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Submitted to the Annals of Applied Probability

SUPPLEMENT TO “WEIGHTED MULTILEVEL
LANGEVIN SIMULATION OF INVARIANT MEASURES”

By Gilles Pagès and Fabien Panloup

This document contains several postponed proofs of the article “Weighted
Multilevel Langevin Simulation of Invariant Measures”.

1. Proof of [PP18, Lemma 2.1]. Prior to the proof of Lemma 2.1,
we need to prove this first technical lemma which will be used to estimate in
a precise way the coefficients W̃R+1 and W̃R+2 involved in the asymptotic
mean square error of the ML2Rgodic estimator in Theorems 2.1 and 2.2
of [PP18].

LEMMA 1.1. Let R ≥ 2 be an integer.and let (xr)r=1,...,R be pairwise
distinct real numbers. Then the unique solution (yr)r=1,...,R to the solution
to the R×R-Vandermonde system

R∑
r=1

x`−1r yr = c`−1, ` = 1, . . . , R,

is given by

(1.1) yr =

∏R
s=1,s 6=r(xr − c)∏R
s=1,s 6=r(xr − xs)

.

Moreover,

R∑
r=1

yrx
R
r = cR −

R∏
r=1

(c− xr) and(1.2)

R∑
r=1

yrx
R
r = cR +

(
R∑
r=1

xr + c

)
R∏
r=1

(c− xr).(1.3)

Proof. The above Vandermonde system Vand(xr, r = 1 : R)w = [0`−1]`=1,R

can be explicitly solved by the Cramer formulas since its right hand side is
of the form [c`−1]1≤`≤R for some c∈ R. Namely

yr =
det(Vand(x1, . . . , xr−1, c, xr+1, . . . , xR))

det(Vand(xs, s = 1 : R))
, r = 1, . . . , R
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(the column vector [c`−1]1≤`≤R replaces the rth column of the original Van-
dermonde matrix). Then, elementary computations show that it yields the
announced solutions.

To compute the next two sums, we start from the following canonical
decomposition of the rational fraction

1∏R
r=1(X −

1
xr−c)

=
R∑
r=1

1

(X − 1
xr−c)

∏
s 6=r(

1
xr−c −

1
xs−c)

.

Setting X = 0 yields after elementary computations

R∑
r=1

yr(xr − c)R = (−1)R
R∏
r=1

(xr − c).

Now, using that (yr)r=1,...,R solves the above Vandermonde system, we get

R∑
r=1

yr(xr − c)R =

R∑
r=1

yr

R∑
k=0

(
R
k

)
(−1)R−kxkrc

R−k

=
R∑
k=0

(
R
k

)
(−1)R−kcR−k

R∑
r=1

yrx
k
r︸ ︷︷ ︸

= ckif k<R

=
R∑
r=1

yrx
R
r + cR

((
1− 1

)R − 1
)

so that

R∑
r=1

yrx
R
r = cR − (−1)R

R∏
r=1

(xr − c) = cR −
R∏
r=1

(c− xr).

The second identity follows likewise by differentiating the above rational
fraction with respect to X and then setting X = 0 again.

Proof of [PP18, Lemma 2.1]. (a) We introduce the auxiliary variables
and parameters

(1.4) Wr =

(
q1
qr+1

)a Wr+1

M r−1 , xr = M−(r−1)
(

q1
qr+1

)a
, r = 1, . . . , R− 1.

Then (Wr)1≤r≤R−1 is solution to the system (2.17) of [PP18] if and only if
(Wr)1≤r≤R−1 is solution to

R−1∑
r=1

Wrx
`−1
r =

1

1−M−`
, ` = 1, . . . , R− 1.
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Expanding
1

1−M−`
=
∑
k≥0

1

Mk

1

Mk(`−1) yields by linearity of the above

system that it suffices to solve the sequence of (R−1)×(R−1)-Vandermonde
systems.

(Vk) ≡
R−1∑
r=1

Wk,rx
`−1
r = M−k(`−1), ` = 1, . . . , R− 1, k ≥ 0.

As the xr are pairwise distinct, (Vk) has a unique solutions given by

Wk,r =
R−1∏

s=1,s 6=r

xs −M−k

xs − xr
, r = 1, . . . , R− 1.

with the usual convention
∏
∅ = 1 Consequently, for every r = 2, . . . , R,

Wr =
∑
k≥0

1

Mk
Wk,r =

∑
k≥0

1

Mk

R−1∏
s=1,s 6=r

xs −M−k

xs − xr
, r = 1, . . . , R− 1.

Coming back to the weights of interest finally yields the expected formula.
One derives from the definition of W̃R+1 (see (2.18) of [PP18]), using the

auxiliary variables, that

W̃R+1 = q−aR1

(
1 + (M−R − 1)W̃R

)
with W̃R =

R−1∑
r=1

Wrx
R−1
r

and the xr are given by (1.4). Following the lines of (a), we derive that

W̃R =
∑
k≥0

1

Mk
W̃R,k

where the identity (1.2) established in the above lemma 1.1 yields

W̃R,k = M−k(R−1) −
R−1∏
r=1

(M−k − xr).

Finally

W̃R+1 = q−aR1

1 + (M−R − 1)
∑
k≥0

1

MkR

(
1−

R−2∏
r=0

(
1−Mk−r

( q1
qr+2

)a) .
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Noting that
∑

k≥0
1

MkR = 1
1−M−R completes the proof this claim. The com-

putation of W̃R+2 follows likewise, starting from the identity (1.3).

(b) In the starting system (2.17) of [PP18] for the weights q
a(`−1)
r no longer

depends on r and can be cancelled in each equation. This leads to the system

W1 = 1, 1 + (M−(`−1) − 1)
R∑
r=2

M−(r−2)(`−1)Wr = 0, ` = 2, . . . , R.

After a standard Abel transform, we get that Wr = wr + · · · + wR where
the wr are solution to the Vandermonde system

R∑
r=1

M−(r−1)(`−1)wr = 0`−1, ` = 1, . . . , R.

Note that these weights corresponds to those coming out when dealing with
ML2R for regular Monte Carlo (see [LP17]) under a weak error expansion
condition at rate α = 1.

As for the boundedness, first note that the “small” weights wr read wr =
bR−r/ar, r = 1, . . . , R, with

ar =
r∏

k=1

(1−M−k) and br = (−1)rM−
r(r−1)

2 a−1r .

One straightforwardly checks that ar ↓ a∞ =
∏
k≥1(1 − M−k) > 0 and

B∞ =
∑

r≥1 |br| < +∞. As a consequence

∀R∈ N∗, ∀ r∈ {1, . . . , R}, |W(R)
r | ≤

B∞
a∞

< +∞.

Finally, the same Abel transform shows that

W̃R+i = Ra(R+i)
R∑
r=1

M−(r−1)(R+i−1)wr, i = 1, 2,

and one concludes by formula (1.2) and (1.3) from Lemma 1.1. 2

2. An additional bias term. In this part of the appendix, we focus
the bias induced by the approximation

Γ
(`)
nr

Γnr
≈ q−a`r

Γ
(`)
n

Γn
(with γn = γ1n

−a, a ∈ (0, 1)),

that we use to build some universal weights (W
(R)
r )r=1,...,R (by universal, we

mean that they do not depend on n). We have the following lemma:
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LEMMA 2.2. Assume that γn = γ1n
−a with a ∈ (0, 1).

(a) Let χ ∈ (0, 1) and L ∈ N such that La < 1. Then, for every n ≥ n0 =

d6
1

1−a
χ e,∣∣∣∣∣∣

Γ
(`)
bχnc

Γbχnc
− χ−a(`−1)Γ

(`)
n

Γn

∣∣∣∣∣∣ ≤ 3
(

1 +
1− a

1− a(R+ 1)

) γ`−11

n1−a
χ−a`

χ1−a − 3na−1

≤
(

6
2− aL
1− aL

γ`−11 χ−1−a(`−1)
)

1

n1−a
.(2.5)

(b) Set

Bias(1)(a,R, q, n)

=
R∑
`=2

[[Γ
(`)
n1

Γn1

− q−a(`−1)1

Γ
(`)
n

Γn

]
W1+

R∑
r=2

mr,`Wr

[Γ
(`)
nr

Γnr
− q−a(`−1)r

Γ
(`)
n

Γn

]]
c`

where mr,` = (M−(`−1)− 1)M−(r−2)(`−1). We have:

|Bias(1)(a,R, q, n)| ≤ Ca,q,r
n1−a

,

where

Ca,q,r = 6
2− a(R+ 1)

1− a(R+ 1)
‖W‖∞ q−1∗

R∑
`=2

(γ1q
−a
∗ )`−1

[
1 +

R∑
r=2

mr,`

]
|c`|

with q∗ = min1≤r≤R qr and ‖W‖∞ = supr∈{1...,R},R≥2W
(R)
r .

Furthermore, if q1 = . . . = qR = 1
R , then Bias(1)(a,R, q, n) = 0.

REMARK 2.1. Note that since a < 1/2, n1−a = o(n−
1
2 ) so that this

term is negligible at the first and second orders of the expansions obtained
in this paper. Finally, it is worth noting that this term is equal to 0 when
the qi are equal to 1

R , case where, in addition, the Wr, r = 1 . . . , R have
a simple closed form given by formulas (2.22) and (2.23) of [PP18, Lemma
2.1].

Proof. First, we derive by a comparison argument with integrals
∫ n
0 x
−adx

and
∫ n+1
1 x−adx that

(2.6)
n1−a − 2

1− a
≤

n∑
k=1

k−a ≤ n1−a

1− a
, n ≥ 1, a∈ (0, 1).
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Elementary computations then show that, for every a∈
(
0, 1

R

)
, χ∈ (0, 1),

and every n ≥ 1, every integer `∈ {1, . . . , R+ 1}∣∣∣∣∣∣
Γ
(`)
bχnc

Γbχnc
− χ−a(`−1)Γ

(`)
n

Γn

∣∣∣∣∣∣ ≤ 3γ`1
Γbχnc

(
1

1− a`
+
χ−a`

1− a

)

Using that u 7→ u1−a is (1 − a)-Hölder, we derive from the left inequality

in (2.6) that Γbχnc ≥ γ1
(χn)1−a−3

1−a so that, for every n ≥ 6
1

1−a
χ ,∣∣∣∣∣∣

Γ
(`)
bχnc

Γbχnc
− χ−a(`−1)Γ

(`)
n

Γn

∣∣∣∣∣∣ ≤ 3
(

1 +
1− a

1− a(R+ 1)

) γ`−11

n1−a
χ−a`

χ1−a − 3na−1

≤ 6
2− a(R+ 1)

1− a(R+ 1)

γ`−11

n1−a
χ−1−a(`−1).(2.7)

Now, since ‖W‖∞ < +∞ (see [PP18, Lemma 2.1(b)]), we deduce by plugging

the above inequality in Bias(1)(a,R, q, n) that, for every n ≥ 6
1

1−a
q∗

,

|Bias(1)(a,R, q, n)|

≤ 6
2− a(R+ 1)

1− a(R+ 1)

1

n1−a
‖W‖∞ q−1∗

R∑
`=2

(γ1q
−a
∗ )`−1

[
1 +

R∑
r=2

mr,`

]
|c`|.

When qr = 1
R , r = 1, . . . , R,

Bias(1)(a,R, q, n) =
R∑
`=2

[
Γ
(`)
n1

Γn1

− q̄−a(`−1)1

Γ
(`)
n

Γn

](
W1+

R∑
r=2

Wrmr,`

)
c` = 0

since W is solution to (2.17) of [PP18].

3. Proof of of [PP18, Proposition 7.6]. (i) Setting T = 1
ρ log(1/ε)

leads to
|E[f(XT )]− ν(f)| ≤ c1ε.

Thus, for such a T , it remains, for a given ε to show that this is possible to
build Υ(T,R,N) in such a way that ‖Υ(T,R,N)−E[f(XT )]‖2 ≤ Cε (where
C is independent of ε) with a cost of computation proportional to ε−2 log(ε2)
when β = 1 and to ε−2 when β > 1. This property is now classical but in
our context in the Finite Horizon Multilevel literature (see e.g. [Gil08]), but
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here, we certainly have to take into account the dependence in T : we recall
that

‖Υ(T,R,N)− E[f(XT )]‖22 =
(
mh21−R,T

)2
+

R∑
r=1

Var(Y
(r)
1 )

Nr

where mh,T = E[f(X̄h
T )]−E[f(XT )]. Under the assumptions of the proposi-

tion, we have
|mh21−R,T | ≤ c2h21−R

so that R = (log 2)−1 log(1/ε) leads to |mh21−R,T | ≤ c̃2ε with c̃2 = 2c2h. Let
us now consider the variance component in terms of the computational cost.
Optimizing the choice can be made by minimizing the effort E(T,R, h,N),
i.e. the product of the cost of simulation by the variance. Here,

E(T,R, h,N) =
T

h

(
N1 + 3

R∑
r=2

2r−2Nr

)(
R∑
r=1

Var(Y
(r)
1 )

Nr

)
.

The equality case in the Schwarz Inequality shows that this above product
is minimal when the terms in both sums are proportional, i.e. when there
exists λ> 0 such that

∀r ∈ {1, . . . , R}, 2rNr = λ
Var(Y

(r)
1 )

Nr
⇐⇒ Nr =

√
λ2−

r
2

√
Var(Y

(r)
1 ).

Hence,
R∑
r=1

Var(Y
(r)
1 )

Nr
= λ−

1
2

R∑
r=1

2
r
2

√
Var(Y

(r)
1 ).

Under the third assumption(on the variance),

√
Var(Y

(r)
1 ) ≤ (1+2

β
2 )c3h

β
2 2−

β(r−1)
2

so that

R∑
r=1

Var(Y
(r)
1 )

Nr
≤ (1 + 2

β
2 )c3(2h)

β
2 2

1
2λ−

1
2

R∑
r=1

2(r−1)
1−β
2

= (1 + 2
β
2 )c3(2h)

β
2 2

1
2λ−

1
2

2R
1−β
2 − 1

2
1−β
2 − 1

≤ Cβ,hλ
− 1

2
(
2R

1−β
2 1β 6=1 +R1β=1

)
(with the usual convention 1R−1

1−1 = R when β = 1). We may now fix λ in such
a way that the variance contribution to the quadratic error be proportional
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to ε. Up to a constant only depending on h and β, we have

R∑
r=1

Var(Y
(r)
1 )

Nr
. ε2 if

√
λ . ε2Cβ,hλ

− 1
2
(
2R

1−β
2 1β 6=1 +R1β=1

)−1
.

The above property combined with what precedes implies that the global
MSE is bounded by Cε2 if we set

Nr =

{
2−r

β+1
2 ε−2 log(1/ε) if β = 1

2−r
β+1
2 ε−2 if β > 1.

To complete the proof of this first part, it remains to note that with these
choices of T , R and Nr, the computational cost for the simulation is equal
to

T

h

(
N1 + 3

R∑
r=2

2r−2Nr

)
.

{
α−1ε−2 log3(1/ε)) if β = 1

α−1ε−2 log(1/ε)) if β > 1.

(ii) We have to prove that the three conditions of (i) hold true under (Cs).
First, applying Itô’s formula to e2αt‖Xx

t −X
y
t ‖2S , shows, owing to Assump-

tion (Cs), that
E[‖Xx

T −X
y
T ‖

2
S
] ≤ ‖x− y‖2

S
e−2αT .

Using the Lipschitz continuity of f , the stationarity property and the pre-
vious inequality yield∣∣E[f(Xx

T )]− ν(f)
∣∣ =

∣∣∣ ∫
Rd

E[f(Xx
T )− f(Xy

T )]ν(dy)
∣∣∣

≤ [f ]1

∫
Rd

√
E[‖Xx

T −X
y
T ‖2S ]ν(dy)

≤ [f ]1e
−αT

∫
Rd
‖x− y‖Sν(dy)

where [f ]1 denotes the Lipschitz constant of f .

Assumption (c) is also obtained by exploiting the contractive properties
derived from (Cs). The proof follows the lines of [Lem05], Theorem IV.1
applied with p = 2 and the function V (x) := |x|2S . This yields in particular
that β = 2 and the time-independence of c3. Note that finally, since β = 2
and f is Lipschitz, we can control the weak error as follows:

|E[f(XT )]− E[f(ξh
T

)]| ≤ [f ]1

√
E[‖XT − ξhT ‖S

2
] ≤ c3[f ]1h.
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