
HAL Id: hal-01790061
https://hal.science/hal-01790061v1

Submitted on 11 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Relaxation-based Constrained Path Planning
via Quadratic Programming

Franco Fusco, Olivier Kermorgant, Philippe Martinet

To cite this version:
Franco Fusco, Olivier Kermorgant, Philippe Martinet. Improving Relaxation-based Constrained Path
Planning via Quadratic Programming. International Conference on Intelligent Autonomous Systems,
Jun 2018, Baden-Baden, Germany. �10.1007/978-3-030-01370-7_2�. �hal-01790061�

https://hal.science/hal-01790061v1
https://hal.archives-ouvertes.fr


Improving Relaxation-based Constrained Path
Planning via Quadratic Programming

Franco Fusco1, Olivier Kermorgant1, and Philippe Martinet1,2

1 Centrale Nantes, Laboratoire des Sciences du Numérique de Nantes LS2N, France
2 Inria Sophia Antipolis, France

Abstract. Many robotics tasks involve a set of constraints that limit the
valid configurations the system can assume. Some of these constraints,
such as loop-closure or orientation constraints to name some, can be
described by a set of implicit functions which cause the valid Configu-
ration Space of the robot to collapse to a lower-dimensional manifold.
Sampling-based planners, which have been extensively studied in the last
two decades, need some adaptations to work in this context.
A proposed approach, known as relaxation, introduces constraint viola-
tion tolerances, thus approximating the manifold with a non-zero mea-
sure set. The problem can then be solved using classical approaches from
the randomized planning literature. The relaxation needs however to be
sufficiently high to allow planners to work in a reasonable amount of time,
and violations are counterbalanced by controllers during actual motion.
We present in this paper a new component for relaxation-based path
planning under differentiable constraints. It exploits Quadratic Opti-
mization to simultaneously move towards new samples and keep close
to the constraint manifold. By properly guiding the exploration, both
running time and constraint violation are substantially reduced.

1 Introduction

Sampling-based planning techniques have been successfully exploited to solve a
number of problems involving a wide variety of systems, such as mobile robots
and manipulators. They rely on the construction of a graph, either in the form of
networks [7] or trees [10], trying to approximate the valid Configuration Space
(CS) of a system. Nodes, corresponding to configurations, are generated ran-
domly and validated in a further step by checking for collision. In many situations
the sampling process and the construction of edges – which represent motions be-
tween pairs of configurations – require simple operations. Random samples can
be obtained by drawing each component independently from a given random
distribution, while local motions are often created using linear interpolation.

However, many robotics tasks impose a number of constraints on the system.
As an example, a domestic robot carrying a tray loaded with objects should
ensure that during its motion the platter remains horizontal. These constraints
cause the valid configuration space to reduce to a lower-dimensional manifold
implicitly defined by constraint equations. This introduces many challenges in



the planning problem, mainly due to the fact that classical samplers and local
routers cannot be exploited any more.

In order to deal with this added complexity, new tools have been developed
to generate and connect samples inside the constraint manifold. Early studies
focused on closed kinematic chains [17] and used the Gradient Descent algorithm
to enforce loop-closure on random invalid samples. Cortes et al. introduced the
Random-Loop Generator [4], a sampling technique designed to produce valid
samples for closed-loop mechanisms.

Planning under task-space constraints was investigated in [13], which intro-
duces Tangent Space Sampling and First-Order Retraction in order to sample
feasible joint configurations. The CBiRRT (Constrained Bi-directional Rapidly-
exploring Random Tree) planner [1] uses the Jacobian pseudo-inverse in a similar
way to the Tangent Space Sampling in order to project an infeasible sample on
the valid manifold defined by end-effector pose constraints.

Further methods have been designed to explore an approximation of the con-
straint manifold, based on high-dimensional continuation. AtlasRRT [5] focuses
on the joint construction of Atlases and of a bi-directional RRT to approxi-
mate and explore the constraint manifold. A similar strategy is exploited in [8],
defining a set of tangent spaces that locally approximate the manifold. A gener-
alized framework based on Atlases is proposed in [16]. It extends several existing
randomized planners to the exploration of constrained manifolds.

Other recent works [2,3] use the concept of relaxation, consisting in allowing
a small constraint violation during planning. This technique has been mainly
exploited to plan motions for compliant systems, using a control action during
trajectory execution to steer robot’s state close to the constraint manifold. The
planning phase is therefore solved via standard techniques from the sampling
based domain, since the valid CS is no longer a zero-measure set.

Such approach requires a trade-off between the quality of a planned path
and planning time. In fact, if the allowed constraint violation is too small, the
topology of the valid Configuration Space changes to a set of extremely narrow
passages and the planning time increases significantly. Furthermore, the tech-
nique is highly dependent on system’s compliance and on controller’s ability
to reconfigure a robot in feasible states during the motion. Thus, many practi-
cal scenarios involving rigid robots cannot exploit relaxation, since they would
require a higher quality path directly from the planning step.

In this paper we propose a new approach inspired by relaxation techniques
that allows to generate in a short amount of time paths with lower constraint
violation. The algorithm uses Quadratic Programming (QP) to locally perform
motions in the relaxed CS, with the objective of keeping configurations close
to the original manifold while extending to a random sample. We exploit the
Jacobian matrix of the constraints to locally linearize the manifold and guide
the exploration towards valid states. Thanks to smaller violation tolerances, the
necessity of a control action during execution can be reduced, allowing a broader
range of robots to exploit these techniques.



The remainder of this paper is organized as follows: differentiable constraints
and the concept of relaxed Configuration Space are introduced in Section 2.1,
while in Section 2.2 the technique used to perform local motions inside the re-
laxed CS is detailed. The router is integrated in a randomized planner, which is
presented in Section 2.3. Experiments have been conducted in simulation con-
sidering different setups, to demonstrate the generality of our approach. We
show in Section 3 that the technique allows to rapidly find paths featuring small
constraint violation.

2 Planning Algorithm

In this section we present the proposed planner based on QP to enforce a set
of constraints while planning. In order to connect two configurations, the local
router is asked to accomplish two tasks concurrently: drive the system toward a
given sample and keep the error associated with constraints as small as possible.

We formulate such problem as a Sequential Quadratic Optimization, wherein
each step aims at changing the current configuration to a sample that is nearer
to the target one, while enforcing the constraints. In addition, the displacement
of each coordinate of the configuration vector is bounded. This allows to obtain a
discrete set of intermediate configurations, and to consistently check for collisions
along the path.

We introduce the constraints in Section 2.1, while the local path planner
is detailed in Section 2.2. The connection routine is integrated in a complete
Sampling-Based Planner based on the RRT-Connect algorithm [9], which is pre-
sented in Section 2.3. It attempts to generate new samples and to connect them
to the existing graph using the local planner. Post-processing operations can
finally be performed to enhance the quality of the resulting path, if any is found.

2.1 Differentiable Constraints

We consider the case of an n-dimensional Configuration Space C ⊂ Rn, the con-

figuration vector being denoted as q =
[
q1 · · · qn

]T
. Each coordinate is assumed

to be bounded in a range [qi,min , qi,max]. A set of nc constraints is also considered,
each one being described by a differentiable function Ci : C → R (i = 1, · · · , nc).
Altogether, they define the constrained Configuration Space as:

CC = {q ∈ C : Ci(q) = 0 ∀i} (1)

To approximate the valid set defined by all constraints we introduce nc con-
stants εi > 0, which quantify the maximum allowed violation of each constraint
at a given configuration q. These constants need to be set manually by the
user depending on the required quality of the planned path. We then define the
relaxed Configuration Space CR:

CR = {q ∈ C : −εi ≤ Ci(q) ≤ εi ∀i} (2)



In order to shorten the notation in following sections, we stack all constraints

in the nc-dimensional vector e =
[
C1(q) · · · Cnc(q)

]T
. We finally recall that the

constraints are assumed to be differentiable. Under this assumption, we introduce
the Jacobian matrix Je = ∂e

∂q , whose i-th row is given by the gradient of the
constraint Ci.

The original planning problem is then formulated as finding a discrete se-
quence of points in CR which approximate a valid path in CC. The exploration,
as detailed in the following section, is guided by the use of Je to locally approx-
imate the manifold implicitly defined by the constraints.

2.2 Local Motions using Quadratic Programming

In order to evaluate a local path between two configurations, we solve sequen-
tially a number of QP problems. Our iterative algorithm exploits a single step
to perform a short motion towards the goal while keeping e as close to zero
as possible. The problem is formalized as follows: two samples qa ∈ CR (initial
configuration) and qb ∈ C (final state) are considered. During the process, we
denote with q(j) the configuration obtained after the j-th iteration (such that
q(0) = qa). We then select a proper value of q(j+1), i.e., the next way-point of
the local path from qa to qb, by solving the quadratic optimization problem

q(j+1) = arg min
x∈C

∥∥∥Q(j) x− v(j)
∥∥∥2 (

Q(j) ∈ Rm×n , v(j) ∈ Rm
)

(3)

subject to a set of p linear inequalities in the form:

A(j) x ≤ b(j)
(
A(j) ∈ Rp×n , b(j) ∈ Rp

)
(4)

We use the superscript (j) to underline that Q, v, A and b are evaluated
using only values coming from the previous iteration, thus being constant quan-
tities during the (j + 1)-th step.

In the sequel, we firstly show how to derive the expression of matrices con-
tained in (3) and (4), and afterwards the iterative scheme is detailed.

Objective and Linear Inequalities. Since the final goal of the iterative
scheme is to reach qb – or at least to move as close as possible to it – the
considered objective function should contain a term that reaches its minimum
in correspondence of the given configuration. In addition, a further contribution
should be considered to enforce the constraints. A candidate function satisfying
both requirements could be:

f
(
q(j+1)

)
=
∥∥∥q(j+1) − qb

∥∥∥2 +
∥∥∥α e(j+1)

∥∥∥2 (5)

wherein the constant parameter α ∈ Rnc×nc is a positive definite diagonal matrix
used as a weighting factor to modulate the “priority” associated to the second



task. The term e(j+1), corresponding to constraints violation evaluated at q(j+1),
is however generally non-linear in the configuration vector, and does not fit the
quadratic formulation of (3). However, the function can be linearized around
q(i), using the Jacobian matrix Je introduced in Section 2.1:

e(j+1) − e(j) ' J(j)
e

(
q(j+1) − q(j)

)
(6)

After injecting the linearized error in (5), the objective can be re-written in
a matrix form compatible with (3), thus obtaining:

Q(j) =

[
In

αJ
(j)
e

]
v(j) =

[
qb

α
(
J
(j)
e q(j) − e(j)

)]
(7)

Regarding the set of linear inequalities, we choose to reduce the search inter-
val according to two factors. The first one imposes upper and lower bounds to
each component of the configuration vector:

qmin ≤ q(j+1) ≤ qmax (8)

The second set of inequalities that is considered limits the local motion of
each coordinate to a symmetric interval centered in q(j):

q(j) − βk∆q ≤ q(j+1) ≤ q(j) + βk∆q (β ∈ (0, 1) and k ∈ N) (9)

In this relation, the entries of ∆q ∈ Rn, all being positive, correspond to the
allowed step of each coordinate, while βk is used to tune the size of the allowed
interval. This constraint is justified by two reasons. On one hand the sequential
optimization relies on the linearized error dynamics. The approximation must
be kept consistent, and therefore the configurations q(i) and q(i+1) should not
differ too much. If the new configuration is too far away from the initial one,
the constraint error could exceed the tolerance, even if the linearized one is null,
as depicted in Fig. 1. The use of the coefficient βk allows to resize the step size
during the optimization, and its use is detailed in next section. On the other
hand, in many practical planning problems some non-differentiable constraints
could be considered as well. They should be verified at each iteration, and a
large step size could bear the system to “jump” over small invalid regions. As an
example, in our approach we perform discrete collision checking, by verifying the
validity of a configuration at each iteration. With the set of inequalities (9) we
try to avoid situations wherein collisions with small obstacles are not detected.

Sequential Optimization The overall local motion routine, called QPMove,
is reported in algorithm 1. It performs a Sequential Optimization by solving at
each step a QP instance as formulated in the previous section.

An iteration starts with the evaluation of the matrices defining the objective
and the inequalities. Then, the inner cycle (between lines 8 and 16) is executed
to solve the current QP instance. The obtained solution is tested by checking



Fig. 1. From an initial configuration (orange) lying on the constraint – the black con-
tinuous line – the optimization would move the system to an invalid configuration (in
blue). If the motion is limited to the small yellow rectangle, there are higher chances
to still fall inside the relaxed region (surrounded by the dashed gray lines).

constraints violation at the new configuration. This is a fundamental step: since
constraints are linearized during the procedure, a resulting sample will only
ensure an approximation of the error to be optimized. On the other hand, a
component of the actual error could fall outside its valid range [−εi, εi]. To better
enforce bounding constraints when such situation occurs, k is incremented by
one unit and the optimization step is repeated. This shrinks the valid range of
motion, possibly leading q(j+1) to lie inside CR. Nonetheless, the procedure is
limited up to a maximum value of k, in order to prevent the algorithm from
spending too much time on some critical samples.

Algorithm 1 QP-based Motion Validator (QPMove)

1: QPMove(qa, qb) :

2: q(0) ← qa

3: f(0) ← +∞
4: f(1) ← +∞
5: for j=0 to jmax do
6: k ← 0
7: Q(j), v(j), A(j) ← INIT QP ITERATION(q(j), qb)
8: do
9: if k > kmax then

10: return “failure”, q(j)
11: end if
12: b(j) ← GET QP B VECTOR(q(j), k)

13: q(j+1), f(j+1) ← SOLVE QP INSTANCE(Q(j), v(j), A(j), b(j))

14: e(j+1) ← EVALUATE ERROR(q(j+1))
15: k ← k + 1
16: while not(−ε ≤ e(j+1) ≤ ε)

17: if IN COLLISION(q(j+1)) then
18: return “failure”, q(j)
19: end if
20: if f(j+1) ≤ fmin then
21: return “success”, qb

22: end if
23: if f(j+1) ≤ f(j) and f(j+1) ≥ f(j) −∆f(−) then
24: return “failure”, q(j + 1)
25: end if
26: q(j) ← q(j+1)

27: f(j) ← f(j+1)

28: end for
29: return “failure”, q(jmax)



The remaining part of the main loop is instead used to check the progresses
done between two iterations. As briefly mentioned in the previous section, we
propose to handle non-differentiable constraints – in particular, collision detec-
tion – by checking them at each new sample. Thus, after having solved the
current QP instance, the validity of the sample is tested. If any violation is
detected, the algorithm stops and returns the last validated sample.

A second criterion verifies instead if the objective value f (j+1) has become
small enough, and in case the algorithm is stopped since the goal configuration
has been reached with the error being sufficiently small.

A known problem of quadratic minimization is the existence of local min-
ima. To detect stationary points, the algorithm computes the difference between
the objective after subsequent iterations: if the improvement is below a given
threshold ∆f (−), the algorithm returns with the status “failure”. It must be
noted that due to the linearization the objective could get worse between suc-
cessive iterations, and thus local minima are checked only if the objective is
improving.

Since a proper tuning of the objective thresholds could be hard in practice,
a maximum number of iterations is exploited as the last strategy to prevent the
routine to waste too much computation time.

The proposed motion component requires more computation efforts and
longer run time compared to the simpler technique of linear interpolation, usually
exploited in the relaxation context. Nonetheless, its ability of following constraint
manifold’s curvature proved to effectively counter-balance the drawbacks. Fig. 2
shows some comparative examples in a 2-Dimensional Configuration Space. In
the first case (Fig. 2(a)) the valid set defined by the constraint is a circle. Even
with a high relaxation factor, linear interpolation would fail to connect the two
shown samples, since it would try to follow a straight line path that is incom-
patible with the curved constraint. In practical scenarios, the relaxation would
be way smaller, making it even harder to connect configurations. The example
depicted in Fig. 2(b) shows another feature of QPMove: even when attempting
to reach an invalid sample, a valid motion can still be performed inside CR. We
also show in Fig. 2(c) the motion that would be produced by a projection ap-
proach like the one exploited in the CBiRRT planner. To reach the goal more
samples are necessary, with a more irregular spacing between adjacent samples.

2.3 QPlan

The component QPMove described in the previous section was used as part of
a complete path-planner named QPlan. The algorithm exploits a bidirectional
RRT [9] to explore the constraint manifold, and runs post-processing techniques
to enhance the quality of a path. We detail in the following how the typical
components of a randomized planner were integrated.

Sampling. A State Sampler produces new configurations which could poten-
tially become leaves of the trees being expanded by the planner. When moving
on a manifold, samples should satisfy the constraints imposed on the system.



(a) (b) (c)

Fig. 2. Motions generated in CR by QPMove (red), linear interpolation (green) and a
projection approach (black). Start configurations are represented as blue circles, while
the goals as blue squares. In (a), the Constrained Configuration Space is represented
by a circular arc, while in (b) and (c) by a sinusoidal wave. Linear interpolation can
only produce a short path in the first case thanks to a large relaxation, while no new
samples can be generated in the sinusoidal region. QPMove (b) produces less samples,
which are better distributed than in the case of a projection approach (c).

However, QPMove does not necessarily need valid samples to extend one
tree. In fact, an infeasible goal could be passed as qb. The algorithm would
not converge to the given configuration, but it could still produce valid motions
toward new points in the Constraint Manifold. The advantage of this choice is
a faster sampler, since the simple uniform sampling technique can be used.

Trees Extension. The extension step of a bidirectional RRT works by selecting
a random configuration and its nearest neighbor from the current tree. A motion
is then attempted from the latter to the random sample, but limiting its length
to a maximum value.

We rather adopt the greedy version of this algorithm, sometimes referred to
as RRT-ConnConn [11]. This variant tries to extend a branch until either an
invalid state is reached or the connection is successfully performed.

Since QPlan is able to find a discrete set of way-points, it could be useful
to insert all intermediate configurations in the tree. However, this could bear to
an over-populated tree. Therefore, only one generated configuration out of N is
inserted in the tree, and only if its distance from the previously added sample is
higher than a given threshold.

Post-processing. As we handle constraints using a relaxation approach, their
violation will not be completely nullified along local paths. Post-processing is
used to refine an obtained solution by enforcing the constraints at each interme-
diate sample. If a path is found by the planner, the sequence of joint way-points
is re-built, and a local QP optimization is run on each sample. The procedure is
similar to the one exploited in QPMove, with two differences: rather than setting
inequalities that enforce space bounds, a much smaller range is considered. In
practice, inequalities (8) are replaced by:

qraw − dq ≤ q(j+1) ≤ qraw + dq (10)



where qraw is the path configuration before optimization, and dq is a vector
containing small values allowing the error to be minimized without moving too
far away from qraw. In addition, we set as goal configuration the raw initial
sample itself. It further constrain the system to only locally change its state.

In addition, a certain number of short-cutting attempts is performed, in order
to reduce path’s length and simplify the solution.

3 Simulation Results

We present in this section results obtained from simulations on several different
setups with the implemented algorithm. The planner has been implemented
using the components provided by OMPL, the Open Motion Planning Library
[15], and integrated in the ROS [12] framework in the form of a MoveIt! [14]
planning plugin.

During all experiments, the selection of a proper value of the parameter β
was done by trial and error. A value between 0.7 and 0.85 gave the best results in
practice. Relaxation constants εi were set to ensure a reasonably small violation
of constraints. Their numerical value is reported later for each experiment.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. Different tests with QPlan: a 3D point moving respectively (a) on a sphere and
(b) on a torus, (c) a five-links chain whose tip is constrained to a sphere, (d) a Barrett
arm solving a maze, (e) a UR10 and a Kuka LWR4 moving a plate, (f) PR2 moving a
box, (g) PR2 displacing an object with a hole.

A first set of tests was performed considering a 3-Dimensional point (x, y, z)
constrained to the surface of a sphere (Fig. 3(a)) and of a torus (Fig. 3(b)),



in presence of obstacles forming narrow passages. The constraints are writ-
ten in the two setups as C(x, y, z) = x2 + y2 + z2 − R2 and C(x, y, z) =(√

x2 + y2 − r1
)2

+ z2 − r22, R being the radius of the sphere and r1, r2 the

radii defining the torus. We compared the performances of QPlan with a classi-
cal relaxation technique, considering different tolerances. Although the algorithm
presented in [2] uses RTT* [6], we implemented it using the RRT-Connect al-
gorithm for a meaningful comparison of run times. We exploited a sampler that
uniformly generates samples over the manifold in order to reproduce the pro-
posed setup. As reported in Table 1, our approach is considerably faster than a
simple relaxation technique when the allowed tolerance becomes small3.

Some tests were run on a more complex test-case, which had been proposed in
[16]. A five-links kinematic chain rooted at the origin is considered (see Fig. 3(c)).
Each link is parametrized by a 3D point, for a total number of 15 degrees of
freedom. Five constraints are set to fix the distance between pairs of adjacent
joints, while a further constraint requires chain’s tip to move on a spherical
surface. An additional constraint can be set to fix the vertical coordinate of
the first point. While QPlan can effectively find paths for this system, standard
relaxation techniques require either a higher tolerance or longer execution time.
The results shown in Table 2 were obtained considering all links having a length
of 0.2 m, and the constraint sphere a radius of 0.6 m. The tolerances have been
fixed to 0.005 m2 for the five distance constraints, to 0.025 m2 for the tip and
1 mm for the vertical constraint. It is also worth to note that the run-time is
at the same order of magnitude of the Atlas-based planners, according to the
results given in [16].

Table 1. Average planning time in sec-
onds over 100 runs of sphere and torus
setups. We used R = 1 m, r1 = 1 m,
r2 = 0.5 m. The relaxation factor ε is
given in m2.

Algorithm ε Sphere Torus

Relaxation
10−2 0.214 0.477
10−3 8.785 14.632

QPlan
10−2 0.104 0.027
10−3 0.120 0.218

Table 2. Results with the five-links chain,
under 6 or 7 constraints. The actual run-
time of the first algorithm is unknown,
since no plans were found before a time
limit of 10 s.

Algorithm nc = 6 nc = 7

Relaxation > 10 > 10
QPlan 0.080 0.087

Other tested scenarios involve a Barrett arm solving a maze (Fig. 3(d)) and
some dual arm systems cooperatively displacing an object (Figures 3(e), 3(f)
and 3(g)). We do not report running times obtained with standard relaxation

3 A relaxation factor ε = 10−3 m2 on a sphere with unitary radius corresponds to
constrain the points to lay at most 0.5 mm from the surface. The same factor gives
a maximum distance of 1mm from a torus having r1 = 1 m, r2 = 0.5 m.



techniques, since they require a much higher planning time for equal relaxation
factors.

During the maze-solving test three constraints are applied to the end-effector
so as to keep the stick grasped by the arm vertical and in contact with labyrinth’s
floor. This scenario is particularly challenging for the planner, since many obsta-
cles are encountered during planning. As explained in Section 2.3, we do not use
a specific Sampler to generate new configurations. This might lead the robot to
attempt many motions toward configurations that are completely unreachable ei-
ther due to constraints or to obstacles. Using a more involved sampling technique
may instead improve the performances. Another factor that greatly influences
the planning time is the choice of the relaxation constants. In a first instance,
we considered very strict tolerances on both stick position and orientation: 1 cm
of error for the altitude and 0.05 rad for roll and pitch constraints. The chances
to find a solution in a short amount of time are quite low, as shown in Table 3.
However, further tests were conducted by allowing orientation constraints to be
violated with at most 0.2 rad, and optimizing them in the post-processing phase.
With this more tolerant setup, the planning time is slightly reduced.

In the dual-arm setups, relative translation and rotation of the end-effectors
are forbidden in order to maintain a fixed relative transformation between tip
frames. The challenge here comes from the high number of both Degrees of
Freedom and constraints.

Table 3. Planning time of the tests involving different manipulators.

Scene Avg. Min. Max.

Barrett maze (0.05 rad) 4.034 0.669 13.828
Barrett maze (0.2 rad) 3.446 0.426 13.162

UR10 + LWR4 0.819 0.084 4.085
PR2 box 4.338 1.036 10.395

PR2 cylinders 0.866 0.202 2.322

4 Conclusions

We have presented a new approach based on Quadratic Programming that can
effectively generate paths while dealing with a set of constraints. Our approach
takes advantage of relaxation to enlarge the range of valid configurations while
planning and of analytic description of constraints to guide local motions. As a
drawback, the proposed algorithm features many parameters which need to be
tuned in order to guarantee good performances. The relaxation factor plays a
relevant role: if constraint violations are not too strict, the search can proceed
faster. Nonetheless, with an increased tolerance robots would need higher control
action to re-project the samples back to the manifold.

Finally, in our contribution we focused only on the planning step, verifying
that paths generated by the algorithm can be found quickly and with better



constraint enforcement. As a future line of work, experiments with a real robot
should be performed to confirm the validity of the proposed approach.

References

1. Dimitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, and James J. Kuffner.
Manipulation planning on constraint manifolds. In IEEE Int. Conf. on Robotics
and Automation. IEEE, 2009.

2. Manuel Bonilla, Edoardo Farnioli, Lucia Pallottino, and Antonio Bicchi. Sample-
based motion planning for soft robot manipulators under task constraints. In IEEE
Int. Conf. on Robotics and Automation, 2015.

3. Manuel Bonilla, Lucia Pallottino, and Antonio Bicchi. Noninteracting constrained
motion planning and control for robot manipulators. In IEEE Int. Conf. on
Robotics and Automation. IEEE, 2017.

4. Juan Cortes and Thierry Simeon. Sampling-based motion planning under kine-
matic loop-closure constraints. In Algorithmic Foundations of Robotics VI.
Springer, 2004.

5. Léonard Jaillet and Josep M Porta. Path planning under kinematic constraints by
rapidly exploring manifolds. IEEE Trans. on Robotics, 2013.

6. Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal mo-
tion planning. Int. Journal of Robotics Research, 2011.

7. Lydia E. Kavraki, Petr Svestka, J-C Latombe, and Mark H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. on Robotics and Automation, 1996.

8. Beobkyoon Kim, Terry Taewoong Um, Chansu Suh, and Frank C. Park. Tangent
bundle rrt: A randomized algorithm for constrained motion planning. Robotica,
2016.

9. James J. Kuffner and Steven M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE Int. Conf. on Robotics and Automation.
IEEE, 2000.

10. Steven M. LaValle. Rapidly-exploring random trees: A new tool for path planing.
Technical report, Deptartment of Computer Science, Iowa State University, 1998.

11. Steven M. LaValle and James J. Kuffner Jr. Rapidly-exploring random trees:
Progress and prospects, 2000.

12. Maorgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot operating
system. In ICRA workshop on open source software, 2009.

13. Mike Stilman. Task constrained motion planning in robot joint space. In IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. IEEE, 2007.

14. Ioan A. Sucan and Sachin Chitta. Moveit! http://moveit.ros.org. Accessed:
2017-06-30.

15. Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Li-
brary. IEEE Robot. Autom. Mag., 2012. http://ompl.kavrakilab.org Accessed:
2017-06-30.

16. Caleb Voss, Mark Moll, and Lydia E. Kavraki. Atlas+ x: Sampling-based planners
on constraint manifolds. Technical report, Rice University, 2017.

17. Jeffery Howard Yakey, Steven M. LaValle, and Lydia E. Kavraki. Randomized
path planning for linkages with closed kinematic chains. IEEE Trans. on Robotics
and Automation, 2001.

http://moveit.ros.org
http://ompl.kavrakilab.org

	Improving Relaxation-based Constrained Path Planning via Quadratic Programming

