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SUPPLEMENT TO "WEIGHTED MULTILEVEL LANGEVIN SIMULATION OF INVARIANT MEASURES"

1. Proof of [PP18, Lemma 2.1]. Prior to the proof of Lemma 2.1, we need to prove this first technical lemma which will be used to estimate in a precise way the coefficients W R+1 and W R+2 involved in the asymptotic mean square error of the ML2Rgodic estimator in Theorems 2.1 and 2.2 of [START_REF] Pagès | Weighted multilevel langevin simulation of invariant measures[END_REF].

LEMMA 1.1. Let R ≥ 2 be an integer.and let (x r ) r=1,...,R be pairwise distinct real numbers. Then the unique solution (y r ) r=1,...,R to the solution to the R × R-Vandermonde system R r=1

x -1 r y r = c -1 , = 1, . . . , R, is given by

(1.1) y r = R s=1,s =r (x r -c) R s=1,s =r (x r -x s ) . Moreover, R r=1 y r x R r = c R - R r=1 (c -x r ) and (1.2) R r=1 y r x R r = c R + R r=1 x r + c R r=1 (c -x r ).
(1.3) Proof. The above Vandermonde system Vand(x r , r = 1 : R)w = [0 -1 ] =1,R can be explicitly solved by the Cramer formulas since its right hand side is of the form [c -1 ] 1≤ ≤R for some c ∈ R. Namely (the column vector [c -1 ] 1≤ ≤R replaces the r th column of the original Vandermonde matrix). Then, elementary computations show that it yields the announced solutions.

To compute the next two sums, we start from the following canonical decomposition of the rational fraction

1 R r=1 (X -1 xr-c ) = R r=1 1 (X -1 xr-c ) s =r ( 1 xr-c -1 xs-c )
.

Setting X = 0 yields after elementary computations

R r=1 y r (x r -c) R = (-1) R R r=1 (x r -c).
Now, using that (y r ) r=1,...,R solves the above Vandermonde system, we get

R r=1 y r (x r -c) R = R r=1 y r R k=0 R k (-1) R-k x k r c R-k = R k=0 R k (-1) R-k c R-k R r=1 y r x k r = c k if k<R = R r=1 y r x R r + c R 1 -1 R -1 so that R r=1 y r x R r = c R -(-1) R R r=1 (x r -c) = c R - R r=1 (c -x r ).
The second identity follows likewise by differentiating the above rational fraction with respect to X and then setting X = 0 again.

Proof of [PP18, Lemma 2.1]. (a) We introduce the auxiliary variables and parameters

(1.4) W r = q 1 q r+1 a W r+1 M r-1 , x r = M -(r-1) q 1 q r+1 a , r = 1, . . . , R -1.
Then (W r ) 1≤r≤R-1 is solution to the system (2.17) of [START_REF] Pagès | Weighted multilevel langevin simulation of invariant measures[END_REF] if and only if

(W r ) 1≤r≤R-1 is solution to R-1 r=1 W r x -1 r = 1 1 -M -, = 1, . . . , R -1.
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Expanding 1 1 -M -= k≥0 1 M k 1 M k( -1
) yields by linearity of the above system that it suffices to solve the sequence of (R-1)×(R-1)-Vandermonde systems.

(V k ) ≡ R-1 r=1 W k,r x -1 r = M -k( -1) , = 1, . . . , R -1, k ≥ 0.
As the x r are pairwise distinct, (V k ) has a unique solutions given by

W k,r = R-1 s=1,s =r x s -M -k x s -x r , r = 1, . . . , R -1.
with the usual convention ∅ = 1 Consequently, for every r = 2, . . . , R,

W r = k≥0 1 M k W k,r = k≥0 1 M k R-1 s=1,s =r x s -M -k x s -x r , r = 1, . . . , R -1.
Coming back to the weights of interest finally yields the expected formula.

One derives from the definition of W R+1 (see (2.18) of [START_REF] Pagès | Weighted multilevel langevin simulation of invariant measures[END_REF]), using the auxiliary variables, that

W R+1 = q -aR 1 1 + (M -R -1) W R with W R = R-1 r=1 W r x R-1 r
and the x r are given by (1.4). Following the lines of (a), we derive that

W R = k≥0 1 M k W R,k
where the identity (1.2) established in the above lemma 1.1 yields

W R,k = M -k(R-1) - R-1 r=1 (M -k -x r ).
Finally

W R+1 = q -aR 1   1 + (M -R -1) k≥0 1 M kR 1 - R-2 r=0 1 -M k-r q 1 q r+2 a   .
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Noting that k≥0

1

M kR = 1 1-M -R completes the proof this claim.
The computation of W R+2 follows likewise, starting from the identity (1.3).

(b) In the starting system (2.17) of [START_REF] Pagès | Weighted multilevel langevin simulation of invariant measures[END_REF] for the weights q a( -1) r no longer depends on r and can be cancelled in each equation. This leads to the system

W 1 = 1, 1 + (M -( -1) -1) R r=2 M -(r-2)( -1) W r = 0, = 2, . . . , R.
After a standard Abel transform, we get that W r = w r + • • • + w R where the w r are solution to the Vandermonde system

R r=1 M -(r-1)( -1) w r = 0 -1 , = 1, . . . , R.
Note that these weights corresponds to those coming out when dealing with M L2R for regular Monte Carlo (see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]) under a weak error expansion condition at rate α = 1.

As for the boundedness, first note that the "small" weights w r read w r = b R -r /a r , r = 1, . . . , R, with

a r = r k=1 (1 -M -k ) and b r = (-1) r M -r(r-1) 2 a -1 r .
One straightforwardly checks that a r ↓ a ∞ = k≥1 (1 -M -k ) > 0 and

B ∞ = r≥1 |b r | < +∞. As a consequence ∀ R ∈ N * , ∀ r ∈ {1, . . . , R}, |W (R) r | ≤ B ∞ a ∞ < +∞.
Finally, the same Abel transform shows that

W R+i = R a(R+i) R r=1 M -(r-1)(R+i-1) w r , i = 1, 2,
and one concludes by formula (1.2) and (1.3) from Lemma 1.1. 2

2. An additional bias term. In this part of the appendix, we focus the bias induced by the approximation

Γ ( ) nr Γ nr ≈ q -a r Γ ( ) n Γ n (with γ n = γ 1 n -a , a ∈ (0, 1)),
that we use to build some universal weights (W (R) r ) r=1,...,R (by universal, we mean that they do not depend on n). We have the following lemma:

imsart-aap ver. 2012/08/31 file: supplement_ML2Rgodic.AAP.tex date: December 13, 2017 LEMMA 2.2. Assume that γ n = γ 1 n -a with a ∈ (0, 1).

(a) Let χ ∈ (0, 1) and L ∈ N such that La < 1. Then, for every n

≥ n 0 = 6 1 1-a χ , Γ ( ) χn Γ χn -χ -a( -1) Γ ( ) n Γ n ≤ 3 1 + 1 -a 1 -a(R + 1) γ -1 1 n 1-a χ -a χ 1-a -3n a-1 ≤ 6 2 -aL 1 -aL γ -1 1 χ -1-a( -1) 1 n 1-a . (2.5) (b) Set Bias (1) (a, R, q, n) = R =2 Γ ( ) n 1 Γ n 1 -q -a( -1) 1 Γ ( ) n Γ n W 1 + R r=2 m r, W r Γ ( ) nr Γ nr -q -a( -1) r Γ ( ) n Γ n c
where m r, = (M -( -1) -1)M -(r-2)( -1) . We have:

|Bias (1) (a, R, q, n)| ≤ C a,q,r n 1-a ,
where

C a,q,r = 6 2 -a(R + 1) 1 -a(R + 1) W ∞ q -1 * R =2 (γ 1 q -a * ) -1 1 + R r=2 m r, |c |
with q * = min 1≤r≤R q r and W ∞ = sup r∈{1...,R},R≥2 W (R) r . Furthermore, if q 1 = . . . = q R = 1 R , then Bias (1) (a, R, q, n) = 0.

REMARK 2.1. Note that since a < 1/2, n 1-a = o(n -1 2 ) so that this term is negligible at the first and second orders of the expansions obtained in this paper. Finally, it is worth noting that this term is equal to 0 when the q i are equal to 1 R , case where, in addition, the W r , r = 1 . . . , R have a simple closed form given by formulas (2.22) and (2.23) of [PP18, Lemma 2.1].

Proof. First, we derive by a comparison argument with integrals n 0 x -a dx and

n+1 1 x -a dx that (2.6) n 1-a -2 1 -a ≤ n k=1 k -a ≤ n 1-a 1 -a , n ≥ 1, a ∈ (0, 1).
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Elementary computations then show that, for every a ∈ 0, 1 R , χ ∈ (0, 1), and every n ≥ 1, every integer ∈ {1, . . . , R + 1}

Γ ( ) χn Γ χn -χ -a( -1) Γ ( ) n Γ n ≤ 3γ 1 Γ χn 1 1 -a + χ -a 1 -a
Using that u → u 1-a is (1 -a)-Hölder, we derive from the left inequality in (2.6) that Γ χn ≥ γ 1 (χn) 1-a -3 1-a so that, for every n ≥ 6

1 1-a χ , Γ ( ) χn Γ χn -χ -a( -1) Γ ( ) n Γ n ≤ 3 1 + 1 -a 1 -a(R + 1) γ -1 1 n 1-a χ -a χ 1-a -3n a-1 ≤ 6 2 -a(R + 1) 1 -a(R + 1) γ -1 1 n 1-a χ -1-a( -1) . (2.7) Now, since W ∞ < +∞ (see [PP18, Lemma 2.1(b)]
), we deduce by plugging the above inequality in Bias (1) (a, R, q, n) that, for every n ≥ 6

1 1-a q * , |Bias (1) (a, R, q, n)| ≤ 6 2 -a(R + 1) 1 -a(R + 1) 1 n 1-a W ∞ q -1 * R =2 (γ 1 q -a * ) -1 1 + R r=2 m r, |c |.
When q r = 1 R , r = 1, . . . , R,

Bias (1) (a, R, q, n) = R =2 Γ ( ) n 1 Γ n 1 - q-a( -1) 1 Γ ( ) n Γ n W 1 + R r=2 W r m r, c = 0 since W is solution to (2.17) of [PP18]. 3. Proof of of [PP18, Proposition 7.6]. (i) Setting T = 1 ρ log(1/ε) leads to |E[f (X T )] -ν(f )| ≤ c 1 ε.
Thus, for such a T , it remains, for a given ε to show that this is possible to build Υ(T, R, N) in such a way that Υ(T, R, N) -E[f (X T )] 2 ≤ Cε (where C is independent of ε) with a cost of computation proportional to ε -2 log(ε 2 ) when β = 1 and to ε -2 when β > 1. This property is now classical but in our context in the Finite Horizon Multilevel literature (see e.g. [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF]), but here, we certainly have to take into account the dependence in T : we recall that

Υ(T, R, N) -E[f (X T )] 2 2 = m h2 1-R ,T 2 + R r=1 Var(Y (r) 1 ) N r where m h,T = E[f ( Xh T )] -E[f (X T )].
Under the assumptions of the proposition, we have

|m h2 1-R ,T | ≤ c 2 h2 1-R so that R = (log 2) -1 log(1/ε) leads to |m h2 1-R ,T | ≤ c2 ε with c2 = 2c 2 h.
Let us now consider the variance component in terms of the computational cost.

Optimizing the choice can be made by minimizing the effort E(T, R, h, N), i.e. the product of the cost of simulation by the variance. Here,

E(T, R, h, N) = T h N 1 + 3 R r=2 2 r-2 N r R r=1 Var(Y (r) 1 ) N r .
The equality case in the Schwarz Inequality shows that this above product is minimal when the terms in both sums are proportional, i.e. when there exists λ> 0 such that ∀r ∈ {1, . . . , R}, 2 r N r = λ Var(Y Under the third assumption(on the variance), Var(Y

(r) 1 ) ≤ (1+2 β 2 )c 3 h β 2 2 -β(r-1) 2 so that R r=1 Var(Y (r) 1 ) N r ≤ (1 + 2 β 2 )c 3 (2h) β 2 2 1 2 λ -1 2 R r=1 2 (r-1) 1-β 2 = (1 + 2 β 2 )c 3 (2h) β 2 2 1 2 λ -1 2 2 R 1-β 2 -1 2 1-β 2 -1 ≤ C β,h λ -1 2 2 R 1-β 2 1 β =1 + R1 β=1
(with the usual convention 1 R -1 1-1 = R when β = 1). We may now fix λ in such a way that the variance contribution to the quadratic error be proportional imsart-aap ver. 2012/08/31 file: supplement_ML2Rgodic.AAP.tex date: December 13, 2017 to ε. Up to a constant only depending on h and β, we have

R r=1 Var(Y (r) 1 ) N r ε 2 if √ λ ε 2 C β,h λ -1 2 2 R 1-β 2 1 β =1 + R1 β=1 -1 .
The above property combined with what precedes implies that the global MSE is bounded by Cε 2 if we set

N r = 2 -r β+1 2 ε -2 log(1/ε) if β = 1 2 -r β+1 2 ε -2 if β > 1.
To complete the proof of this first part, it remains to note that with these choices of T , R and N r , the computational cost for the simulation is equal to

T h N 1 + 3 R r=2 2 r-2 N r α -1 ε -2 log 3 (1/ε)) if β = 1 α -1 ε -2 log(1/ε)) if β > 1.
(ii) We have to prove that the three conditions of (i) hold true under (C s ). First, applying Itô's formula to e 2αt X x t -X y t 2

S , shows, owing to Assumption (C s ), that

E[ X x T -X y T 2 S ] ≤ x -y 2 S e -2αT
. Using the Lipschitz continuity of f , the stationarity property and the previous inequality yield

E[f (X x T )] -ν(f ) = R d E[f (X x T ) -f (X y T )]ν(dy) ≤ [f ] 1 R d E[ X x T -X y T 2 S ]ν(dy) ≤ [f ] 1 e -αT R d
x -y S ν(dy)

where [f ] 1 denotes the Lipschitz constant of f . Assumption (c) is also obtained by exploiting the contractive properties derived from (C s ). The proof follows the lines of [START_REF] Lemaire | Estimation récursive de la mesure invariante d'un processus de diffusion[END_REF], Theorem IV.1 applied with p = 2 and the function V (x) := |x| 2 S . This yields in particular that β = 2 and the time-independence of c 3 . Note that finally, since β = 2 and f is Lipschitz, we can control the weak error as follows:

|E[f (X T )] -E[f (ξ h T )]| ≤ [f ] 1 E[ X T -ξ h T S 2 ] ≤ c 3 [f ] 1 h.
imsart-aap ver. 2012/08/31 file: supplement_ML2Rgodic.AAP.tex date: December 13, 2017

imsart-aap ver. 2012/08/31 file: supplement_ML2Rgodic.AAP.tex date: December 13, 2017