(R2(n, d))}. We aim to show that every path starting

from an arbitrary node n reaches d in a finite number of

hops, without generating routing loops (holding a packet

in a node is not considered as a routing loop). In other

words, we aim to show that for every sequence of routing

decisions (ri) (with ri ∈ {1, 2} for every i), if (ri) is

long enough and does not contain an infinite sequence

of consecutive identical values (as the protocols alternate

after a finite time), then the unique path starting from n

and following the routing decisions (ri) reaches d in a

finite number of hops, without generating a routing loop.

Let us consider that (ri) is a sequence of routing

decisions that is long enough, and which does not contain

an infinite sequence of consecutive identical values. We

define the path following the routing decisions (ri) by

p = (n0, n1, n2, . . . ), with n0 = n and for every node

n ∈ V \{d}:

• if hd(n) ≤ hd(Rri(n, d)), then ni holds the packet,

and thus ni+1 = ni (which is not a routing loop).

• otherwise, ni+1 = Rri(ni, d).

By construction, p is unique (as (ri) is fixed).
Let us show first that:

• if p is infinite, all the nodes of p belong to V \{d},
• if p is finite, all the nodes of p, except the last one,

belong to V \{d}.

If p is infinite, to every node ni of p corresponds another

node ni+1 in p, which is possible only if ni ∈ V \{d}.
Thus, all the nodes of p belong to V \{d}. If p is finite,

we can write it as (n0, n1, n2, . . . , nk). By construction,

for every i ∈ [0; k−1], ni+1 does exist, which means that

ni ∈ V \{d}. nk does not belong to V \{d} because nk+1

is not defined (notice that the sequence (ri) was chosen

long enough).

Now, let us show that p is finite. By contradiction, we

suppose that p is infinite. As p is infinite, p is built from

nodes that belong to V \{d}. We can build the infinite

sequence s = (hd(n0), hd(n1), hd(n2), . . .) by applying

hd at each node of p. Note that for each ni of p, as ni

belongs to V \{d}, we have hd(ni+1) ≤ hd(ni), because:

• if hd(ni) ≤ hd(Rri(ni, d)), the packet is held, thus

ni+1 = ni and hd(ni+1) = hd(ni).
• otherwise, we have hd(ni) > hd(Rri(ni, d)), which

means that hd(ni+1) = hd(Rri(ni, d)) < hd(ni).

The sequence s is thus decreasing (although not strictly).

However, it only keeps the same value when the packet

is held by a node. We aim to show now that s does

not remain constant for an infinite time, which means

that if ni decides to hold the packet, there exists a

j = i + α, with α > 0 and α finite, such that

hd(nj) > hd(Rrj (nj , d)). As the protocols alternate in

finite time, (ri) does not contain an infinite sequence of



consecutive identical values. Let us choose the smallest

j = i+α, with α > 0 and α finite, such that rj 6= ri. As j

is the smallest valid integer, ni = ni+1 = . . . = nj . As ni

has decided to hold the packet, hd(ni) ≤ hd(Rri(ni, d)).
As ni = nj , we have hd(nj) ≤ hd(Rri(nj , d)). As

rj 6= ri, we have {ri, rj} = {1, 2}. Furthermore, we have

hd(nj) > min{hd(R1(nj , d)), hd(R2(nj , d))} by defini-

tion of hd, which means that hd(nj) > hd(R1(nj , d)) or
hd(nj) > hd(R2(nj , d)) (notice that 1 and 2 have been

replaced by i and j). In other words, we can say that

hd(nj) > hd(Rri(nj , d)) or hd(nj) > hd(Rrj (nj , d)).
It is the second hypothesis that is true, because we said

that hd(nj) ≤ hd(Rri(nj , d)). The sequence s is thus

decreasing but does not remain constant for an infinite

time. However, s takes its values in IN . It is not possible

to have an infinite sequence decreasing, constant only for

a finite time, and having its values in IN : the hypothesis of

having p infinite is thus wrong, and p is a finite sequence.

Now that p is shown to be finite, let us show that p

reaches d. As p is finite, all the nodes of p, except the

last one nk, belong to V \{d}. nk is such that nk ∈ V

and nk does not belong to V \{d}. nk is thus equal to d.

Now, as we know that p is finite, and that p reaches

d, let us show that p is free of routing loop. First,

note that if there exists x such that nx = nx+1 in

p, the packet has been held by nx. By contradiction,

let us suppose that the packet was not held by nx.

We have thus hd(nx) > hd(Rrx(nx, d)) = hd(nx+1).
However, nx = nx+1, thus hd(nx) = hd(nx+1), which is

contradictory. We have thus shown that the only way that

a node nx is equal to a node nx+1 in p is when nx holds

the packet. Let us show now that a node forwards at most

once a given packet in order to reach the destination. By

contradiction, we can assume that there exists x < y < z

such that nx 6= ny (because nx did not hold the packet)

and such that nx = nz . Let us build the sequence s =
(hd(n0), hd(n1), hd(n2), . . . , hd(nx), . . . , hd(ny), . . . , hd

(nz)). We consider two cases:

• If nz = nk, then nz = d. Thus, nx = d, and the

next hop of x is not defined. p cannot pass through

ny , which is a contradiction.

• If nz 6= nk, then p does not end in nz , and thus every

node in p (from n0 to nz) belongs to V \{d}. Thus,
for every node ni ∈ (n0, n1, n2, . . . , nx, . . . , ny,

. . . , nz), we have hd(ni+1) ≤ hd(Rri(ni, d)) ≤
hd(ni). Furthermore, as nx did not hold the packet,

we have hd(nx+1) < hd(nx), which means that

hd(ny) < hd(nx) (because hd(nx+1) ≤ hd(ny)).
Similarly, as ny 6= nz (because ny 6= nx and

nx = nz), hd(nz) < hd(ny). Thus, we have

hd(nz) < hd(nx). However, nz = nx so hd(nz) =
hd(nx). We have a contradiction.

In both cases, we obtain a contradiction. The hypothesis

that p passes through the same node more than once is

not valid.

We have shown that the unique path p reaches d in a

finite number of hops without yielding to a routing loop.

R1 and R2 are thus delayable by hd.

Property 3. The tree routing protocol and any shortest

path protocol (for example, the OLSR protocol) are de-

layable if the distance on the tree dt (or the length of the

shortest path dsp), is used as the holding function.

Property 4. The shortcut routing protocol and any short-

est path protocol (for example, the OLSR protocol) are

delayable if dsp (or dt) is used as a holding function.

More generally, if the distance function of one of the

protocol is used as the holding function, the protocol is

delayable with any other protocol.

An approach based on delayable protocols has two

main drawbacks. First, a packet might be held by a node

for a long time. Second, it might be difficult to find (or

compute at the MAC sub-layer) a holding function for

complex protocols. If the holding function does not satisfy

Theorem 2, loops can occur.

C. Step 3: Combined Routing Approach

The combined routing approach consists in combining

a schedule of two arbitrary protocols R1 and R2 with

a third, known protocol R∗ (and namely, whose distance

function is known). Whereas it might be difficult to find a

holding function to make the pair (R1,R2) delayable, the
task becomes easier for the pairs (R1,R2 ∪ R∗), where
∪ denotes the combination of two routing protocols2.

The combination of a primary routing protocolRi with

a secondary routing protocol R∗ is as follows. Let V be a

set of nodes, d ∈ V be a destination node and f∗

d : V →
IN be a function such that f∗

d (d) = 0 and ∀n ∈ V \{d},
f∗

d (R
∗(n, d)) < f∗

d (n). f
∗

d is assumed to be known as

R∗ is not arbitrary. To route a packet to destination d, a

node n determines whether f∗

d (Ri(n, d)) < f∗

d (n) or not.
If it is the case, the packet is sent according to Ri. If not,

the packet is sent according to R∗.

Theorem 3. Let R1, R2 and R∗ be three routing proto-

cols, such that R1 and R2 ∪R∗ alternate in finite time.

Let V be a set of nodes and d ∈ V a destination. Let

f∗

d : V → IN such that f∗

d (d) = 0 and ∀n ∈ V \{d},
f∗

d (R
∗(n, d)) < f∗

d (n). Then, R1 and R2 ∪ R∗ are

delayable using function f∗

d .

Proof: According to Theorem 2, we simply have to

show that ∀n ∈ V \{d}, min{f∗

d (R1(n, d)), f
∗

d ((R2 ∪
R∗)(n, d))} < f∗

d (n). By definition of the combination,

to route a packet to destination d according to R2 ∪R∗,

a node n determines whether f∗

d (R2(n, d)) < f∗

d (n) or

not. If f∗

d (R2(n, d)) < f∗

d (n), n routes the packet ac-

cording to R2(n, d). In this case, f∗

d ((R2∪R∗)(n, d)) =
f∗

d (R2(n, d)) < f∗

d (n). If f∗

d (R2(n, d)) ≥ f∗

d (n), n

routes the packet according to R∗. In this case, f∗

d ((R2∪
R∗)(n, d)) = f∗

d (R
∗(n, d)) < f∗

d (n), by definition of f∗

d .

In the two cases, we have f∗

d ((R2 ∪R∗)(n, d)) < f∗

d (n).
Thus,min{f∗

d (R1(n, d)), f
∗

d ((R2∪R
∗)(n, d))} < f∗

d (n),
which completes the proof.

The combined routing approach uses a known routing

protocol R∗ to ensure that two arbitrary routing protocols

2or for the pairs (R1 ∪R∗,R2) or (R1 ∪R∗,R2 ∪R∗)



are delayable. R∗ is chosen such that (i) f∗

d is known

and easy to compute, (ii) the overhead of R∗ (in terms

of control packets or energy) is reasonable. R∗ can even

benefit from R2 by using the same control messages as

R2 (when possible). Thus, we propose to use the tree

routing protocol for R∗ whenever a tree topology is used

by another protocol (so that the overhead of maintaining

the tree is shared by the protocols).

V. SIMULATION RESULTS

In this section, we study the performance of our loop

removal approach when using the multi-stack architecture.

Our first aim (see Subsection V-B) is to identify the

risks of routing loops by considering a simplifying case

with the following assumptions: (1) the network is not

overloaded: the delay of packets in the routing queues

is negligible, (2) the access method sends frames in a

constant time (independently of the frame length), (3)

the medium access does not generate collisions and does

not produce interferences. These assumptions allow us to

neglect the role of the MAC sub-layer and PHY layer,

and let us concentrate on the routing protocol in order

to evaluate the number of hops that a packet travels to

reach the destination without correlating it to a delay.

Our second aim (see Subsections V-C, V-D and V-E) is

to evaluate the performance of our three-step solution.

A. Simulation Parameters

We generated random topologies by deploying nodes

randomly in a 100 m× 100 m area. The default number

of nodes is 100 and the default density is 9 (which is

obtained by using a communication range of 20 m). We

generated 1000 repetitions where a random source sends

a single packet to a random destination. We computed

the average number of hops (which is the number of

transmission attempts, including the number of times

a packet has been held by a node), from source to

destination, produced by the combination of two routing

protocols R1 and R2. As we considered only the number

of hops, we decided to implement the routing protocols

in a stand-alone simulator.

The basic protocols we used are: the tree protocol, the

shortcut protocol, and the OLSR protocol.

In the following, we call a period the time duration for

which one pair of routing and MAC protocol is active.

A schedule is composed of several periods, which means

several routing protocols. In our simulations, we assume

that a schedule contains two different routing protocols.

We also consider that the time unit of a period is the time

required for a node to send one packet to its next hop,

and we assume that this time is constant3.

We also consider that an infinite loop occurs in the

network when a packet can not reach the destination

within 1000 hops. The period at which the source starts

sending packets is determined randomly to model the fact

that packets are generated independently of the schedule.

3In practice, this time depends on the access method and on the
network load.

B. Quantification of Routing Loops

In order to show the impact of the MAC sub-layer on

the number of routing loops, we consider first a perfect

MAC (but unrealistic: without collisions nor loss). Then,

we consider a more realistic random access method that

fails some transmission attempts.
1) Perfect Medium: In this part, we consider that the

medium is perfect: no frame is dropped due to collisions

or bad propagation conditions. All the frames have the

same length and the access method is deterministic.

We consider two schedules: the tree protocol with a

shortest path protocol (t-sp) and the shortcut protocol with

a shortest path protocol (sc-sp). We did not consider the

tree protocol with the shortcut protocol, nor two shortest

path protocols, as they are compatible (see Properties 1

and 2) and thus cannot produce loops.

Figure 3 shows the percentage of infinite routing loops

as the duration of periods varies from 1 to 5 hops, with

a density of about 9 neighbors. When the period is equal

to 1 hop, the routing protocol changes at each trans-

mission. When the period increases, the probability that

a packet enters an infinite loop decreases. Indeed, with

long periods, packets have a high probability to reach the

destination while being processed by the same protocol.

The percentage of routing loops is significant for short

periods. For instance, 60% of the 1000 generated packets

enter an infinite routing loop when the tree protocol and

a shortest path protocol coexist, with a period duration of

1 hop. However, it is important to note that even for long

periods, where infinite routing loops are infrequent, they

can still negatively impact the network performance.
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Figure 3. The percentage of routing loops decreases with the duration
of periods.
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Figure 4. The percentage of loops increases when slow protocols are
used for long periods.

Figure 4 shows the percentage of routing loops when

the periods are not equal for all the routing protocols.



Instead of only considering the case where p1 is equal to

p2 (which is denoted by 50%/50%), we also consider the

case where p1 = 2p2 (which is denoted by 67%/33%).

In both cases, the duration of p1 + p2 is constant and

is equal to six hops. The highest percentage of routing

loops occurs when the worst protocol in terms of number

of hops (either the tree protocol or the shortcut protocol)

is given the longest period.

Figure 5 shows the percentage of routing loops as the

network density varies from 5 to 33 neighbors per node,

with periods lasting for three hops. The percentage of

routing loops decreases as the density increases, as nodes

have more routing options, and consequently packets are

able to reach the destination faster.

2) Imperfect Medium: In this part, we consider that

the medium is imperfect: some frames might be dropped

due to collisions or bad propagation conditions. Stochastic

MAC protocols are included in this case. To model the

impact of frame loss, we varied the probability of suc-

cessful transmissions at the MAC sub-layer. A successful

transmission rate of 1 corresponds to a perfect medium.

The duration of a period becomes the number of attempts

to access the medium, and is set to five. Retransmitting

a lost frame requires a new transmission attempt. With

this setup, infinite routing loops are unlikely because of

the randomness of the forwarding. Indeed, for a infinite

routing loop to occur, a frame has to reach several

times the same node, and to be forwarded each time in

the same way (that is, with the same routing protocol).

However, because of the imperfect medium, it is likely

that some transmission attempts will fail, thus the routing

protocol might change for some transmission attempts,

which changes the way the frame is forwarded. However,

the number of hops experienced by the frames might still

be large. Thus, the following simulations focus on the

average number of hops rather than on the percentage of

routing loops.

Figure 6 shows the average number of hops to reach the

destination as a function of the successful transmission

rate, for several protocols. As expected, the number of

hops decreases when the successful transmission rate

increases. The tree protocol is consistently producing the

largest number of hops. Shortest path protocols produce

the smallest number of hops. The shortcut protocol has an

intermediate number of hops. The figure also shows three

schedules: the tree protocol with the shortcut protocol,

represented by t-sc, the tree protocol with a shortest path

protocol, represented by t-sp, and the shortcut protocol

with a shortest path protocol, represented by sc-sp. For

schedule t-sc, the average number of hops is intermediate

between the ones produced by R1 and by R2. For

schedule t-sp, the number of hops is much closer to the

number of hops produced by the tree protocol (which

is the protocol producing the largest number of hops)

than to the number of hops produced by the shortest

path protocol, especially when the successful transmission

rate is low. Schedule sc-sp has an even worse behavior:

the resulting number of hops is on average higher than
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Figure 5. The percentage of routing loops decreases as the network
density increases.
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Figure 6. The average number of hops decreases with the successful
transmission rate.

the number of hops produced by the shortcut protocol.

This can be explained by the presence of routing loops

(although not infinite).

In the following of this section, we show how our

proposed 3-step solution impacts the number of hops.

C. Step 1: Compatible Routing Protocols

Figure 7 shows the average number of hops to reach

the destination as the density increases, for compatible

protocols. Recall that it is not possible to produce a

loop with the two chosen schedules. Thus, the average

number of hops produced by schedule t-sc (respectively

by schedule sp-OLSR) is bounded by the average number

of hops produced by the tree and shortcut (resp. shortest

path and OLSR) protocols. The number of hops decreases

as the density increases: the more neighbors a node has,

the smaller is the path to the destination.
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Figure 7. Average number of hops as a function of network density.

D. Step 2: Delayable Routing Protocols

Figure 8 shows the average number of hops as a

function of the network density, when using delayable



routing protocols, and with dsp as a holding function.

We consider that the number of transmission attempts

(and therefore, the number of hops) increases by 1 every

time a node decides to hold a packet. This approach

does not yield to routing loops. However, the number

of hops might exceed the number of hops computed by

the worst protocol used alone (which is the tree routing

protocol in our case). This is due to the fact that every

node computes the distance from its next hop to the

destination by using the holding function and the current

active routing protocol. If the distance computed by the

holding function is the smallest, the node holds the packet

and wait until the next routing protocol becomes active,

which increases the number of hops.
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Figure 8. Average number of hops as a function of the network density,
using dsp as a holding function.

E. Step 3: Combined Routing Protocols

The tree protocol is used as the R∗ protocol, and is

combined with R2 only (to save energy during R1). The

resulting schedule is modeled by (R1,R2∪R∗). No loop

can appear in the network with such schedules.

Figure 9 shows the average number of hops in terms

of the network density for our combined approach, for

several schedules. The average number of hops for our

combined approach decreases as the network density in-

creases. On average, the number of hops for our combined

approach is between the number of hops of the two

protocols used in the schedule. Moreover, in our simu-

lations, the number of hops for our combined approach

was always smaller than the largest number of hops of

R1 and R2.
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Figure 9. Average number of hops as a function of network density,
with our combined approach, for periods of 3 hops.

VI. CONCLUSION

In order to mitigate the problem of providing several

QoS in a network, several pairs of routing and MAC

protocols can operate in a scheduled manner in the same

network. However, loops can occur if queue exchange is

allowed between these pairs. In this paper, we quanti-

fied the number and impact of loops in a large variety

of scenarios. Then, we proposed a 3-step solution that

can be applied to remove loops according to a local

decision. Our solution classifies the routing protocols in

three categories: compatible routing protocols that cannot

yield loops, delayable routing protocols that allow nodes

to hold packets in order to avoid loops, and combined

routing protocols that allow arbitrary combinations of

routing protocols with a known, specific routing protocol.

We prove that our solution cannot yield to loops in

the network. Then, we proved its performance through

extensive simulations.
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des Recherches” (HDR) degree respectively
in 1979 and 2001 both at Université Blaise
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”Réseaux et Protocoles” of the Computer Science Laboratory of Univer-
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